Vietnam Journal of Mathematics 27:1 (1999) 7-21

Vietnam Journal of MATHEMATICS © Springer-Verlag 1999

On the Sample Continuity of Random Mappings*

Dang Hung Thang

Department of Mathematics College of Natural Science, Vietnam National University 334 Nguyen Trai, Hanoi, Vietnam

Received March 19, 1997

Abstract. In this paper the sample continuity of random mappings between a separable metric space and a separable Banach space is considered. It is shown that the well-known Kolmogorov criterion does not hold if the domain of the random mapping is a bounded set in an infinite-dimensional Hilbert space.

1. Introduction

Let (X, d) be a separable metric space and Y a separable Banach space. By a random mapping Φ from X to Y (or a Y-valued random mapping), we mean a family $\Phi = \{\Phi x, x \in X\}$ of Y-valued random variables (r.v.'s) indexed by the parameter set X. If X is an interval of the real line \mathbb{R}^1 , we say that Φ is a Y-valued stochastic process, and if $Y = \mathbb{R}^1$, we say that Φ is a random function on X.

An important result on the existence of sample continuous modification of the stochastic process on an interval [0, T] is provided by a well-known Kolmogorov criterion (see [5]). This criterion was extended by Totoki [7] to the case of a Y-valued random mapping on a bounded set of a finite-dimensional Euclidean space. Namely, if $\Phi = (\Phi x)$ is a Y-valued random mapping on a bounded set $X \subset \mathbf{R}^k$ such that, for some p > 0, $\alpha > 0$ and all x_1 , x_2 in X

$$E \|\Phi x_1 - \Phi x_2\|^p \le C \|x_1 - x_1\|^{k+\alpha}$$

then Φ is sample continuous (i.e., there exists a modification of Φ whose sample paths are continuous). By applying this result, it is not difficult to show that, if Φ is a Y-valued Gaussian random mapping with mean 0 defined on a bounded set X of a finite-dimensional Euclidean space, then the condition

$$E\|\Phi x_1 - \Phi x_2\|^2 \le C\|x_1 - x_2\|^r \tag{1.1}$$

*This paper was supported in part by the National Basic Research Program in Natural Sciences, Vietnam.

some C > 0, r > 0 and all $x_1, x_2 \in X$ is sufficient for the sample continuity eorem 2.4). However, Theorem 2.5 shows that the above assertion does not hold if Xbounded set in an infinite-dimensional Hilbert space. A sufficient condition, which ures the sample continuity of Y-valued random mappings satisfying (1.1), is found. In x_2 , we restrict ourselves to random operators and obtain some new results about their mple continuity. Many other properties of random operators have been considered in 8-10].

Sample Continuity of Random Mapping

 (Ω, \mathcal{F}, P) be a complete probability space, (X, d) a separable metric space, and Y eparable Banach space.

Emition 2.1. A family $\Phi = \{\Phi x, x \in X\}$ of Y-valued r.v.'s Φx indexed by the number of X is called a random mapping from X into Y or a Y-valued random pping on X. We set

$$\Phi(x, \omega) = \Phi x(\omega)$$
 for all $x \in X$ and $\omega \in \Omega$.

X is an interval [0, T] of the real line, then Φ is said to be a *Y*-valued stochastic cess on [0, T].

For each $\omega \in \Omega$, the mapping $\Phi(., \omega) : x \longrightarrow \Phi(x, \omega)$ is called a sample path of Φ . other random mapping Ψ from X into Y is said to be a modification of Φ if

 $\forall x \in X \quad \Phi x(\omega) = \Psi x(\omega) \quad \text{almost surely (a.s.).}$

hould be noted that the set of ω in which the above equality holds depends on x.

finition 2.2.

A random mapping Φ from X into Y is said to be stochastically continuous at $x_0 \in X$ if

$$d\varepsilon > 0$$
 $\lim_{x_n \to x_0} P\{ \|\Phi x_n - \Phi x_0\| > \varepsilon \} = 0.$

 Φ is stochastically continuous on X if it is stochastically continuous at every point of X.

 Φ is said to be sample continuous if there exists a modification Ψ of Φ such that all sample paths of Ψ are continuous.

Finition 2.3. A random mapping Φ from X into Y is called a Gaussian random pping (with mean 0, resp.) if the stochastic process $\{(\Phi x, a), (x, a) \in X \times Y'\}$ is a ussian stochastic process (with mean 0, resp.).

corem 2.4. Let X be a bounded set in a finite-dimensional Euclidean space and Φ -valued Gaussian random mapping with mean 0 on X. Suppose for some C > 0, 0 and all $x_1, x_2 \in X$, we have

$$E\|\Phi x_1 - \Phi x_2\|^2 \le Cd^{\delta}(x_1, x_2), \tag{2.1}$$

 $n \Phi$ is sample continuous.

