Vietnam Journal MATHEMATICS © Springer-Verlag 1999

Short Communication

On the First Occurrence of Irreducible Modular Representations of Semigroups of all Matrices

Ton That Tri

Department of Mathematics, University of Hue Hue, Vietnam

> Received October 25, 1997 Revised April 11, 1998

1. Introduction

Let $F_p[x_1, ..., x_n]$ be the commutative polynomial algebra in n indeterminants, $x_1, ..., x_n$ say, over the field F_p of p elements, and S^d the subspace of $F_p[x_1, ..., x_n]$ consisting of all homogeneous polynomials of degree d. M_n acts on $F_p[x_1,...,x_n]$ in the usual way, therefore, M_n acts on S^d and S^d becomes M_n -module.

Mitchell showed that every irreducible M_n -module occurs as a composition factor in M_n -module S^d for some $d \leq \sum_{i=1}^n (p^i - 1)$ and then, Doty and Walker [1] showed that this module can be embedded in S^d as an M_n -submodule for at least one value of d in this range. However, it is not known whether the degree d given above is the minimum possible degree of an embedding of the irreducible M_n -module. Independently, by using Dickson invariants, a complete set of distinct irreducible modules H_{β} was constructed by Tri [3]; every module H_{β} is a submodule of S^d for some d in the above range. The aim of this paper is to show that the occurrence of this module is the first occurrence of this module as a submodule in $F_p[x_1, ..., x_n]$.

To state our results we recall that the Dickson invariant $L_n = L_n(x_1, ..., x_n)$ is defined as follows:

$$L_n = \begin{vmatrix} x_1 & \dots & x_n \\ \vdots & \ddots & \vdots \\ x_1^{p^{n-1}} & \dots & x_n^{p^{n-1}} \end{vmatrix}.$$

Then $\sigma.L_n = \det \sigma L_n$ for $\sigma \in M_n$.

Let $\beta = (\beta_1, ..., \beta_n)$ and $L^{\beta} = \prod_{i=1}^n L_i^{\beta_i} \in F_p[x_1, ..., x_n]$. We denote by H_{β} the M_n -module generated by L^{β} , it means that H_{β} is an F_p -vector space generated by the set $\{\sigma.L^{\beta}: \sigma \in M_n\}$.

Theorem 1.1. [3, 1.1]

$$\{H_{\beta}: \beta = (\beta_1, \dots, \beta_n), \ 0 \le \beta_i \le p-1, \ 1 \le i \le n\}$$

is a complete set of p^n distinct irreducible modules for the algebra $F_p[M_n]$.

Let n=2 and i,j be integers such that $0 \le i \le p-1$. Let W_{ij} be the M_n -module generated by $x_1^{ip^j}$. Then W_{ij} is irregular and isomorphic to $H_{(i,0)}$. W_{ij} occurs in $F_p[x_1, x_2]$ in dimension ip^j whereas $H_{(i,0)}$ occurs in $F_p[x_1, x_2]$ in dimension i. Let V_{ij} be the M_n -module generated by $L_2^{ip^j}$. Then V_{ij} is irregular and isomorphic to $H_{(0,i)}$. V_{ij} occurs in $F_p[x_1, x_2]$ in dimension $(1+p)ip^j$ whereas $H_{(0,i)}$ occurs in $F_p[x_1, x_2]$ in dimension (1+p)i. Generally, we have

Theorem 1.2. H_{β} mentioned in Theorem 1.1 is the representative of lowest degree for its class of isomorphic irreducible M_n -submodules of $F_p[x_1, \ldots, x_n]$.

2. Proof of Theorem 1.2

We need the following results.

Proposition 2.1. [3, 3.5] Let $\beta = (\beta_1, \dots, \beta_n)$ be such that $0 \le \beta_i \le p-1$ for $i = 1, \dots, n$.

(i) If $\beta_n \geq 1$, then $H_{(\beta_1, \dots, \beta_n)} \cong H_{(\beta_1, \dots, \beta_{n-1}, \beta_n - 1)} \otimes \det$.

