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Abstract. In this paper, we study the nonexistence
Riemannian manifolds of positive sectional curvature.

1.. Introduction

of stable integral currents in compact

The existence theorem due to Federer and Fleming [3] states that, for any compact
Riemannian manifold M*, each non-trivial integral homology class in Hp(M, Z)
corresponds to a stable integral current. By applying the Federer Fleming theorem and
the techniques from the calculus of variations in the geometric measure theory Lawson
and Simons [4] investigated the topology and geometry of submanifolds of the sphere,
and showed that approriate assumptions on the extrinsic geometry of the submanifolds
imply the vanishing of a given homology group. In [4], they conjectured that there are no
stable integral currents in any compact, simply-connected Riemannian manifold which is

|-pinched. As a "version" of the above famous conjecture, there have been many results
on stable minimal submanifolds and stable harmonic maps. But the problem offered by
Lawson and Simons is still open.

Recently, Cheng [2] showed that if M^ can be immersed as a hypersurface in the

Euclidean space E^+r ,and the sectional curvature Ky > A),2 (where A 2 --l- 1,-  
3  +2J2

constant, .1,2 is the maximum of the squared of principal curvatures of M*). Then there
are no stable integral currents in M^.

In this paper, we shall give a partial answer of the Lawson-Simons conjecture. The
obtained results show that if a complete d -pinched Riemannian manifold can be immersed
as a submanifold with parallel mean curvature vector and flat normal connection or as a
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hypersurface with constant mean curvature, in a space form of non-negative curvaffG"
then the conjecture holds true.

2. Preliminaries

The same notations as in [6] will be used throughout this paper. In this section, we only
list some main formulas employed in [6].

Let M* beanm-dimensional compactRiemannian manifold with Riemannian metric
(, ) and the Levi-Civita connection V. Denote by (S, 6) the oriented, p-rectifiable set in
M*.The set of rectifiable p-currents is (see [3,4])

Rp(M):  {s :  i * r , i  3n:  (s , ,8) ,  M(s) : inup(s)= * } .

E e Rp(M) is called an integral p-current if S and 05 are both rectifiable currents.
For a smooth vector field X e C (T M),let Q1 : M- --> M* be the l-parameter group

of local diffeomorphism generated by X, and we define [4]

Then

Qt(x) :  l ld , .6 l l  l ,_o.

# * n,rs)|,:o : l n l r.a,^<*t 
dnP (x). (2.r\

I f  X  :  V /  f o r  s o m e  /  e  C 5 ( M )  a n d { e i , e " }  ( i  : 1 , . . . ,  p ;  a  =  p  *  1 , . . . ,  r u )  i s  a n
orthonormal basis of T* M with € : et A e2 A . . . A € p, then (see 14, p. 4361)

eE6) :  -@x ( i l ,  €)2 + z l lax (€) l l2 + (vx,sx,  6)
: l l \ax{ei)."i) '  +zllax (e), r)2 +l\yx.,,x.e1. e.2)

j  j ' a  j

Let Q : Mm --> Nn be an isometric immersion of Mm into a Riemannian manifold
N'. The Levi-Civita connection of Nn is V. Denote by V(N, M) the normal bundle of
M^ in N'. For a smooth section v e C(V(N, M)) ar:'dX e C(TM), we have

V", : -A,X + vx{ ,

where A, is the so-called shape operator determined by u associated with the immersion
0.

For a given integer p € (0, m),letV be a p-dimensional subspace inT*M. Define a
map Bu : V --> V associated with A, by [6].

By X : orthogonal projection of A, X onto V ,

where X e V.If {e;} is an orthonormal basis of V, we have

B,X - l lA,X,r , )" , .