Proof. Let $X \subset \mathbf{R}^k$ and without loss of generality, assume $d(x_1, x_2) = ||x_1 - x_2||$.

By the crucial property of Gaussian random variables with values in Banach spaces (see [3]), for each p > 0, there exists a positive number C_p such that

$$E \|\Phi x_1 - \Phi x_2\|^p \le C_p \left\{ E \|\Phi x_1 - \Phi x_2\|^2 \right\}^{\frac{p}{2}}.$$

From (2.1), we obtain

$$E \|\Phi x_1 - \Phi x_2\|^p \le D_p \|x_1 - x_2\|^{\frac{p_p}{2}}$$

for all $x_1, x_2 \in X$, where $D_p = C_p C^{\frac{\delta p}{2}}$. Let p be sufficiently large such that

$$\frac{\delta p}{2} > k + 2$$

and M the diameter of X. We have the following estimation:

$$E \|\Phi x_1 - \Phi x_2\|^p \le D_p M^{\frac{\delta p}{2}} \left\| \frac{x_1 - x_2}{M} \right\|^{\frac{\delta p}{2}} \le D_p M^{\frac{\delta p}{2}} \left\| \frac{x_1 - x_2}{M} \right\|^{k+1} = L \|x_1 - x_2\|^{k+1}$$

where $L = D_p M^{\frac{\delta p}{2} - k - 1}$.

By the extended Kolmogorov's criterion due to Totoki [7] (which holds for Y-valued random mappings on a bounded set in \mathbb{R}^k), we conclude that Φ is sample continuous.

Next, we shall show that condition (2.1) is not sufficient for sample continuity of Gaussian random mappings on X with mean 0 if X is a bounded set of an infinite-dimensional Hilbert space H. To this end, let (α_n) be the sequence of independent identical distributive (i.i.d. for short) N(0, 1) random variables and (y_n) a bounded sequence in Y. Suppose X is the unit ball of a Hilbert space H with the orthonormal basis (e_n) . We have the following theorem.

Theorem 2.5. Assume Y is a Banach space of type 2. Then

(i) for each $x \in X$, the series

$$\Phi x = \sum_{n=1}^{\infty} \alpha_n y_n(x, e_n)$$

converges a.s. in Y and define a Gaussian random mapping Φ with mean 0 satisfying the condition

$$E \|\Phi x_1 - \Phi x_2\|^2 \le C \|x_1 - x_2\|^2$$
(2.2)

for all $x_1, x_2 \in X$ and some C > 0.

- (ii) if $\sum_{n=1}^{\infty} ||y_n||^2 < \infty$, then Φ is sample continuous.
- (iii) a necessary condition for sample continuity of Φ is that there exists a positive number K > 0 such that

$$\sum_{n=1}^{\infty} \exp\left\{-\frac{K}{\|y_n\|^2}\right\} < \infty.$$
 (2.3)

In particular, if $y_n = y$, $y \neq 0$ for all n, then Φ is not sample continuous.

Proof. (i) Because Y is of type 2, there exists C > 0 such that, for all independent Y-valued r.v.'s X_1, X_2, \ldots, X_n with mean 0 and finite second moment, we have

$$E\|\sum_{i=1}^{n} X_i\|^2 \le C \sum_{i=1}^{n} E\|X_i\|^2.$$
(2.4)

So we find (with $A = \sup ||y_n||^2$)

$$E \| \sum_{k=m}^{n} \alpha_k y_k(x, e_k) \|^2 \le CA \sum_{k=m}^{n} |(x, e_k)|^2,$$

which proves that the series $\sum_{n=1}^{\infty} \alpha_n y_n(x, e_n)$ converges in probability, and hence, converges a.s. by Ito–Nisio theorem. It is easy to check that Φ is a Gaussian random mapping with mean 0. Moreover, using (2.4), we obtain

$$E \left\| \sum_{i=1}^{n} \alpha_{i} y_{i}(x_{1}, e_{i}) - \sum_{k=1}^{n} \alpha_{i} y_{i}(x_{2}, e_{i}) \right\|^{2} \le CA \|x_{1} - x_{2}\|^{2}$$

for all n which proves (2.2).

