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Abstract. In this paper, we study the nonexistence of stable integral currents in compact
Riemannian manifolds of positive sectional curvature.

1. Introduction

The existence theorem due to Federer and Fleming [3] states that, for any compact
Riemannian manifold M™, each non-trivial integral homology class in H,(M, Z)
corresponds to a stable integral current. By applying the Federer Fleming theorem and
the techniques from the calculus of variations in the geometric measure theory, Lawson
and Simons [4] investigated the topology and geometry of submanifolds of the sphere,
and showed that approriate assumptions on the extrinsic geometry of the submanifolds
imply the vanishing of a given homology group. In [4], they conjectured that there are no
stable integral currents in any compact, simply-connected Riemannian manifold which is
}t-pinched. As a “version” of the above famous conjecture, there have been many results
on stable minimal submanifolds and stable harmonic maps. But the problem offered by
Lawson and Simons is still open.

Recently, Cheng [2] showed that if M™ can be immersed as a hypersurface in the
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constant, A2 is the maximum of the squared of principal curvatures of M™). Then there
are no stable integral currents in M™.

In this paper, we shall give a partial answer of the Lawson—Simons conjecture. The
obtained results show that if a complete §-pinched Riemannian manifold can be immersed
as a submanifold with parallel mean curvature vector and flat normal connection or as a

Euclidean space E m+1 and the sectional curvature Ky > AA?2 (where A >
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hypersurface with constant mean curvature, in a space form of non-negative curvature,
then the conjecture holds true.

2. Preliminaries

The same notations as in [6] will be used throughout this paper. In this section, we only
list some main formulas employed in [6].

Let M™ be an m-dimensional compact Riemannian manifold with Riemannian metric
{,) and the Levi—Civita connection V. Denote by (S, §) the oriented, p- rectlﬁable set in
M™ The set of rectifiable p-currents is (see [3,4])

Rpy(M) = (8 = Znsn ; Sn=(Sn 8n), M(S) =) nHP(S,) < oo}.

n=1 n=1

S € R, (M) is called an integral p-current if S and 39S are both rectifiable currents.
For a smooth vector field X € C(T M), let¢; : M™ — M™ be the 1-parameter group
of local diffeomorphism generated by X, and we define [4]

d?
0:(X) = Lz lleel|
Then

d2
a2 M@ S)|t=0 = ;n /S Qc, (X) dHP (x). @.1)

If X = Vf forsome f € C3(M)and {e;,eq} G =1,...,p; o =p+1,...,m)isan
orthonormal basis of T, M with & = e; Aex A - - - A ep, then (see [4, p. 436])

0:(X) = —(a¥ (), £)2 + 21aX®)|? + (Vx X, £)
=[Y @ e, N +2> @), ea)? + Y (Vrg X ). (22)
J Je J

Let ¢ : M™ — N" be an isometric immersion of M™ into a Riemannian manifold
N". The Levi—Civita connection of N” is V. Denote by V (N, M) the normal bundle of
M™ in N". For a smooth section v € C(V(N, M)) and X € C(T M), we have

Vo = —A,X + Vi,
where A, is the so-called shape operator determined by v associated with the immersion
¢.For a given integer p € (0, m), let V be a p-dimensional subspace in 7y M. Define a
map B, : V — V associated with A, by [6].
B, X = orthogonal projection of A, X onto V , 2.3)

where X € V. If {¢;} is an orthonormal basis of V, we have

B, X = Z(A,,X, e;)e;
i
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Let {v;} be an orthonormal basis of the normal space V,(N, M) and A; = Ay .
Define a self-adjoint linear map Q4 : V — V associated with the immersion ¢ by [6].

