Vietnam Journal of Mathematics 27:1 (1999) 33-39

Vietnam Journal of MATHEMATICS © Springer-Verlag 1999

Stable Integral Currents in Riemannian Manifolds with Positive Sectional Curvature*

Xue-Shan Zhang

Department of Mathematics, YanTai University YanTai 264005, China

> Received March 19, 1997 Revised August 3, 1998

Abstract. In this paper, we study the nonexistence of stable integral currents in compact Riemannian manifolds of positive sectional curvature.

1. Introduction

The existence theorem due to Federer and Fleming [3] states that, for any compact Riemannian manifold M^m , each non-trivial integral homology class in $H_p(M, Z)$ corresponds to a stable integral current. By applying the Federer Fleming theorem and the techniques from the calculus of variations in the geometric measure theory, Lawson and Simons [4] investigated the topology and geometry of submanifolds of the sphere, and showed that approriate assumptions on the extrinsic geometry of the submanifolds imply the vanishing of a given homology group. In [4], they conjectured that there are no stable integral currents in any compact, simply-connected Riemannian manifold which is $\frac{1}{4}$ -pinched. As a "version" of the above famous conjecture, there have been many results on stable minimal submanifolds and stable harmonic maps. But the problem offered by Lawson and Simons is still open.

Recently, Cheng [2] showed that if M^m can be immersed as a hypersurface in the Euclidean space E^{m+1} , and the sectional curvature $K_M > A\lambda^2$ (where $A \ge \frac{1}{3+2\sqrt{2}}$ is constant, λ^2 is the maximum of the squared of principal curvatures of M^m). Then there are no stable integral currents in M^m .

In this paper, we shall give a partial answer of the Lawson–Simons conjecture. The obtained results show that if a complete δ -pinched Riemannian manifold can be immersed as a submanifold with parallel mean curvature vector and flat normal connection or as a

^{*}This work was supported by the Foundation Grant of Shaanxi Province, China.

hypersurface with constant mean curvature, in a space form of non-negative curvature, then the conjecture holds true.

2. Preliminaries

The same notations as in [6] will be used throughout this paper. In this section, we only list some main formulas employed in [6].

Let M^m be an *m*-dimensional compact Riemannian manifold with Riemannian metric \langle , \rangle and the Levi–Civita connection ∇ . Denote by (S, ξ) the oriented, *p*-rectifiable set in M^m . The set of rectifiable *p*-currents is (see [3,4])

$$\mathcal{R}_p(M) = \left\{ \mathcal{S} = \sum_{n=1}^{\infty} n \mathcal{S}_n ; \ \mathcal{S}_n = (\mathcal{S}_n, \xi_n), \ M(\mathcal{S}) = \sum_{n=1}^{\infty} n \mathcal{H}^p(\mathcal{S}_n) < \infty \right\}.$$

 $S \in \mathcal{R}_p(M)$ is called an *integral p-current* if S and ∂S are both rectifiable currents.

For a smooth vector field $X \in C(TM)$, let $\phi_t : M^m \to M^m$ be the 1-parameter group of local diffeomorphism generated by X, and we define [4]

$$Q_{\xi}(X) = \frac{d^2}{dt^2} \|\phi_{t^*} \xi\| \Big|_{t=0}$$

Then

$$\frac{d^2}{dt^2} M(\phi_{t^*} \mathcal{S})\Big|_{t=0} = \sum_n n \int_{S_n} Q_{\xi_n}(X) \, d\mathcal{H}^p(x).$$
(2.1)

If $X = \nabla f$ for some $f \in C^3(M)$ and $\{e_i, e_\alpha\}$ $(i = 1, ..., p; \alpha = p + 1, ..., m)$ is an orthonormal basis of $T_x M$ with $\xi = e_1 \wedge e_2 \wedge \cdots \wedge e_p$, then (see [4, p.436])

$$Q_{\xi}(X) = -\langle a^{X}(\xi), \xi \rangle^{2} + 2 \|a^{X}(\xi)\|^{2} + \langle \nabla_{X,\xi} X, \xi \rangle$$