(ii) We have

$$E\left(\sum_{n=1}^{\infty} \|\alpha_n y_n\|^2\right) = E|\alpha_1|^2 \sum_{n=1}^{\infty} \|y_n\|^2 < \infty$$

so $\sum_{n=1}^{\infty} \|\alpha_n y_n\|^2 < \infty$ a.s. Put

$$\Omega_0 = \left\{ \omega \in \Omega : \sum_{n=1}^{\infty} \|\alpha_n(\omega)y_n\|^2 < \infty \right\}.$$

For each $\omega \in \Omega_0$, $x \in X$, we have

$$\left\|\sum_{i=m}^{n} \alpha_{i}(\omega) y_{i}(x, e_{i})\right\| \leq \sum_{i=m}^{n} \|\alpha_{i}(\omega) y_{i}\| |(x, e_{i})| \leq \left(\sum_{i=m}^{n} \|\alpha_{i}(\omega) y_{i}\|^{2}\right)^{\frac{1}{2}} \|x\|.$$

From this it follows that the series $\sum_{n=1}^{\infty} \alpha_n(\omega) y_n(x, e_n)$ converges in Y for each $\omega \in \Omega_0$ and $x \in X$.

Define a mapping $\Psi : X \times \Omega \to Y$ by

$$\Psi(x,\omega) = \begin{cases} \sum_{n=1}^{\infty} \alpha_n(\omega) y_n(x,e_n), & \text{if } \omega \in \Omega_0 \\ 0, & \text{otherwise.} \end{cases}$$

For each $x \in X$, by definition, the series $\sum_{n=1}^{\infty} \alpha_n y_n(x, e_n)$ converges a.s. to $\Psi(x, \omega)$.

Consequently,

$$P\left\{\omega\in\Omega:\Psi(x,\omega)=\Phi(x,\omega)\right\}=1$$

It remains to show that all sample paths of Ψ are continuous. Indeed, it is easy to see that the mapping

$$x \longrightarrow \sum_{i=1}^{n} \alpha_i(\omega) y_n(x, e_i)$$

is linear and continuous. By the Banach–Steinhaus theorem, the mapping $x \to \Psi(x, \omega)$ is continuous as desired.

(iii) Suppose there exists a modification Ψ with continuous sample paths. Because $\Phi(x, \omega) = \Psi(x, \omega)$ a.s., we can find a set Ω_0 of probability 1 such that

$$\Phi(re_n,\omega)=\Psi(re_n,\omega)$$

for all rational number $r \in Q$ $|r| \le 1$ and all e_n . Clearly, for each $r \in Q$, $|r| \le 1$ and each e_n

$$\Phi(re_n) = r\Phi(e_n)$$
 a.s

Hence, we can find a set Ω_0 of probability 1 such that

$$\Phi(re_n,\omega)=r\Phi(e_n,\omega)$$

for all $\omega \in \Omega_0$, all $r \in Q$, $|r| \leq 1$, and all e_n .

Now, fix $\omega \in \Omega_1 \cap \Omega_0$. For each rational number $r \in [0, 1]$ and each n, we have

$$\Psi(re_n;\omega) = \Phi(re_n,\omega) = r\Phi(e_n,\omega) = r\Psi(e_n,\omega).$$

Since the mapping $x \to \Psi(x, \omega)$ is continuous at O and $\Psi(0, \omega) = 0$, there exists $r \in Q, 0 < r \le 1$ such that $\|\Psi(x, \omega)\| < 1$ whenever $\|x\| < r$. Consequently,

$$\frac{r}{2}\|\Psi(e_n,\omega)\| = \|\frac{r}{2}\Psi(e_n,\omega)\| = \|\Psi(\frac{re_n}{2},\omega)\| < 1 \text{ for all } n.$$

From this, we obtain

$$\|\Phi(e_n,\omega)\| = \|\Psi(e_n,\omega)\| < \frac{2}{r} < \infty$$

for all *n* and all $\omega \in \Omega_1 \cap \Omega_0$.

Since $P(\Omega_1 \cap \Omega_0) = 1$, this means that

$$\sup \|\Phi(e_n,\omega)\| < \infty$$
 a.s.,

i.e.,

$$\sup_{n} |\alpha_n| \|y_n\| < \infty.$$
(2.5)

By Vakhania's theorem [12], (2.5) implies (2.3) as desired.

Now, let Φ be a random mapping from X into Y (Gaussian or not) satisfying the, following conditions:

(i) $\forall x \in X$ $E \|\Phi x\|^2 < \infty$, (ii) $\exists C > 0$, $\exists \delta > 0$ such that

$$\left(E\|\Phi x_1 - \Phi x_2\|^2\right)^{\frac{1}{2}} \le Cd^{\delta}(x_1, x_2)$$
(2.6)

for all $x_1, x_2 \in X$.