(2.3)
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Let {ur} be an orthonormal basis of the normal space Vr(N, M) and A), : Au^.
Define a self-adjoint linear map QA : V -+ V associated with the immersion 0 by t6l.

eAx :Dtz(lt,+?rx,eilei - n?x) - (t At -tr B)BLxl, e.4)

where X e V and {e; } is an orthonormal basis of V .I-,et {e"} be an orthonormal basis of
VI which is the orthogonal complement of V in T,M.Then {ei, eo} is an orthonormal
basis of TrM and

tr QA - ll?o r,, ,,1 : 
\lzl{,+xri, 

edz - (tr A7 - tr B7) rr B7l . \z.sl

Now, assume t : N" -+ E1 is an isometric immersion of the Riemannian manifold
N' in the Euclidean space El with the Levi-Civita connection D. The shape operator,
associated with the isometric immersion x : lr o Q : M^ ---> EI , Af determined by
v e C(V (Et , M)), is given by

A',Y : -(Dyv)T ,

where I  eC(TM).
Let (S, f ) be an oriented, p-rectifiable set. At x € S, we consider the tangent p-space

V : TrS C TxM. Choose an orthonormal basis {ei, eo} of T"M such that {e;} is a
bas i so f  V  and f  Ae2A ' . 'Aep .A t r  e  Mn , l e t  { u " )  beano r thono rma lbas i so f
Vr(E' , M) and A A'"". Consider QE, givenby (2.2), as a quadratic form (see [4]) on
the set

0 : lur ; v e Et, ur : orthogonal projection of u onto TrMl. (2.6)

Note that at the given point x € M^, {er, eo, uo} is an orthonormal basis of EI ,hence,
we have

t r  e€ :Detk) +letGd + I  ere).

By making use of the proor jiu"n in Jo1, wl nave 
6

Lemma. [6] tr Q - tr QA' , where QA' is the self-adjoint linear operqtor on the
p-subspaceTrs CTrM associatedwiththeimmersion{ oQ : M- -+ EI and

tr eA' - DlrD<e'"er, eo)2 - (fr A'o - ft B)tt n"l. (2.7)
o  I , d

At a point x e Mm, we take an orthonormal basis {vx, rto} of Vr(Et , M) so that {u1}
and{n"}arebases of V,(N, M)andV,(Et , N),respectively.LelAo: A,i" betheshape
operator associated with the immersion ,b : Nn -+ E'. Then

f t 9 e ' - t Q A + A g ) ,

where tr QA is given by (2.5) and

A1v1 : Dlz{A,rt,  e)2 - (Aoeo, e) (A"ei, e;)1.

35

(2.8)

(2.e)
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Theorem l, LetQ : Mm --> N"(c)beanisometricimmersion,whereM- isacomprete
Riemannian manifuId with the sectional curvature Ku > 3 > 0 and N"(c) is a simply
connected space formwith c > 0. If the norrnal connection of the immersion Q is flat and
the mean curvature vector of Mm is parallel, then there are no stable integral currents
in Mn, andfor any p e (0, m),

Hp(M, Z)  :  H^-p(M, Z)  :0.

Proof. According to the assumption, N'(c) can be considered as a totally umbili'cal
hypersurface of En+r tl, p.411. In this case, (2.9) becomes

From (2.8), we obtain that

A ( V ) : - p ( m - p ) c .

tr  QA' : f t  QA - p(m - p)c.

es(x): #rrf,.")1,:o

(3 .1 )

Becausethenormalconnectionof the submanifold Mm isflat,weknowthat allAT : Ar^
are simultaneously diagonalizable. Hence, there is an orthonormal basis {Ei} of r"M
such that AxEi - kxi Ei. Set s : l^tr, l, l . H : D^(rA)ryx/m, that is, s is rhe
square length ofthe second fundamental form and 11 is the mean curvature bundle. and
the Laplacian ofs is [5, p.105]

)o, 
:| frr^, - k^)2 K(Ei n E) +DilVA.il l2, (3.2)

) ' i < j

where K(E; n Er) is the sectional curvature of the plane E; A E1 C T,M.
Since the sectional curvatures K 14 > 3 > 0 and M^ is complete, Ric (u, u) > (m - I)6

for a unit vector field u in T*M. By Myer's theorem, M- is compact. From (3.2), we
h a v e  A s : 0 a n d t h u s ,  A 1  :  k x I , t r A T : m k 7 ,  H  : D k x n x .

Let (s, f) be a p-rectifiable set and the p - space v : T,s c Tx M.For the operator
B7 on V defined by (2.3), we have tr B7 - p k7. From (2.5), we obtain

tr QA - -D of* - d k? : -p(m - p) l lHl lz
)l

So (3.1) becomes
tr QA' - -p(m - p) (c + llHP). (3.3)

I f  b"-  0for , l , :  I ,2 , . . . ,n-m,thenAx:} forany) ,andthus,  Mmistota l lygeodesic.
So Ky : 0whenc : 0. Therefore, c + l lHll2 > 0 when c > 0 and Ku > O.Bythe
Lemma, (3.3) implies tr Qq - tr QA' < 0.

