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1. Introduction

Let Fpy[x1, ..., x,] be the commutative polynomial algebra in n indeterminants, x1, ..., X»
say, over the field F, of p elements, and 54 the subspace of Fy[x1, ..., x,] consisting of
all homogeneous polynomials of degree d. M, acts on Fp[x1, ..., x,] in the usual way,
therefore, M, acts on S4 and S? becomes M,,-module.

Mitchell showed that every irreducible M,,-module occurs as a composition factor in
M,,-module $¢ for some d < DL p' — 1) and then, Doty and Walker [1] showed that
this module can be embedded in $¢ as an M,,-submodule for at least one value of d in
this range. However, it is not known whether the degree d given above is the minimum
possible degree of an embedding of the irreducible M,,-module. Independently, by using
Dickson invariants, a complete set of distinct irreducible modules Hg was constructed
by Tri [3]; every module Hg is a submodule of 54 for some d in the above range. The
aim of this paper is to show that the occurrence of this module is the first occurrence of
this module as a submodule in Fp[x1, ..., Xn].

To state our results we recall that the Dickson invariant L, = L, (x1, ..., X, ) is defined

as follows:
X1 RS A

Then o.L, = deto L, for o € M,,.

Let 8 = (B, ..., By) and L8 = [, L” € Fylx1, ..., xa].

We denote by Hp the M,-module generated by L#, it means that Hpg is an Fj,-vector
space generated by the set {0.L? : o € M,}.
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Theorem 1.1. [3, 1.1]
{Hsp: B=(B1,-. . B), 0<Bi<p—1,1<i<n}
is a complete set of p” distinct irreducible modules for the algebra F,[M,].

Letn =2 and i, j be integers such that 0 < i < p — 1. Let W;; be the M,-module

generated byx " Then Wi; isirregular and isomorphic to H; g). W;; occursin Fp[x1, x2]
in dimension i p/ whereas H(; o) occurs in Fj,[x1, x2] in dimension i. Let V, ; be the

M,,-module generated by L, i’ . Then V;; is irregular and isomorphic to Hyg ;). V;; j occurs
in Fy,[x1, x2] in dimension (1 + p)i pf whereas H(g, ;) occurs in Fp,[x1, x2] in d1mens1on
(1 + p)z Generally, we have

Theorem 1.2. Hg mentioned in Theorem 1.1 is the representative of lowest degree for
its class of isomorphic irreducible My,-submodules of Fp[xy, ... , x,]

2. Proof of Theorem 1.2
We need the following results.

Proposition 2.1. [3, 3.5] Let 8 = (B1,...,Bn) be such that 0 < B; < p — 1 for
i=1,...,n
() IfBn 2 1, then H, ... p) = Hp,,... p,_.5,—1) ® det.

o

(ii) Lete,_; = ( 0 0 .Thene, 1.Heg,, .. p,_,,00 = Heg,. . g, ) as My_1-modules.

Lemma 2.2. Let Bi,... .8, be such that 0 < B < p—1,1 < i < n —1,
0 < B, < p—2 and W an M,,-module.

() If1 < B, and det @W = det @Hg,,.. g, ,.8,), then W = Heg, .. .Bo_r.B)-
(i1) Ifdet®@W = det ®Hg,,... g._.,0), then

W =Heg,,. p.00or W=Heg, g -1

Proof. From the hypothesis det ®W = det @ Hg, ... g, ,.5,), it implies that det @W =
Hg,.....8,.,8,+1) by Proposition 2.1. Hg,, .. 8, ,.g,+1) is itreducible since W is too. The

modules Hg for 8 = (B1,...,Bx), 0 < B < p—1, 1 <i < nform a complete set
of p" distinct irreducible modules for the algebra Fj[M,], s0 W = H,,. . o, .0, for
some o1, ..., 01,0, 0<o<p—-11<i<n,

For 1 < 8, < p—2,ifay = p — 1, from the definition of Hs, . a4, .0,
it is not hard to show that det ® Hy,, .. ,_,.a,) iS isomorphic to Hy,, . o,_,.1)- Then,
from He,,... o,_,,1) = H,... p,,.p.+1), it implies that B, = 0. It is impossible. Thus,
op < p—1land det®W = H,, . o, .0o+1) = He,,.. g, ,.8+1)- From this, we have
o; = fBi, 1 <i < n and the assertion (i) is proved.

To prove the assertion (ii), we note
ay_1,ant1) fOr oy < p—1,

~ H((Y],...,
det@W =
H(Dtly---,dn_l,l) for oy = p — 1.
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From the hypothesis of (ii) and Proposition 2.1, we have
det®W = H, ... f,1.1)»

therefore, o; = Bi,1 <i <n—1,a, = Oora, = p — 1 and the assertion (ii) is
proved. [ |

Proof of Theorem 1.2. Let T, be the group consisting of upper triangular matrices with
1 on the diagonal. In [2], Mui showed that

Fplxt, ..., xp1% = FplWa, ..., V,1,

where Vi = Vi(xy, ..., x) =[[1x1+ -+ ai—1xi—y +x)and L, = V; - -- V.

