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Abstract. In this paper we investigate the Matheron theorem in the case of non-locally compact
setting, i.e., without the hypothesis of the local compactness for the topology on a metric space
E. Specifically, we show that the miss-and-hit topology on the space f of all closed subsets of E
is still separable and compact. However, the space f is no longer Hausdorff if the Polish space E
contains at least one nonJocally compact point.

1. Introduction

Matheron [2] has shown that, for a locally compact Polish space E, the miss-and-hit
topology on the space f of allclosed subsets of E is compact, separable, and Hausdorff.
The Matheron theorem is essential for the proof of the Choquet theorem in the case of
locally compact spaces. Note that in his proof, Matheron relied heavily on the hypothesis
of the local compactness. Since the natural domain of probability is that of non-locally
compact Polish spaces (or, more generally, metric spaces), it is necessary to know whether
or not the Matheron theorem holds for non-locally compact metric spaces.

It is shown in [5] that, if E is not locally compact at any point, then the miss-and-hit
topology on .F is no longer Hausdorff.

Also, the miss-and-hit topology has been studied in two particular cases: the metric
space E being locally compact at every point and E being not locally compact at any
point.

we investigate the Matheron theorem in the non-locally compact setting, i.e., without
the hypothesis of the local compactness for the topology on E. Specifically, we show
that, with the miss-and-hit topology, f is still separable and compact. As far as the
Hausdorff property is concerned, we show that F is no longer Hausdorff if the polish
space E contains at least one non-locally compact point.
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2. The Miss-and-Hit Topology

Nguyen Nhuy andVu Hong Thanh

Let E be a metric space. Let K, f , and I denote the classes of all compact, closed, and
open subsets of E, respectively. Following Matheron l2l, we topologize F as follows.
For every A C E, we denote

f y : { F  e F : F ) O + A l  a n d  F A  : { F  e F : F ) t : A 1 .

The miss-and-hit topology on F is the topology with the base

where

t F E , , , o , :  K  e K  a n d  G r , . . . , G n  e 9 | ,

F6 , , , . , o , :  F *  a ro , ) . . .Fc , ,  n  e  N .

3. The Results

By a Polish space, we mean a complete, separable metric space. Theorems I and2 are
generalizations of the Matheron theorem [2].

Theorem l. If the space E is separable, then so is the space F. In particulaa if E is a
Polish space, then the miss-and-hit topology on F is separable.

Proof. Let M be a dense countable set in E.By M, we denote the family of all finite
subsetsof M. ThenMis countable. Wewill showthat,Al isdenseinf inthemiss-and-hit
topology.

Suppose F e F andU(F) is a neighborhood of F in the miss-and-hit topology. We
may assume

t l (F) :  F8,, . . . ,o, ,

w h e r e K  e  K , G ;  e  9 f o r i : 1 , 2 , . . . , n  s u c h t h a t F O  K : A  a n d F O  G ;  l 0 f o t
e v e r y  I  :  I , 2 , . . . , n .

For each i : l, 2, ..., n, let xi e F n G i and U (x i) be a neighborhood of x; in E such
thatU(xi)  C Gi and U(x)n K :  A. Since M is densein E, for eachi :1,2,. . . ,n,
there exists a point r; € M fl U(x;). Then

T  :  { \ , . . . , r n }  e  M  a n d  T  e U ( F )  :  F 8 , , . , c ,

Thus, the theorem is proved.

Theorem 2 will be proved by a similar argument as in [2] in a locally compact setting.
We include it here for the reader's convenience.

Theorem 2. The miss-and-hit topology on F is compact.
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Proof. By the Alexandroff Theorem (see, e.g., t1l), in order to prove that F is compact,
it is sufficient to show that, if

l f* ' ,  K, € rc, i  e l lUlro,,  G1 eg, i  € r l

is a covering consisting of elements of a sub-base for the miss-and-hit topology, then it
has a finite cover consisting of elements of this sub-base.

We have

F : (Ur*',  Kt e K)U ( U Fc,, e e s).