= $\left[\sum_{j} \langle a^{X}(e_{j}), e_{j} \rangle\right]^{2} + 2 \sum_{j,\alpha} \langle a^{X}(e_{j}), e_{\alpha} \rangle^{2} + \sum_{j} \langle \nabla_{X,e_{j}} X, e_{j} \rangle.$ (2.2)

Let $\phi : M^m \to N^n$ be an isometric immersion of M^m into a Riemannian manifold N^n . The Levi-Civita connection of N^n is $\overline{\nabla}$. Denote by V(N, M) the normal bundle of M^m in N^n . For a smooth section $\nu \in C(V(N, M))$ and $X \in C(TM)$, we have

$$\overline{\nabla}_{X^{\nu}} = -A_{\nu}X + \nabla^{\perp}_{X^{\nu}},$$

where A_{ν} is the so-called shape operator determined by ν associated with the immersion ϕ .

For a given integer $p \in (0, m)$, let V be a p-dimensional subspace in $T_x M$. Define a map $B_v : V \to V$ associated with A_v by [6].

$$B_{\nu} X =$$
orthogonal projection of $A_{\nu} X$ onto V , (2.3)

where $X \in V$. If $\{e_i\}$ is an orthonormal basis of V, we have

$$B_{\nu}X = \sum_i \langle A_{\nu}X, e_i
angle e_i \; .$$

Stable Integral Currents and Positive Sectional Curvature

Let $\{\nu_{\lambda}\}$ be an orthonormal basis of the normal space $V_x(N, M)$ and $A_{\lambda} = A_{\nu_{\lambda}}$. Define a self-adjoint linear map $Q^A : V \to V$ associated with the immersion ϕ by [6].

$$Q^{A}X = \sum_{\lambda} \left[2 \left(\sum_{i} \langle A_{\lambda}^{2}X, e_{i} \rangle e_{i} - B_{\lambda}^{2}X \right) - (\operatorname{tr} A_{\lambda} - \operatorname{tr} B_{\lambda}) B_{\lambda}X \right], \quad (2.4)$$

where $X \in V$ and $\{e_i\}$ is an orthonormal basis of V. Let $\{e_\alpha\}$ be an orthonormal basis of V^{\perp} which is the orthogonal complement of V in $T_x M$. Then $\{e_i, e_\alpha\}$ is an orthonormal basis of $T_x M$ and

$$\operatorname{tr} Q^{A} = \sum_{i} \langle Q^{A} e_{i}, e_{i} \rangle = \sum_{\lambda} \left[2 \sum_{i,\alpha} \langle A_{\lambda} e_{i}, e_{\alpha} \rangle^{2} - (\operatorname{tr} A_{\lambda} - \operatorname{tr} B_{\lambda}) \operatorname{tr} B_{\lambda} \right].$$
(2.5)

Now, assume $\psi : N^n \to E^l$ is an isometric immersion of the Riemannian manifold N^n in the Euclidean space E^l with the Levi-Civita connection D. The shape operator, associated with the isometric immersion $x = \psi \circ \phi : M^m \to E^l, A'_{\nu}$ determined by $\nu \in C(V(E^l, M))$, is given by

$$A'_{\nu}Y = -(D_{Y}\nu)^{T},$$

where $Y \in C(TM)$.

Let (S, ξ) be an oriented, *p*-rectifiable set. At $x \in S$, we consider the tangent *p*-space $V = T_x S \subset T_x M$. Choose an orthonormal basis $\{e_i, e_\alpha\}$ of $T_x M$ such that $\{e_i\}$ is a basis of V and $\xi = e_1 \land e_2 \land \cdots \land e_p$. At $x \in M^m$, let $\{\nu_\sigma\}$ be an orthonormal basis of $V_x(E^l, M)$ and $A'_{\sigma} = A'_{\nu_{\sigma}}$. Consider Q_{ξ} , given by (2.2), as a quadratic form (see [4]) on the set

 $\theta = \{ \upsilon^T ; \ \upsilon \in E^l, \ \upsilon^T = \text{orthogonal projection of } \upsilon \text{ onto } T_x M \}.$ (2.6)