(ii) Let
$$e_{n-1} = \begin{pmatrix} I_{n-1} & 0 \\ 0 & 0 \end{pmatrix}$$
. Then $e_{n-1} \cdot H_{(\beta_1, \dots, \beta_{n-1}, 0)} = H_{(\beta_1, \dots, \beta_{n-1})}$ as M_{n-1} -modules.

Lemma 2.2. Let β_1, \ldots, β_n be such that $0 \le \beta_i \le p-1, 1 \le i \le n-1, 0 \le \beta_n \le p-2$ and M an M_n -module.

- (i) If $1 \leq \beta_n$ and $\det \otimes W \cong \det \otimes H_{(\beta_1, \dots, \beta_{n-1}, \beta_n)}$, then $W \cong H_{(\beta_1, \dots, \beta_{n-1}, \beta_n)}$.
- (ii) If $\det \otimes W \cong \det \otimes H_{(\beta_1,\ldots,\beta_{n-1},0)}$, then

$$W \cong H_{(\beta_1,...,\beta_{n-1},0)} \text{ or } W \cong H_{(\beta_1,...,\beta_{n-1},p-1)}.$$

Proof. From the hypothesis det $\otimes W \cong \det \otimes H_{(\beta_1,\ldots,\beta_{n-1},\beta_n)}$, it implies that det $\otimes W \cong H_{(\beta_1,\ldots,\beta_{n-1},\beta_n+1)}$ by Proposition 2.1. $H_{(\beta_1,\ldots,\beta_{n-1},\beta_n+1)}$ is irreducible since W is too. The modules H_{β} for $\beta=(\beta_1,\ldots,\beta_n),\ 0\leq\beta_i\leq p-1,\ 1\leq i\leq n$ form a complete set of p^n distinct irreducible modules for the algebra $F_p[M_n]$, so $W\cong H_{(\alpha_1,\ldots,\alpha_{n-1},\alpha_n)}$ for some $\alpha_1,\ldots,\alpha_{n-1},\alpha_n,\ 0\leq\alpha_i\leq p-1,\ 1\leq i\leq n$.

For $1 \leq \beta_n \leq p-2$, if $\alpha_n = p-1$, from the definition of $H_{(\alpha_1,\dots,\alpha_{n-1},\alpha_n)}$, it is not hard to show that $\det \otimes H_{(\alpha_1,\dots,\alpha_{n-1},\alpha_n)}$ is isomorphic to $H_{(\alpha_1,\dots,\alpha_{n-1},1)}$. Then, from $H_{(\alpha_1,\dots,\alpha_{n-1},1)} \cong H_{(\beta_1,\dots,\beta_{n-1},\beta_n+1)}$, it implies that $\beta_n = 0$. It is impossible. Thus, $\alpha_n < p-1$ and $\det \otimes W \cong H_{(\alpha_1,\dots,\alpha_{n-1},\alpha_n+1)} \cong H_{(\beta_1,\dots,\beta_{n-1},\beta_n+1)}$. From this, we have $\alpha_i = \beta_i, 1 \leq i \leq n$ and the assertion (i) is proved.

To prove the assertion (ii), we note

$$\det \otimes W \cong \left\{ \begin{array}{l} H_{(\alpha_1, \ldots, \alpha_{n-1}, \alpha_n + 1)} \text{ for } \alpha_n$$

From the hypothesis of (ii) and Proposition 2.1, we have

$$\det \otimes W \cong H_{(\beta_1,\ldots,\beta_{n-1},1)},$$

therefore, $\alpha_i = \beta_i$, $1 \le i \le n-1$, $\alpha_n = 0$ or $\alpha_n = p-1$ and the assertion (ii) is proved.