Hence,

, : I n (r\ru', K, e rc)]n I n (r\ro,, Gi € qf
i e l  j € J

: I n (Fr,, Ki. rc)][l (aro,, c1 .o)
i € I  j  e J

Let us put

n: r9o '

Then the set S2 is open in E and

( l r", ;n ( n Fo,):  (  1r",) )(ruiaci l
i e l  j  e J  i e l

: ( n  , ) n t n : ) r P : a .  ( 1 )

From the last equality, it follows that there exists an index i6 e 1 with K;o C Q.
Otherwise, we have Oc O K; I A for every I e 1, where g' : E\O. It implies that
A + Q' e f1;a1fp,,which is a contradiction to (1).

Thus, let 16 e / be an index such that K;o C O : UietGi. Since K;o is compact, there
ex i s t sa f i n i t ecove r  lG i , , . . . ,G i , \  o f  t hecompac tse tK ;o  f o r i nd i ces  j r , . . . ,  j n  e  J .
Since {Gy,  , . . .  ,Gi^}  is  acoverof  Kio,  wehave Fy,^CtFGit  (  , . . 'nFGi ,  :  0 .  I t impl ies
that

r\(r UF;,,U U Fo,.) : a.
Therefore,

F: FK'oUro,, U Uto,"
The theorem is proved. I

A point x e E is said to be locally compact if it has a compact neighborhood in E. It
is shown in l2lthatif E is locally compact at every point, then the miss-and-hit topology
on f is Hausdorff. However, there is an another extreme case: If the space E is not
locally compact at any poirrt, then the miss-and-hit topology on f is not Hausdorff [5].

We prove here the following theorem.
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Theorem 3. If the separable metric space E contains at least one non-Iocally compact
point, then the miss-and-hit topology on F is no longer Hausdorff.

Proof Assume E is a non-locally compact metric space at a point xo € E, i.e., no
neighborhood of x6 is compact. Let x1 e E be a point such fhat x1 f xs.

Putting

F - {xo. xr} and F' : lx},

we will show that Z( F) nU@') I A for every neighborhood U(F) ot F andU(Ft) of
F/ in the miss-and-hit topology.

In fact, we may assume

I/(F) : FE,, . ,o, and?,|(F') : f\ i ,....,o;,

w h e r e K ,  K '  e K a n d G r , G ' j  e g  f o r i :  l , 2 , . . . , n a n d  j  : I , 2 , . . . , r n  s u c h t h a t
F  n K : A ,  F  n G i  * 0 f o r e v e r y i :  I , . . . , n a n d F t  n K t  : A ,  F t f ' G ' ,  I  A f o r
e v e r y  j : 1 , . . . , n ' t .

Assume G1, . . .  ,Gro (n0 < n)  conta inxg,  and Gno+t , . . .  ,G,  conta inx l  butdonot
contain x6. Putting

n O n m

G(x6) : | / ' . ]o , ,  G(x) :  n  G; ,  and G' ( - r1) : )Gj ,
i : l  i : no * l  i : 1

we have

fEo,,c(*,) C F5,,.. ,o, and F[, i6,1c FEi,. ,o; '

Let U (xd C G(x6) be a neighborhood of xe in E such that U(xs) fl K : 0. Since x6
has no compact neighborhood and K/ is compact, there exists a point ys € U(r6) such
that y6 f K/. Putting T : {yo, r1}, we obtain

T e FIvot.ct",r fl fE,i,*,, c FIr*ot.ar,,,)FE,io,, c FI,.... o^)f8,,' .o,,.

The theorem is proved.

4. Remark

By Theorem 1, if the metric space is separable, so is the space f equipped with the
miss-and-hit topology. Here, we will show by an example that the space F may not be
separable if it is equipped with an another topology.