Note that at the given point $x \in M^m$, $\{e_i, e_\alpha, \nu_\sigma\}$ is an orthonormal basis of E^l , hence, we have

$$\operatorname{tr} Q_{\xi} = \sum_{i} Q_{\xi}(e_{i}) + \sum_{\alpha} Q_{\xi}(e_{\alpha}) + \sum_{\sigma} Q_{\xi}(\nu_{\sigma}).$$

By making use of the proof given in [6], we have

Lemma. [6] tr $Q = \text{tr } Q^{A'}$, where $Q^{A'}$ is the self-adjoint linear operator on the *p*-subspace $T_x S \subset T_x M$ associated with the immersion $\psi \circ \phi : M^m \to E^l$ and

$$\operatorname{tr} \mathcal{Q}^{A'} = \sum_{\sigma} \left[2 \sum_{i,\alpha} \langle A'_{\sigma} e_i, e_{\alpha} \rangle^2 - (\operatorname{tr} A'_{\sigma} - \operatorname{tr} B'_{\sigma}) \operatorname{tr} B'_{\sigma} \right].$$
(2.7)

At a point $x \in M^m$, we take an orthonormal basis $\{\nu_{\lambda}, \eta_{\alpha}\}$ of $V_x(E^l, M)$ so that $\{\nu_{\lambda}\}$ and $\{\eta_{\alpha}\}$ are bases of $V_x(N, M)$ and $V_x(E^l, N)$, respectively. Let $\overline{A}_{\alpha} = \overline{A}_{\eta_{\alpha}}$ be the shape operator associated with the immersion $\psi : N^n \to E^l$. Then

$$\operatorname{tr} Q^{A'} = \operatorname{tr} Q^A + \bar{A}(V), \qquad (2.8)$$

where tr Q^A is given by (2.5) and

$$\bar{A}(V) = \sum_{a,i,\alpha} \left[2 \langle \bar{A}_{\alpha} e_i, e_{\alpha} \rangle^2 - \langle \bar{A}_{\alpha} e_{\alpha}, e_{\alpha} \rangle \langle \bar{A}_{\alpha} e_i, e_i \rangle \right].$$
(2.9)

3. Main Results

Theorem 1. Let $\phi : M^m \to N^n(c)$ be an isometric immersion, where M^m is a complete Riemannian manifold with the sectional curvature $K_M \ge \delta > 0$ and $N^n(c)$ is a simply connected space form with $c \ge 0$. If the normal connection of the immersion ϕ is flat and the mean curvature vector of M^m is parallel, then there are no stable integral currents in M^m , and for any $p \in (0, m)$,

$$H_p(M, Z) = H_{m-p}(M, Z) = 0.$$

Proof. According to the assumption, $N^n(c)$ can be considered as a totally umbilical hypersurface of E^{n+1} [1, p. 41]. In this case, (2.9) becomes

$$A(V) = -p(m-p)c.$$

From (2.8), we obtain that

$$\operatorname{tr} Q^{A'} = \operatorname{tr} Q^A - p(m-p)c.$$
 (3.1)

Because the normal connection of the submanifold M^m is flat, we know that all $A_{\lambda} = A_{\eta_{\lambda}}$ are simultaneously diagonalizable. Hence, there is an orthonormal basis $\{E_i\}$ of $T_x M$ such that $A_{\lambda}E_i = k_{\lambda i} E_i$. Set $s = \sum_{\lambda} \operatorname{tr} A_{\lambda}^2$, $H = \sum_{\lambda} (\operatorname{tr} A_{\lambda})\eta_{\lambda}/m$, that is, s is the square length of the second fundamental form and H is the mean curvature bundle, and the Laplacian of s is [5, p. 105]

$$\frac{1}{2}\Delta s = \sum_{\lambda} \sum_{i < j} (k_{\lambda i} - k_{\lambda j})^2 K(E_i \wedge E_j) + \sum_{\lambda} \|\nabla A_{\lambda}\|^2, \qquad (3.2)$$

where $K(E_i \wedge E_j)$ is the sectional curvature of the plane $E_i \wedge E_j \subset T_x M$.