Q*X =) [2(D (AlIX,e)ei — B}X) — (tr Ay — tr By)B, X, (2.4)

A

where X € V and {e;} is an orthonormal basis of V. Let {e,} be an orthonormal basis of
V- which is the orthogonal complement of V in 7, M. Then {e;, .} is an orthonormal
basis of T, M and

w Q=) (0%, e) =) [2) (Arei,en)? — (tr Ay —tr B B]. 2.5)

i A i

Now, assume  : N” — E! is an isometric immersion of the Riemannian manifold
N" in the Euclidean space E' with the Levi-Civita connection D. The shape operator,
associated with the isometric immersion x = ¥ o ¢ : M™ — E/, Al determined by
v e C(V(E!, M)), is given by

ALY = —(Dyv)T,

where Y € C(TM).
Let (S, &) be an oriented, p-rectifiable set. At x € S, we consider the tangent p-space
V = I,§ C T M. Choose an orthonormal basis {e;, e5} of T M such that {e;} is a
basisof Vand& =ej Aep A--- Aep. At x € M™, let {v,} be an orthonormal basis of
Ve(E', M) and A= A(,a . Consider Q¢, given by (2.2), as a quadratic form (see [4]) on
the set
9 ={v"; veE', v = orthogonal projection of v onto T:M}. (2.6)

Note that at the given point x € M™, {e;, ey, Vs } is an orthonormal basis of E!, hence,
we have
Qe =Y Qe+ Qelea) + Y Qelvo).
i o o

By making use of the proof given in [6], we have

Lemma. [6] trQ = tr 0%, where Q% is the self-adjoint linear operator on the
p-subspace T, S C Ty M associated with the immersion ¥ o ¢ : M™ — E! and

tr 04 = Z [2 Z(A;e,-, €)= (tr A, —tr B,)tr B, ]. 2.7)
a I,a

At a point x € M™, we take an orthonormal basis {v;, 7.} of Vi (E!, M) so that {v;}
and {1, } are bases of V, (N, M) and V, (E', N), respectively. Let A, = Zna be the shape
operator associated with the immersion ¢ : N* — E’. Then

tr Q4 = w Q4 + A(V), (2.8)
where tr Q4 is given by (2.5) and

AWy =" [2(Anei, ea)” — (Anea, €a) (Aae;, €1)] . 2.9)

a,io
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3. Main Results

Theorem 1. Let¢ : M™ — N"(c) beanisometric immersion, where M™ is a complete
Riemannian manifold with the sectional curvature Ky > 8 > 0 and N™(c) is a simply
connected space form with ¢ > 0. If the normal connection of the immersion ¢ is flat and
the mean curvature vector of M™ is parallel, then there are no stable integral currents
in M™, and for any p € (0, m),

Hp(M, Z) = Hm—p(My Z) =0.

Proof. According to the assumption, N"(c) can be considered as a totally umbilical
hypersurface of E"*! [1, p.41]. In this case, (2.9) becomes

A(V) = —p(m — p)e.
From (2.8), we obtain that

tr QA, =i QA — p(m — p)c. 3.1

Because the normal connection of the submanifold M™ is flat, we know that all A A=Ay,
are simultaneously diagonalizable. Hence, there is an orthonormal basis {E;} of T, M
such that A, E; = ky; E;. Sets = ), trA%, H = ), (tr A;)n;/m, that is, s is the
square length of the second fundamental form and H is the mean curvature bundle, and
the Laplacian of s is [3, p. 105]

1
SAs =33 ki — ki) K(Ei AEp)+ ) IVALR, (3.2)

A=Y A

where K (E; A E;) is the sectional curvature of the plane E; A E i C Ty M.

Since the sectional curvatures K3, > & > 0and M™ is complete, Ric (v, v) > (m—1)8
for a unit vector field v in 7, M. By Myer’s theorem, M™ is compact. From (3.2), we
have As =0 and thus, A; =k, I, tr Ay, = mk,, H = Zk)L M.

P
Let (S, &) be a p-rectifiable set and the p-space V = T, S C T, M. For the operator
B; on V defined by (2.3), we have tr By, = p k;.. From (2.5), we obtain

trQ* == " pm—p)k; = —p(m — p) | H|.
s

So (3.1) becomes /
tr Q% = —p(m — p) (c + |H|?). (3.3)

Ifk, =0ford =1,2,...,n—m,then A, = O for any A and thus, M™ is totally geodesic.
So Ky = 0 when ¢ = 0. Therefore, ¢ + IIHH2 > O when ¢ > 0 and Ky > 0. By the
Lemma, (3.3) implies tr Q¢ = tr 04 <o.