Proof of Theorem 1.2. Let T_n be the group consisting of upper triangular matrices with 1 on the diagonal. In [2], Mui showed that

$$F_p[x_1, \ldots, x_n]^{T_n} = F_p[V_1, \ldots, V_n],$$

where $V_i = V_i(x_1, \dots, x_i) = \prod (\alpha_1 x_1 + \dots + \alpha_{i-1} x_{i-1} + x_i)$ and $L_n = V_1 \dots V_n$. The theorem is proved by induction on n.

For n=1, let W be an irreducible M_1 -module as a submodule of homogeneous polynomials in $F_p[x_1]$, isomorphic to H_{β_1} for some β_1 , $0 \le \beta_1 \le p-1$. H_{β_1} is an M_1 -module generated by $x_1^{\beta_1}$ and the modules H_i , $0 \le C \le p-1$, form a complete set of p distinct irreducible modules for $F_p[M_1]$. Therefore, W contains nonzero homogeneous polynomials with their degree not less than β_1 and the theorem is proved.

For n > 1, suppose the theorem is true for every integer less than n.

Let $\beta=(\beta_1,\ldots,\beta_n),\ 0\leq\beta_i\leq p-1,\ 1\leq i\leq n$ and H_β an irreducible module generated by L^β . Let W be an irreducible module as a submodule of homogeneous polynomials in $F_p[x_1,\ldots,x_n]$ and η an isomorphism from W onto H_β . Set $f(x_1,\ldots,x_n)=\eta^{-1}(L^\beta)$, then according to the proof of $[3,3.2],\ f(x_1,\ldots,x_n)$ is a unique T_n -invariant up to constant $a\in F_p, a\neq 0$. For $1\leq i\leq n$, take $\sigma_i=(a_{jk})\in M_n,$ $a_{jj}=1,\ j\neq i$ and $a_{jk}=0$ at other positions. We have $\eta(\sigma_i.f(x_1,\ldots,x_n))=\sigma_i.\eta(f(x_1,\ldots,x_n))=\sigma_i.L^\beta=0$, therefore, $\sigma_i.f(x_1,\ldots,x_n)=0$ and then $f(x_1,\ldots,x_n)$ has x_i as a factor. $f(x_1,\ldots,x_n)$ is an T_n -invariant, so $f(x_1,\ldots,x_n)$ has $\alpha_1x_1+\cdots+\alpha_{i-1}x_{i-1}+x_i$ as a factor and V_i as a factor for $1\leq i\leq n$. Thus, $f(x_1,\ldots,x_n)=L_nf_1(x_1,\ldots,x_n)$ for some T_n -invariant $f_1(x_1,\ldots,x_n)$. Let W_1 be the M_n -module generated by $f_1(x_1,\ldots,x_n)$, then $W=L_nW_1\cong \det\otimes W_1$ as M_n -modules.

Note that $H_{(\beta_1,\ldots,\beta_{n-1},\beta_n)}\cong \det\otimes H_{(\beta_1,\ldots,\beta_{n-1},\beta_n-1)}$ if $\beta_n\geq 1$. Lemma 2.2 implies $W_1\cong H_{(\beta_1,\ldots,\beta_{n-1},\beta_n-1)}$. By repeating this procedure for β_n-1 times and also by Lemma 2.2, we have $f(x_1,\ldots,x_n)=L_n^{\beta_n}f_{\beta_n}(x_1,\ldots,x_n)$ for some T_n -invariant $f_{\beta_n}(x_1,\ldots,x_n)$ and $W_{\beta_n}\cong H_{(\beta_1,\ldots,\beta_{n-1},0)}$ or $H_{(\beta_1,\ldots,\beta_{n-1},p-1)}$, where W_{β_n} is the M_n -module generated by $f_{\beta_n}(x_1,\ldots,x_n)$. If $W_{\beta_n}\cong H_{(\beta_1,\ldots,\beta_{n-1},p-1)}$, by the above method, there finally exists k such that