Since the sectional curvatures $K_M \ge \delta > 0$ and M^m is complete, $\operatorname{Ric}(v, v) \ge (m-1)\delta$ for a unit vector field v in $T_x M$. By Myer's theorem, M^m is compact. From (3.2), we have $\Delta s = 0$ and thus, $A_{\lambda} = k_{\lambda} I$, tr $A_{\lambda} = m k_{\lambda}$, $H = \sum k_{\lambda} \eta_{\lambda}$.

Let (S, ξ) be a *p*-rectifiable set and the *p*-space $V = T_x S \subset T_x M$. For the operator B_{λ} on V defined by (2.3), we have tr $B_{\lambda} = p k_{\lambda}$. From (2.5), we obtain

tr
$$Q^A = -\sum_{\lambda} p(m-p) k_{\lambda}^2 = -p(m-p) ||H||^2.$$

So (3.1) becomes

$$x Q^{A'} = -p(m-p) (c + ||H||^2).$$
(3.3)

If $k_{\lambda} = 0$ for $\lambda = 1, 2, ..., n-m$, then $A_{\lambda} = 0$ for any λ and thus, M^m is totally geodesic. So $K_M = 0$ when c = 0. Therefore, $c + ||H||^2 > 0$ when $c \ge 0$ and $K_M > 0$. By the Lemma, (3.3) implies tr $Q_{\xi} = \text{tr } Q^{A'} < 0$.

Let θ be the set given by (2.6). If $\upsilon^T \in \theta$, then υ^T is the gradient ∇f of the function $f(x) = \langle \upsilon, x \rangle$ on M^m . To each $S \in \mathcal{R}_p(M)$ we associate a quadratic form Q_S on θ as follows. For $X \in \theta$, let ϕ_t be the flow generated by X and set

$$Q_{\mathcal{S}}(X) = \frac{d^2}{dt^2} M(\phi_{t^*} \mathcal{S}) \Big|_{t=0}.$$

Stable Integral Currents and Positive Sectional Curvature

Then from (2.1), (3.3) and the Lemma, we obtain

$$\operatorname{tr} Q_{\mathcal{S}} = \sum_{n} n \int_{S_{n}} \operatorname{tr} Q_{\xi_{n}} d\mathcal{H}^{p}(x) < 0.$$

This implies that there is no stable integral p-current in M^m . Using the Federer-Fleming theorem, we have

$$H_p(M, Z) = H_{m-p}(M, Z) = 0.$$

Corollary 1. Let M^m be a complete hypersurface with the sectional curvature $K_M \ge \delta > 0$ and constant mean curvature in E^{m+1} or S^{m+1} . Then there are no stable integral currents in M^m and hence, for any $p \in (0, m)$,

$$H_p(M, Z) = H_{m-p}(M, Z) = 0.$$

Remark. When M^m is the unit sphere S^m , Corollary 1 is due to Lawson and Simons [4].

The assumption on M^m in Theorem 1 is stronger than that in Theorems 3.2 and 4.2 in [5]. The obtained result shows that M^m is topologically a sphere, and the Lawson–Simons conjecture is true in this case.

Let N^n be a complete submanifold with sectional curvature $K_N \ge \delta > 0$ immersed in E^l . Denote by \bar{A}_{λ} the shape operator associated with the immersion $N^n \to E^l$. Suppose the normal connection of N^n is flat and the mean curvature vector \bar{H} is parallel. Then for $\bar{A}(V)$ given by (2.9), a calculation similar to that given for (3.3) will give

$$\bar{A}(V) = -p(m-p) \|\bar{H}\|^2.$$
(3.4)

Let M^m be a compact submanifold immersed in N^n . Denote by A_{λ} the shape operator associated with the immersion $M^m \to N^n$, and by A'_{λ} the shape operator associated with the immersion $M^m \to E^l$. From (2.8) and (3.4), we have

tr
$$Q^{A'}$$
 = tr $Q^A - p(m-p) \|\bar{H}\|^2$.