Let C[0, 1] be the space of continuous functions on the unit interval [0, 1]. Then
C[0, 1] is an infinite-dimensional Polish space, so it is not locally compact. Let E be the
closed unit ball of the space C[0, 1], that is,

E : {xQ) € C[0, 1] :  l lxl l  : ,HBjr l l r(t) l l  < 1].
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By Theorem 1, the space F of all closed subsets of E equipped with the miss-and-hit
topology is separable, but by Theorem 3, it is no longer Hausdorff. Thus, if we insist on
having f as a Hausdorff topological space, then we need to use another topology. The
most popular topology for the space of all closed subsets of a metric space is, perhaps,
the topology induced by the Hausdorffmetric, that is,

max{sup l lr  - Bl l ,  sup l lx - Al l},  l t  A + A, B + A,
x e A  x e B

0

2

where l l.r - All : inf{l lx - yll : y e A}.
We will show that, although the space F with the miss-and-hit topology is still

separable, but with the topology induced by the Hausdorff metric, it is not separable.
In fact, let {e"} be a sequence of continuous functions on the unit interval [0, 1] such

t h a t  

" ' f t \ : [ l  

f o r a l l t  € l t ' \ '

[  0 rotal lr e [0, 1]\t+. 11,

andfor n >2

" , 1 1  : [  r  t : ' " l l t '  
I '  # 4 }

[  0  f o ra l l r  e  I  l ] \ ( 2 , . 2 , - r ) ,

where zn : I/2((l l2n) + t/ (Zn * 1)). Such functions €n, n : 1,2, . . ., exist by the
Urysohn-Tietze Theorem. Then the sequence [e, : n e N] c E satisfies lle, - e^ll : I
f o reve ryn*m.

By 2N, we denote the family of all non-empty subsets of N. For every S e 2N, let
As : {en : n e S}. It is easy to see that d(As,Ar) : I for every S I T. Since

{A5 : S e 2N1 is uncountable, it follows that F is not separable.

5. Examples

There is evidence of the existence of metric spaces being locally compact at every point
and of metric spaces being not locally compact at any point. The following examples
show that there are metric spaces which contain only one non-locally compact point.

Example 1. For each n € N, let en denote the nth standard unit vector of the Hilbert
space 

oo

b :  { x  
:  ( xn ) :  l l x l l  :  Deb t /2 .  * } ,

n : I

that is, en has I's at its n th position and 0's elsewhere. The zero element of the space /2
is denoted by d. Let us put

l f  A :  B  : 4 ,

otherwise,

E:{o}u (_q;r )
where

S : { e n : n : 1 , 2 , . . . } C I z .
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Obviously, every point x e E \ {A} is locally compact. Let us show that the point d is
not locally compact.

To obtain a contradiction, we assume the contrary that d is a locally compact point
and u is a compact neighborhood of 0 in E. Then there exists a neighborhood ue such
thate C Uo C U and LIo is of the form

where B(x, r) :
0 < e < I / n s .

(ns e N),

> 0). Let e be a number such that

For each xn € E, we put
(J,: B(x,.el [ ' l  f  .

Then the family {U"}flt is an open covering of E. Because of the compactness of the set
u and the relation uo C u c E, there exists a set consisting of finitely many elements
x t , . . . , x p o f E s u c h t h a t

k

u o C u c U u , .
l : I

We may assume without loss of generality that x; : (l /n)e;, i : 1,2, . . ., k. Let
xs : (l /ns)ep..1, then xo €. U0. Since {U; }f:, is a covering of U9, there exists an index
ls € {1, 2, . . . , k} such that xs € U;^. Then we have

l l x s - . r ; o l l  < e .  ( 2 )

Assumex;o is  of  the formx;o = (0,  . . . ,0 , ' l , fn ;0,0, . . . ) ,  that is ,  x ;o is  the vector  wi th
I f n;o in the i6th slot and 0's elsewhere. It is then straightforward to check that

/ l  l r l / 2  I
l x o - x i n l l : l ; *  ,  |  > - > € .

. r?6 n io,  no

The latter is a contradiction to (2), and therefore the assertion is proved.

Example 2. Let E : [0, 1]\{1/n, n e N}. Then the point 0 is the unique non-locally
compact point of the space E. In fact, let {f"(x)} be a sequence of functions defined by
fn@) : cos(n /x - (I ln)) for n eN andr e E.