Let 6 be the set given by (2.6). If v” € 6, then v7 is the gradient V f of the function
fx)={(v,x)on M™. Toeach S € R, (M) we associate a quadratic form Qs on 8 as
follows. For X € 8, let ¢; be the flow generated by X and set

d2
0s5(X) = WM(@*S) —o"




Stable Integral Currents and Positive Sectional Curvature 37

Then from (2.1), (3.3) and the Lemma, we obtain

= tr dH? 0.
 Os Z”/S Qs dHP(x) <

This implies that there is no stable integral p-current in M™. Using the Federer-Fleming
theorem, we have
H,(M,Z)=Hy-,(M,Z)=0.

Corollary 1. Let M™ be a complete hypersurface with the sectional curvature Ky >
8 > 0 and constant mean curvature in E™t' or S™t1. Then there are no stable integral
currents in M™ and hence, for any p € (0, m),

H,(M, Z) = Hp—p(M, Z) = 0.

Remark. When M™ is the unit sphere $™, Corollary 1 is due to Lawson and Simons [4].

The assumption on M™ in Theorem 1 is stronger than that in Theorems 3.2 and 4.2 in
[5]. The obtained result shows that M™ is topologically a sphere, and the Lawson—Simons
conjecture is true in this case.

Let N" be a complete submanifold with sectional curvature Ky > § > O immersed in
E'. Denote by A;, the shape operator associated with the immersion N* — E*. Suppose
the normal gonnection of N” is flat and the mean curvature vector H is parallel. Then
for A(V) given by (2.9), a calculation similar to that given for (3.3) will give

A(V)=—p(m— p) |H|>. (3.4)

Let M™ be a compact submanifold immersed in N”. Denote by A, the shape operator
associated with the immersion M — N”", and by Aj the shape operator associated
with the immersion M™ — E!. From (2.8) and (3.4), we have

Q¥ =t Q* — pm — p) | H|*.
Hence, a similar proof as in Theorem 1 gives the following:

Theorem 2. Suppose M™ is a compact submanifold immersed in N", where N”" is a
complete submanifold in E' with flat normal connection and parallel mean curvature
vector H. Denote by A, the shape operator associated with the immersion M™ — N™.
Let Ky > 8 > 0 and p be a given integer p € (0, m). If, for any x € M™ and any
p-subspace V in T, M,

tr Q* < p(m — p)IH|?,

then there is no stable integral p-currents in M™ and

H,(M, Z) = Hp_p(M, Z) = 0.
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Corollary 2. [4] Let M™ be a compact submanifold of S" and D a given integer
p € (0, m). If, for any x € M™ and any p-subspace V in T, M,

tr 0* < p(m — p),

then there is no stable integral p-current in M and

H,(M,Z)=H, ,(M,Z)=0
Corollary 3. Let M™ and N" be as in Theorem 2. If the immersion M™ — N"
is minimal and the square length of the second fundamental form of M™ satisfies
s <2 min{p, m — p} | H|? then

Hy(M,Z) = Hyp_p,(M,Z) =0.
Proof. Because the immersion M™ — N” is minimal, we have trA; = 0. So, from

(2.5), we have

rQ* =Y [2) (Arei, ) + (tr B,)?]
A i,o

= Z [2 Z(Akei, )’ + (Z(Axei, ei)) ]
A i,o i

Since ) ;(Axrei, e;) + Y, (Ageq, €4) = tr Ay = 0, we obtain

1 1
(Z(AM‘, ei))2 = (Z(AM', ei))2 + E(Z(A'\e“’ ea))2

i o

2
, m—p
=< ';")Zm;.e,-.e;r R ! 2 (Asea, ea)”

1 o

tI'QA = Z(ZZ(AAeh eq) + Z Ase;, e;) + iZh Z (Areq, eOt
A

1
< Emax{p, m — pls
By the conditions, we obtain tr 04 < p(m — p) | H||%. By applying Theorem 2, we
complete the proof. n
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