The theorem is proved by induction on 7.

For n = 1, let W be an irreducible M;-module as a submodule of homogeneous
polynomials in F,[x1], isomorphic to Hpg, for some B1,0 < 8y < p — 1. Hpg is an
M -module generated by xl1 and the modules H;, 0 <C< p—1, forma complete set of
p distinct irreducible modules for F,[M:]. Therefore, W contains nonzero homogeneous
polynomials with their degree not less than 8; and the theorem is proved.

For n > 1, suppose the theorem is true for every integer less than n.

Let 8 = (B1,-..,81), 0 < B <p—1,1<i < nand Hg an irreducible
module generated by LP. Let W be an irreducible module as a submodule of
homogeneous polynomials in F, plx1,... ., x,] and n an isomorphism from W onto Hg.
Set f(x1, ..., xn) = n~'(LP), then according to the proof of [3, 3.2], f(x1, ... , x,)isa
unique T, -invariant up to constanta € Fy,a # 0.For 1 <i < n,take o; = (ajx) € M,
ajj = 1,j # i and ajz = O at other positions. We have n(o;.f(x1,...,x,)) =
0in(f(x1,..., %)) = 0;.LF = 0, therefore, o;.f(x1,...,x,) = O and then
f(x1,...,x,) has x; as a factor. f(xy,...,x,) is an Tj,-invariant, so fx1, ..., xp)
has ajx; + - + o4_1x;—1 + x; as a factor and V; as a factor for 1 < i < n. Thus,
FOa, .o, x0) =Ly fi(xy, ... , x,) forsome Ty, -invariant fi(xy, ... , x,). Let W bethe
M,-module generated by fi(x1, ..., x,),then W = L, W; = det @ W; as M,,-modules.

Note that Hg,,.. .5, ,.5,) = det®Hg,, .. g,,.6,~1) if B > 1. Lemma 2.2 implies
Wi = Hg,,.. g, ,.6,—1)- By repeating this procedure for B, — 1 times and also by
Lemma 2.2, we have f(xi,...,x,) = Lg” S8, (x1,...,x,) for some Tj,-invariant
fﬂn(xl,... ,X) and W, = Heg,, . .g..0 Or H(ﬂln--,ﬂn—l,P—l)’ where ngn is the
M,,-module generated by St ) IE W, = Heg,.... g, ..p—1), by the above
method, there finally exists k such that

S, x0) = Lf"+k(P_1)fﬁ,,+k(p—1)(x1, )
for some T,-invariant fg _kp—1)(x1, ..., Xz). If we denote by Wg, 1k(p—1) the M,-
module generated by fﬁn+k(p_1)(xl, ..., Xy), then W,B,.+k(p—1) = H(ﬂl,,_.,ﬂnil,o). Take

I — O ~
s < "o o) € Mu then nle w1 en1.Wo koot = en_1.Hp,... 5,0
= Hg,...p_ as M,_;-modules by Proposition 2,1. Note that en—1-Wa.+k(p—1)

is the M,_j-module generated by en—1.f5, +i(p—1)(x1, ... ,. Xn)y 8O €u—i.fo,+k(p—1)
(X1, ..., x,) % 0and deg fg, 45(p-1)(X1, ... , Xy) = deg 1+ T+ 4p—1) (X1, o va B
By the induction assumption, we have deg Cr—1 S8 k=) (X5 - = < X))

> deg L1+ A1) Thus,
deg f(x1,...,x,) > deg LBt B Br)
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and the theorem follows.
Now, letr > landny, ..., n, positiveintegers suchthatni+- - -+n, = n.Denoted by
M, ... »n,.the parabolic subsemigroup of semigroup M,, My, . . is defined as follows:

B; *
My,om={| - |eMi:BieM, 1<isr}
0 B,

Denote by Hg(M,,,..n,) the My, . » module generated by L#?; it means that
Hg(M,, .. »,) is an Fp-vector space generated by the set {O’.L’B 10 EMy . )

In the same way as in [3], we also have :
Proposition 2.3.

{(He(Myy,,.n):B=(B1,....B81), 0B <p—1,1=<i=<n}

is a complete set of p" distinct irreducible modules for F,[M,, . 1.
Then the proof of Theorem 1.2 is also valid for the following proposition.

Proposition 2.4. Hg(M,, .. n ) mentioned in Proposition 2.3 is the representative
of lowest degree for its class of isomorphic irreducible M, . . submodules of
Fplxy, ..., x4).

r
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