$$f(x_1,\ldots,x_n)=L_n^{\beta_n+k(p-1)}f_{\beta_n+k(p-1)}(x_1,\ldots,x_n)$$

for some T_n -invariant $f_{\beta_n+k(p-1)}(x_1,\ldots,x_n)$. If we denote by $W_{\beta_n+k(p-1)}$ the M_n -module generated by $f_{\beta_n+k(p-1)}(x_1,\ldots,x_n)$, then $W_{\beta_n+k(p-1)}\cong H_{(\beta_1,\ldots,\beta_{n-1},0)}$. Take $e_{n-1}=\begin{pmatrix} I_{n-1}&0\\0&0\end{pmatrix}\in M_n$, then $\eta|_{e_{n-1}W}:e_{n-1}.W_{\beta_n+k(p-1)}\cong e_{n-1}.H_{(\beta_1,\ldots,\beta_{n-1},0)}$ = $H_{(\beta_1,\ldots,\beta_{n-1})}$ as M_{n-1} -modules by Proposition 2.1. Note that $e_{n-1}.W_{\beta_n+k(p-1)}$ is the M_{n-1} -module generated by $e_{n-1}.f_{\beta_n+k(p-1)}(x_1,\ldots,x_n)$, so $e_{n-1}.f_{\beta_n+k(p-1)}(x_1,\ldots,x_n)$ is the M_{n-1} -module generated by $e_{n-1}.f_{\beta_n+k(p-1)}(x_1,\ldots,x_n)$, so $e_{n-1}.f_{\beta_n+k(p-1)}(x_1,\ldots,x_n)$. By the induction assumption, we have $\deg e_{n-1}.f_{\beta_n+k(p-1)}(x_1,\ldots,x_n)$ $\geq \deg L^{(\beta_1,\ldots,\beta_{n-1})}$. Thus,

$$\deg f(x_1,\ldots,x_n) \geq \deg L^{(\beta_1,\ldots,\beta_{n-1},\beta_n)}$$

92 Ton That Tri

and the theorem follows.

Now, let $r \ge 1$ and n_1, \ldots, n_r positive integers such that $n_1 + \cdots + n_r = n$. Denoted by M_{n_1,\ldots,n_r} , the parabolic subsemigroup of semigroup M_n, M_{n_1,\ldots,n_r} is defined as follows:

$$M_{n_1,\ldots,n_r} = \left\{ \begin{pmatrix} B_1 & * \\ & \ddots & \\ 0 & & B_r \end{pmatrix} \in M_n : B_i \in M_{n_i}, \ 1 \le i \le r \right\}.$$

Denote by $H_{\beta}(M_{n_1,\ldots,n_r})$ the M_{n_1,\ldots,n_r} module generated by L^{β} ; it means that $H_{\beta}(M_{n_1,\ldots,n_r})$ is an F_p -vector space generated by the set $\{\sigma.L^{\beta}: \sigma \in M_{n_1,\ldots,n_r}\}$. In the same way as in [3], we also have

Proposition 2.3.

$$\{H_{\beta}(M_{n_1,\ldots,n_r}): \beta=(\beta_1,\ldots,\beta_n), \ 0 \leq \beta_i \leq p-1, \ 1 \leq i \leq n\}$$

is a complete set of p^n distinct irreducible modules for $F_p[M_{n_1,\ldots,n_r}]$.

Then the proof of Theorem 1.2 is also valid for the following proposition.

Proposition 2.4. $H_{\beta}(M_{n_1,\ldots,n_r})$ mentioned in Proposition 2.3 is the representative of lowest degree for its class of isomorphic irreducible M_{n_1,\ldots,n_r} submodules of $F_p[x_1,\ldots,x_n].$

References

1. S. Doty and G. Walker, Truncated symmetric powers and modular representations of GL_n , Math. Proc. Cambridge Philos. Soc. 119 (1996) 231-242.

2. Huynh Mui, Modular invariant theory and the cohomology algebras of symmetric groups, J.

Fac. Sci. Univ. Tokyo Sec. IA Math. 22 (1975) 319-369.

3. Ton That Tri, The irreducible modular representations of semigroups of all matrices, Acta Math. Vietnam 20(1) (1995) 43-53.