Without loss of generality, we can assume

$$d(x_1, x_2) \leq M \quad \forall x_1, x_2 \in X.$$

The problem considered here is to determine sufficient conditions for Φ to be sample continuous.

Denote by $L_2(\Omega)$ the Hilbert space of real-valued random variable ξ with

$$\|\xi\| = \left(E|\xi|^2\right)^{\frac{1}{2}} < \infty.$$

If C(X, Y) stands for the set of all bounded continuous mappings from X into Y, then C(X, Y) becomes a Banach space under the norm

$$||f||_C = \sup_{x \in X} ||f(x)||.$$

It should be noted that C(X, Y) is not necessarily separable.

We associate to Φ a mapping T from $L_2(\Omega)$ into the set of all mappings from X into Y defined by

$$(T\xi)x = \int_{\Omega} \xi(\omega)\Phi x(\omega)dP(\omega).$$
 (2.7)

Here, the Bochner integral (2.7) exists since $E \|\Phi x\|^2 < \infty$.

Lemma 2.6. T is a linear continuous mapping from $L_2(\Omega)$ into C(X, Y).

Proof. We have to show that $T\xi \in C(X, Y)$ for $x_1, x_2 \in X$ we have

$$\|(T\xi)x_1 - (T\xi)x_2\| \le \int_{\Omega} |\xi| \|\Phi x_1 - \Phi x_2\|dP$$

$$\le \left(E\|\xi\|^2\right)^{\frac{1}{2}} \left(E\|\Phi x_1 - \Phi x_2\right)\|^2\right)^{\frac{1}{2}} \le C\|\xi\|d^{\delta}(x_1, x_2)$$

showing that $T\xi$ is continuous.

Fix $x_0 \in X$. For all $x \in X$, we have

$$\|(T\xi)x\| \le \|(T\xi)x_0\| + \|(T\xi)x - (T\xi)x_0\|$$

$$\le \|\xi\| \left\{ (E\|\Phi x_0\|^2)^{\frac{1}{2}} + Cd^{\delta}(x, x_0) \right\}$$

$$\le \|\xi\| \left\{ (E\|\Phi x_0\|^2)^{\frac{1}{2}} + CM^{\delta} \right\}$$

$$= \|\xi\|K,$$

which proves that $T\xi$ is bounded. The linearity of T is obvious. Hence, T is a linear mapping from X into C(X, Y).

Moreover, from (2.8), we obtain

$$\|T\xi\|_C \leq K \|\xi\|,$$

which proves the continuity of T.

Lemma 2.7. Suppose there exists a Radon measure μ on C(X, Y) such that, for all (x_1, x_2, \ldots, x_n) in X, all (a_1, a_2, \ldots, a_n) in Y' and all Borel set B in \mathbb{R}^n ,

$$P\left\{\left(\Phi x_{i}, a_{i}\right)_{i=1}^{n} \in B\right\} = \mu\left\{f: \left(f x_{i}, a_{i}\right)_{i=1}^{n} \in B\right\}.$$
(2.9)

Then Φ is sample continuous.

Proof. For each pair $v = (x, a) \in X \times Y'$, the mapping $v : C(X, Y) \to R$ given by v(f) = (fx, a) is linear and continuous. Suppose (x_m) is the countable set dense in X and $(a_n) \subset Y'$ is a sequence in Y' such that

$$\|y\| = \sup_{n} |(y, a_n)| \quad \forall y \in Y.$$

Let

$$M = \left\{ \left(x_n, a_m \right)_{n,m=1}^{\infty} \right\} \subset X \times Y'$$

M is a countable set in $X \times Y'$, so it can be written as a sequence $M = \{v_1, v_2, ...\}$. For brevity, if $v = (x, a) \in X \times Y'$, then $v(\Phi)$ denotes the r.v. $(\Phi x, a)$, i.e.,

$$v(\Phi)(\omega) = (\Phi x(\omega), a).$$

Define the mapping $A : C(X, Y) \to R^{\infty}$ by

$$A(f) = \left\{ v_i(f) \right\}_{i=1}^{\infty}$$

(2.8)

(2.10)

It is easy to verify that A is one-to-one and continuous. Since μ is a Radon measure, there exists a sequence of compact sets $(K_n) \subset C(X, Y)$ such that $\lim_n \mu(K_n) = 1$. Put $K = \bigcup_{n=1}^{\infty} K_n$, then K is a Borel set and $\mu(K) = 1$ and $A(K) = \bigcup_{n=1}^{\infty} A(K_n)$ is a Borel set in \mathbb{R}^{∞} . The restriction of A on K has an inverse from A(K) into C(X, Y) denoted by B. Put

$$\Omega_0 = \left\{ \omega \in \Omega : \left\{ v_i(\Phi) \right\}_{i=1}^{\infty} \in A(K) \right\}$$