Hence, a similar proof as in Theorem 1 gives the following:

Theorem 2. Suppose M^m is a compact submanifold immersed in N^n , where N^n is a complete submanifold in E^l with flat normal connection and parallel mean curvature vector \overline{H} . Denote by A_{λ} the shape operator associated with the immersion $M^m \to N^n$. Let $K_N \ge \delta > 0$ and p be a given integer $p \in (0, m)$. If, for any $x \in M^m$ and any p-subspace V in $T_x M$,

$$\operatorname{tr} Q^{A} < p(m-p) \|H\|^{2},$$

then there is no stable integral p-currents in M^m and

$$H_p(M, Z) = H_{m-p}(M, Z) = 0$$

Corollary 2. [4] Let M^m be a compact submanifold of S^n and p a given integer $p \in (0, m)$. If, for any $x \in M^m$ and any p-subspace V in T_xM ,

$$\operatorname{tr} Q^A < p(m-p),$$

then there is no stable integral p-current in M^m and

$$H_p(M, Z) = H_{m-p}(M, Z) = 0.$$

Corollary 3. Let M^m and N^n be as in Theorem 2. If the immersion $M^m \rightarrow N^n$ is minimal and the square length of the second fundamental form of M^m satisfies $s < 2 \min\{p, m - p\} \|\bar{H}\|^2$, then

$$H_p(M, Z) = H_{m-p}(M, Z) = 0.$$

Proof. Because the immersion $M^m \to N^n$ is minimal, we have tr $A_{\lambda} = 0$. So, from (2.5), we have

$$\operatorname{tr} \mathcal{Q}^{A} = \sum_{\lambda} \left[2 \sum_{i,\alpha} \langle A_{\lambda} e_{i}, e_{\alpha} \rangle^{2} + (\operatorname{tr} B_{\lambda})^{2} \right]$$
$$= \sum_{\lambda} \left[2 \sum_{i,\alpha} \langle A_{\lambda} e_{i}, e_{\alpha} \rangle^{2} + \left(\sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle \right)^{2} \right].$$

Since $\sum_i \langle A_\lambda e_i, e_i \rangle + \sum_\alpha \langle A_\alpha e_\alpha, e_\alpha \rangle = \text{tr } A_\lambda = 0$, we obtain

$$\begin{split} \big(\sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle \big)^{2} &= \frac{1}{2} \Big(\sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle \Big)^{2} + \frac{1}{2} \Big(\sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle \Big)^{2} \\ &\leq \frac{p}{2} \sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle^{2} + \frac{m-p}{2} \sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle^{2}. \end{split}$$

Thus,

$$\operatorname{tr} Q^{A} \leq \sum_{\lambda} \left(2 \sum_{i,\alpha} \langle A_{\lambda} e_{i}, e_{\alpha} \rangle^{2} + \frac{p}{2} \sum_{i} \langle A_{\lambda} e_{i}, e_{i} \rangle^{2} + \frac{m-p}{2} \sum_{\alpha} \langle A_{\lambda} e_{\alpha}, e_{\alpha} \rangle^{2} \right)$$
$$\leq \frac{1}{2} \max\{p, m-p\}s.$$

By the conditions, we obtain tr $Q^A < p(m-p) \|\bar{H}\|^2$. By applying Theorem 2, we complete the proof.

References

1. J. Cheeger and D.G. Ebin, *Comparison Theorem in Riemannian Geometry*, North-Holland, Amsterdam, 1975.

Stable Integral Currents and Positive Sectional Curvature

- 2. Q.M. Cheng, Nonexistence of stable currents, Ann. Global Analysis and Geometry 13 (1995) 197-205.
- 3. H. Federer and W. Fleming, Normal and integral currents, Ann. Math. 72 (1960) 458-520.
- **4.** H.B. Lawson and J. Simons, On stable currents and their application to global problems in real and complex geometry, *Ann. Math.* **98** (1973) 427–450.
- 5. K. Yano and S. Ishihara, Submanifolds with parallel mean curvature vector, J. Differential Geometry 6 (1971) 95-118.
- 6. X.S. Zhang, Nonexistence of stable currents in submanifolds of a product of two spheres, *Bull. Austral. Math. Soc.* 44 (1991) 325–336.