Let0 be the set given by (2.6).rt ur e 0,thenur is the gradient V/ of the function
f (x) : (u, .x) on M^ . To each 5 e Ro(M) we associate a quadratic form p5 on g as
follows. For X e 0,let fu be the flow generated by X and set
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Then from (2.L), (3.3) and the Lemma, we obtain

t r Q s : tr Qq, d'HP (x) < 0.

This implies that there is no stable integral p-current in M* .Usingthe Federer-Fleming
theorem, we have

Hp(M, Z) : H^-p(M, Z) - 0.

Corollary l. Let M^ be a complete hypersurface with the sectional curvature Ky Z
6 > .O and constant mean curvature in E*+r or S^*1 . Then there are no stable integral
currents in M* and hence, for any p € (0, m),

Hp(M, Z) : H^-p(M, Z) : O.

Remark. When M^ is the unit sphere S', Corollary I is due to Lawson and Simons [4].
The assumpti on on Mm in Theorem 1 is stronger than that in Theorems 3.2 and 4.2 in

[5]. Theobtainedresult showslhat M* is topologically a sphere, andtheLawson-Simons
conjecture is true in this case.

Let Nn be a complete submanifold with sectional curvature Klr > d > 0 immersed in
El. Denote by 41 the shape operator associated with the immersion N" --- Et . Suppose
the normal qonnection of Nn is flat and the mean curvature vector I{ is parallel. Then
for A(V) given by (2.9), a calculation similar to that given for (3.3) will give

A1v1 : -p(m - p) llHP (3.4)

Let Mm be a compact submanifold immersed in N". Denote by 41 the shape operator
associated with the immersion M^ --> N', and by Ai the shape operator associated
with the immersion Mm --> E1. From (2.8) and (3.4), we have

tr  QA'  -  f i  QA -  p(m -  p)  l lHP.

Hence, a similar proof as in Theorem I gives the following:

Theorem 2. Suppose Mm is a cotnpact subrnanifuld immersed in N", where Nn is a
complete submanifuld in EI with flat normal connection and parallel me(rn curvature
vector H. Denote by A7 the shape operator associated with the immersion Mm --> Nn .
Let K7,1 > 3 > O and p be a given integer p e (O,m). If, for any x e M^ and any
p-subspace V in T*M,

t r  QA  <  p (m -  p ) l lH ( ,

then there is no stable integral p-currents in M^ and

5 t

+"1,^

Hp(M, Z) : H*-p(M, Z) - O.
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corollary 2. [4] I'et Mm be a compact submanifuId of s" and p a given integer
p e (0, m). If, for any x € Mm and any p-subspace V in TrM,

tr QA . p(m - p),

then there is no stable integral p-current in Mm and

Hp(M, Z) : H^-p(M, Z) - 0.

Corollary 3. Let M^ and N' be as in Theorem 2. If the immersion M* --+ Nn
is minimal and the squgre length of the second fundamental form of Mm satisfies
s  <  2  m in {p ,m  -  p ) l l * l l 2 , t hen

Hp(M, Z) : H*-p(M, Z) - O.

Proof. Because the immersion M- --> N, is minimal, we have tr A7 - 0. So, from
(2.5), we have

tr eA - f [z f tar ei, €o)2 + (u B)21
), i,ot

: Dlrl{Ar",, eo)z * (D(trr,, ",1)'1.
), i,a t

Since f,  (Ave;, e;) +Dd(Adea, e) :  tr  Ax: 0, we obtain

/ \ - .  . ' ?  l , -  . ?  l , -(\{,+^r,, r,))' : i ( f la^"r, eil)' + i(D<eu", r"l)'
i  

z ' :  
a

Thus,

n  eA . f  (z f<er  e i ,  eo)2  +  l l4 rc ; .  e ; \2  *m 
-  p  

Y  t  A i "eo ,  e )2)
L  i , a  

2 ?  2  z - " "

I.  
, ^^ {O,m 

-  p }s .

By the conditions, we obtain t QA < p(m - d llEP. By applying Theorem 2, we
complete the proof. I
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