Then by (2.9),

$$P(\Omega_0) = P\left\{\omega : \left\{v_i(\Phi)\right\}_{i=1}^{\infty} \in A(K)\right\}$$
$$= \mu\left\{f \in (X, Y) : \left\{v_i(f)\right\}_{i=1}^{\infty} \in A(K)\right\}$$
$$= \mu\left\{f : A(f) \in A(K)\right\} \ge \mu(K) = 1.$$

Consider the mapping $G: \Omega_0 \to A(K)$ defined by

$$G(\omega) = \left\{ v_i(\Phi) \right\}_{i=1}^{\infty}$$

and the mapping $\Psi: \Omega_0 \to C(X, Y)$ by

$$Y(\omega) = B(G(\omega))$$

By (2.9), the distribution of A is the same as the distribution of G. Fix an element $v \in M$. We have

$$P\left\{\omega: v(\Phi)(\omega) = v(\Psi(\omega))\right\}$$

= $P\left\{\omega: v(\Phi)(\omega) = v[B(G(\omega))]\right\}$
= $\mu\left\{f \in C(X, Y): v(f) = v[B(A(f))]\right\}$
 $\geq \mu\left\{f: f = BA(f)\right\}$
 $\geq \mu(K) = 1.$

Consider the random mapping Ψ given by

$$\Psi(x,\omega)=\Psi(\omega)x.$$

It is obvious that all sample paths of Ψ are elements of C(X, Y). We shall show that Ψ is a modification of Φ . From (2.10), we have

$$(\Phi x_n, a_m) = (\Psi x_n, a_m)$$
 a.s

which implies that $\forall n = 1, 2, \dots$

$$\Phi x_n(\omega) = \Psi x_n(\omega) \quad \text{a.s.}$$

Now, if x is an arbitrary element in X, then we can choose a subsequence (x_{n_k}) bending to x. By (2.6), Φx_{n_k} converges to Φx in probability.

On the other hand, $\Psi_{n_k}(\omega)$ converges to $\Psi x(\omega)$ for all $\omega \in \Omega$. Consequently,

$$\Phi x(\omega) = \Psi x(\omega)$$
 a.s.

The lemma is proved.

We are now ready to prove the following:

Theorem 2.8. A sufficient condition for Φ to be sample continuous is that the linear continuous mapping $T : L_2(\Omega) \to C(X, Y)$ given by (2.7) is 2-summing.

Proof. Let γ be a cylindrical measure mapping $I_d : L_2(\Omega) \to L_2(\Omega)$. In other words, γ is defined by the formula

$$(g_1, g_2, \ldots, g_n) \in L_2(\Omega) : \gamma_{g_1, \ldots, g_n} = \mathcal{L}(g_1, \ldots, g_n),$$

or

$$\gamma \Big[\xi \in L_2 : (\xi, g_i)_{i=1}^n \in B \Big] = P \Big\{ \omega : \big(g_i(\omega) \big)_{i=1}^n \in B \Big\}.$$
(2.11)

 γ is a cylindrical measure of type 2 because

$$\sup_{\|g\| \le 1} \int |t|^2 d\gamma_g(t) = \sup_{\|g\| \le 1} E \|g\|^2 \le 1.$$

Since T is 2-summing, by Schwartz's Radonification Theorem (see [4]), the image measure $\mu = T(\gamma)$ is a Radon measure on C(X, Y). Now, for $(x_1, x_2, \ldots, x_n) \subset X$, $(a_1, \ldots, a_n) \subset Y'$ and for all Borel sets $B \subset \mathbb{R}^n$ by (2.11), we obtain

$$\mu\left\{f \in C(X, Y) : \left(fx_{i}, a_{i}\right)_{i=1}^{n} \in B\right\}$$
$$= \gamma\left\{\xi \in L_{2}(\Omega) : \left((T\xi)x_{i}, a_{i}\right)_{i=1}^{n} \in B\right\}$$
$$= \gamma\left\{\xi \in L_{2}(\Omega) : \left(\xi, (\Phi x_{i}, a_{i})\right)_{i=1}^{n} \in B\right\}$$
$$= P\left\{\omega : \left(\Phi x_{i}, a_{i}\right)_{i=1}^{n} \in B\right\}.$$

According to Lemma 2.7, we conclude that Φ is sample continuous.

3. Sample Continuity of Random Operators

Throughout this section, X is assumed to be a separable Banach space.

Definition 3.1.

(a) A random mapping Φ from X into Y is said to be stochastically linear if, for each $\lambda_1, \lambda_2 \in R$ and each $x_1, x_2 \in X$,

$$\Phi(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 \Phi x_1 + \lambda_2 \Phi x_2 \quad a.s.$$

It is important that the set of ω in which the above equality holds depends on λ_1 , λ_2 , x_1 and x_2 .

(b) If a random mapping Φ is stochastically linear and stochastically continuous, then Φ is called a random operator from X into Y. **Theorem 3.2.** Let $X = \ell_p$ (p > 1) and Φ be a random operator from X into Y. (i) If

$$\sum_{n=1}^{\infty} \|\Phi e_n\|^{p'} < \infty \quad a.s.,$$

then Φ is sample continuous, where (e_n) is the standard basis in ℓ_p and p' is the conjugate number of $p\left(\frac{1}{p} + \frac{1}{p'} = 1\right)$.

(ii) A necessary condition for the sample continuity of Φ is that

$$\sum_{n=1}^{\infty} \left| (\Phi e_n, a) \right|^{p'} < \infty \quad a.s. \ for \ all \ a \in Y$$

and

$$\sup_{n\in N} \|\Phi e_n\| < \infty \quad a.s.$$

Proof. (i) Put

$$\Omega_0 = \left\{ \omega : \sum_{n=1}^{\infty} \|\Phi e_n(\omega)\|^{p'} < \infty \right\}$$

If $\omega \in \Omega_0$, then

$$\sum_{n=1}^{\infty} \|(x,e_n)\Phi e_n(\omega)\| < \infty,$$

which implies that the series $\sum_{n=1}^{\infty} (x, e_n) \Phi e_n(\omega)$ is convergent in Y. Define a random mapping Ψ by

$$\Psi(x,\omega) = \begin{cases} \sum_{n=1}^{\infty} (x, e_n) \Phi e_n(\omega), & \text{if } \omega \in \Omega_0 \\ 0 & \text{otherwise.} \end{cases}$$

By the Banach–Steinhaus theorem, all sample paths of Ψ are continuous. Since Φ is stochastically continuous, linear and $x = \sum_{n=1}^{\infty} (x, e_n)e_n$, we obtain that

$$\Phi x = \sum_{n=1}^{\infty} (x, e_n) \Phi e_n \,,$$

where the series converges in probability. Clearly, the series $\sum_{n=1}^{\infty} (x, e_n) \Phi e_n$ converges a.s. to Ψx . Consequently, $\Phi x = \Psi x$ a.s., i.e., Ψ is a modification of Φ .

(ii) In order to prove (ii), we need the following lemma.

Lemma 3.3. Suppose Ψ is a modification of Φ with continuous sample paths. Then for almost all ω , sample paths $\Psi(., \omega)$ are linear.

Proof. Let Z be a countable set dense in X and [Z] a linear space spanned over the field Q of rational number of Z. From the stochastic linearity of Φ and the countability of [Z], it follows that there exists a set Ω_0 with $P(\Omega_0) = 1$ such that

$$\forall \omega \in \Omega_0, \ \forall x_1, x_2 \in [Z], \ \forall r_1, r_2 \in Q$$

$$\Phi(r_1x_1 + r_2x_2, \omega) = r_1\Phi(x_1, \omega) + r_2\Phi(x_2, \omega)$$

Since Ψ is a modification of Φ and [Z] is countable, we can find a set Ω_1 with $P(\Omega_1) = 1$ such that

$$\Phi(x,\omega) = \Psi(x,\omega)$$

for all $x \in [Z]$ and all $\omega \in \Omega_1$.

Now, we claim that, for each $\omega \in \Omega_0 \cap \Omega_1$, the sample path $\Psi(., \omega)$ is linear. Indeed, for $x_1, x_2 \in [Z]$ and $r \in Q$, we have

$$\Psi(x_1 + x_2, \omega) = \Phi(x_1 + x_2, \omega) = \Phi(x_1, \omega) + \Phi(x_2, \omega) = \Psi(x_1, \omega) + \Psi(x_2, \omega)$$

$$\Psi(rx_1, \omega) = \Phi(rx_1, \omega) = r\Phi(x_1, \omega) = r\Psi(x_1, \omega).$$

For $x \in X$, $x' \in X$ and $\lambda \in R$, we can choose sequences $(x_n) \subset [Z]$, $(x'_n) \subset [Z]$ and $(r_n) \subset Q$ such that $x_n \to x$, $x'_n \to x'$ and $r_n \to \lambda$. Using the continuity of the mapping $x \to \Psi(x, \omega)$, we obtain

$$\Psi(x,\omega) + \Psi(x',\omega) = \lim \Psi(x_n,\omega) + \lim \Psi(x'_n,\omega)$$

= $\lim \Psi(x_n + x'_n,\omega) = \Psi(x + x',\omega),$
 $\lambda \Psi(x,\omega) = \lim r_n \Psi(x_n,\omega) = \lim \Psi(r_n x_n,\omega) = \Psi(\lambda x,\omega).$

The lemma is proved.

Proof of part (ii). By Lemma 3.3, there exists a set Ω_0 with $P(\Omega_0) = 1$ such that $\forall \omega \in \Omega_0$ and the mapping

$$T(\omega): x \to \Psi(x, \omega)$$

is a linear continuous operator. Moreover, we can find a set Ω with $P(\Omega_1) = 1$ such that

$$\Phi(e_n,\omega) = \Psi(e_n,\omega) = T(\omega)e_n$$

for all $\omega \in \Omega_1$, all $n = 1, 2, \ldots$.

Consequently, for each $\omega \in \Omega_0 \cap \Omega_1$,

$$\sup \|\Phi(e_n,\omega)\| = \sup \|T(\omega)e_n\| \le \|T(\omega)\| < \infty,$$

$$\sup \|\Phi e_n\| < \infty \quad \text{a.s.}$$

and for each $a \in Y'$, $n = 1, 2, \ldots$,

$$\sum_{n=1}^{\infty} |\langle \Phi e_n(\omega), a \rangle|^{p'} = \sum_{n=1}^{\infty} |\langle T(\omega) e_n, a \rangle|^{p'}$$
$$= \sum_{n=1}^{\infty} |\langle e_n, T^*(\omega) a \rangle|^{p'} = ||T(\omega)a||^{p'} < \infty,$$

i.e.,

$$\sum_{n=1}^{\infty} |\langle \Phi e_n, a \rangle|^{p'} < \infty \quad \text{a.s.}$$

This completes the proof of the theorem.

Proof. (i) We have

$$\sum \|y_n(x, e_n)\|^p \le \sup \|y_n\| \|x\|^p$$

Hence, because Y is of stable type p, the series $\sum_{n=1}^{\infty} \gamma_n y_n(x, e_n)$ converges a.s. By the properties of stable measures on Banach spaces [4], there exists a constant K > 0 such that

$$P\left\{\|\Phi x\| > \varepsilon\right\} = P\left\{\|\sum_{n=1}^{\infty} \gamma_n y_n(x, e_n)\| > \varepsilon\right]$$

$$\leq \frac{K}{\varepsilon^p} \sum_{n=1}^{\infty} \|(x, e_n) y_n\|^p \leq \frac{K \sup \|y_n\|^p \|x\|^p}{\varepsilon^p}.$$

This shows that Φ is a random operator.

(ii) If Φ is sample continuous, then by Theorem 3.2, we have

$$\sup \|y_n \gamma_n\| = \sup \|\Phi e_n\| < \infty \quad \text{a.s.}$$
(3.3)

By the Borel-Cantelli lemma, condition (3.3) holds if and only if

$$\sum_{n=1}^{\infty} P\left\{ \|y_n \gamma_n\| > t \right\} < \infty$$

for some t > 0.

r some t > 0. Since $P\left\{\|y_n\gamma_n\| > t\right\} = P\left\{|\gamma_n| > \frac{t}{\|y_n\|}\right\} \sim \frac{\|y_n\|^p}{t^p}$, it follows that $\sum_{n=1}^{\infty} \|y_n\|^p < \infty$. In order to prove the converse, by Theorem 3.2, it suffices to show that

$$\sum_{n=1}^{\infty} \|\Phi e_n\|^{p'} < \infty \quad \text{a.s.}$$

Indeed, since p' > p, the space $\ell_{p'}$ is of stable type p. Therefore, condition (3.2) implies that the series $\sum_{n=1}^{\infty} ||y_n|| e_n \gamma_n$ converges a.s. in $\ell_{p'}$. Hence, we obtain

$$\sum_{n=1}^{\infty} \|\Phi e_n\|^{p'} = \sum_{n=1}^{\infty} \|y_n \gamma_n\|^{p'} < \infty \quad \text{a.s.}$$

as desired.

The following corollary shows that the necessary condition stated in Theorem 3.2(ii) is sufficient only if the case Y is finite-dimensional.

Corollary 3.5. Let Y be a separable Banach space of stable type p (1). Thenthe following assertions are equivalent:

(i) *Y* is finite-dimensional;

(ii) for every random operator Φ from ℓ_p into Y, the condition

$$\sum_{n=1}^{\infty} |(\Phi e_n, a)|^{p'} < \infty \quad a.s.$$

for all $a \in Y'$ is sufficient for the sample continuity of Φ .

Proof. (i) \rightarrow (ii) Let $Y = R^k$ and h_1, h_2, \ldots, h_k be the standard basis in R^k . By the assumption, for each h_j ,

$$\sum_{n=1}^{\infty} \left| (\Phi e_n, h_j) \right|^{p'} < \infty \quad \text{a.s.}$$

It is obvious that we can find a constant C > 0 such that

$$||y||^{p'} \le C \sum_{j=1}^{k} |(y, h_j)|^{p'}$$

for all $y \in R^k$. Consequently,

$$\sum_{n=1}^{\infty} \|\Phi e_n\|^{p'} \le C \sum_{n=1}^{\infty} \sum_{j=1}^{k} |(\Phi e_n, h_j)|^{p'}$$
$$= C \sum_{j=1}^{k} \sum_{n=1}^{\infty} |(\Phi e_n, h_j)|^{p'} < \infty \quad \text{a.s}$$

By Theorem 3.2, Φ is sample continuous.

(ii) \rightarrow (i) Suppose Y is infinite-dimensional. By the weak Dvoretzsky-Rogers theorem, there exists a sequence $(y_n) \subset Y$ such that

for all
$$a \in Y'$$
, $\sum_{n=1}^{\infty} |(y_n, a)|^p < \infty$ (3.4)

but

$$\sum_{n=1}^{\infty} \|y_n\|^p = \infty.$$
(3.5)

Taking into account that [2, p.32]

$$||y_n|| = \sup_{||a|| \le 1} |(y_n, a)| \le \sup_{||a|| \le 1} \left(\sum_{n=1}^{\infty} |(y_n, a)|^p \right)^{\frac{1}{p}} < \infty$$

we see that (y_n) is a bounded sequence in Y. Define a random mapping Φ from ℓ_p into Y by

$$\Phi x = \sum_{n=1}^{\infty} \gamma_n y_n(x, e_n),$$

 Φ is a random operator (Corollary 3.4). By the same argument as shown in the proof of Corollary 3.4, condition (3.4) implies that

$$\sum_{n=1}^{\infty} |(\Phi e_n, a)|^{p'} = \sum_{n=1}^{\infty} |\gamma_n(y_n, a)|^{p'} < \infty$$
 a.s.

Using assumption (ii), we conclude that Φ is sample continuous. Thanks to Corollary 3.4, this fact implies that

$$\sum_{n=1}^{\infty} \|y_n\|^p < \infty$$

which contradicts (3.5). Therefore, Y is finite-dimensional.

References

- 1. A. Araujo and E. Gine, *The Central Limit Theorem for Real and Banach Valued Random Variables*, John Wiley & Sons, New York, 1980.
- 2. J. Diestel, H. Jorchov, and A. Tonge, *Absolutely Summing Operators*, Cambridge University Press, 1995.
- J. Hoffmann–Jörgensen, Probability in banach spaces, in: Ecole d'Ete de Probabilities de Saint-Flour VI, 1976, Lecture Notes in Mathematics, Vol. 598, J. Hoffmann-Jörgensan, T.N. Liggett and J. Neveu (eds.), Springer-Verlag, 1977.
- 4. W. Linde, *Probability in Banach Space-Stable and Infinitely Divisible Distribution*, John Wiley & Sons, New York, 1986.
- 5. A.V. Skorohod, Theory of Stochastic Processes, Nauk, Moscow, 1971 (Russian).
- 6. A.V. Skorohod, Random Linear Operators, Nauk, Moscow, 1980 (Russian).
- 7. H. Totoki, A method of construction of measures on function spaces and its application to stochastic processes, *Mem. Fac. Sci. Kyushu Univ., Ser. A* **15** (1962) 178–190.
- 8. D.H. Thang, Random operators in Banach spaces, Probab. Math. Statist. 8(2) (1987) 155-167.
- 9. D.H. Thang, Sample paths of random operators in Banach spaces, Mem. Fac. Sci. Kyushu Univ., Ser. A 46 (1992) 287-306.
- D.H. Thang, The adjoint and the composition of random operators on a Hilbert space, Stochastic and Stochastic Reports 54 (1995) 53-73.
- 11. M. Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1-2) (1987) 99-149.
- 12. N.N. Vakhania, Probability Distribution in Linear Spaces, Mecnereba Press, 1971.