Then the function fn : E --> Rl is continuous. Putting

f  (x)  :Lo' f , (*)  (0 < a < r) ,
i : l

we obtain a continuous function f : E --> Rl. By a similar argument as in the proof of
Theorem 1 in [4], one readily verifies that there is no neighborhood of 0 in E on which
/ is uniformly continuous. Therefore, the point 0 e E is not locally compact. Moreover,
it is easy to see that every point.{ € E\{0} is locally compact.

Acknowledgements. The atthors are grateful to N. T. Nguyen of the University of Texas for sending
them the reprints of [5,6] and for his helpful suggestions. They are also thankful to H. T. Nguyen
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t  2 t  nuo:  B\0.  i l l  )s

{ y e l z : l l x - y l l < r J ( r
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Abstract. Starting from the idea of density of sets in a topological space X fitted with certain
axioms, we generate a density topology in the space making certain critical observations on this
topology. As far as it is known, the idea of the space of approximately continuous functions
considered in this paper is not available in the literature. We construct the space of such mappings
from X to another topological space and show that this space is metrizable under some condiiioni.

1. Introduction

The notion of density of sets and approximately continuous mappings has been widely
studied in various spaces such as in real number space, measure space, Romanovski
space, and topological group by many authors (see, for example, lz-s,i.-llD.In this
paper we treat density of sets in a topological space fitted with certain axioms. These
axioms together with some others make a topological space into a Romanovski space
[l2]. However, we observe that to build up the said theory in a topological space, we
need only some of the several axioms for a Romanovski space.

As far as it is known, no attempt has been made to study the space of approximately
continuous mappings from a topological space into another. This we do in the last section
where we show ultimately that this space is metrizable under some general situations.

2. The Space X and Density of Sets

Let (x, r) be a locally compact topological space. Let B denote the class of all Borel
sets in (x, r).Let trr, be a measure defined on B such that p,(X) is finite. we assume p to
be non-zero for all non-void open sets. Let p* be the outer measure on p(X), the power
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et of X generated by pt.Let S denote the class of all trr.*-measurable sets and let A be a

ubfamily of B, each member of which is open.

)efinition l. By a decomposition Su of U e B, we mean a finite disjoint family

11,  . .  . ,  An f rom A such that

li) Ul:r Ai C U and
tI) u.(u - Ul:t A;) : 0.

The members of A need to satisfy the following axioms'

lxiom I. A form a base of r.

lxiom II. For arbitrary s > 0 and A e A, there exists a decomposition 54 of A such

hat B e S1 implies tt(B) < e.

lxiomIII. Foreachpoinlx e XandforeachopensetUcontainingx,thereexistse > 0

iuch that, It p,(A) < t, x € A, and A e L,then A c U'

lxiomN. GivenA e Aande > 0,thereis aB e Asuchthat A c B andp'(B-A) < e,

vhere the bar over a set denotes the closure.

In this situation, the members of A are calledfundamental sets (cf' [12]). We shall

rssume throughout that (X, z) is fitted with the above axioms'

Yote l. If X : R, the real number space with the usual topology, trr. is the Lebesgue

measure, and A is the collection of all open intervals, then it is clear that the above

axioms hold for the class A.
Let Sy be a decomposition of an open set U, consisting of a finite disjoint family

At , . . .  ,  AnfromA. Then

- 0 .*(, -!.1u,) s w(u - 
!.1^')

Now, U - Ul:r A; is open. Since pr, is positive for all non-void open sets, U -

l)i:rAt: 0. liso, from Axiom I, it follows that, for x e X, there is A e A such that

x e A. These facts together with Axiom II imply the following:

Remark 1. For each x e X, there exists a sequence of fundamental sets {Ar,"} such

that.r € An.r, F(An.) < Iln Yn.

The definition of densitv of sets as in [10, 1 1] is reproduced here for easy reference'

Definition 2. For E c x, the upper and lower outer".density of E at x denoted,

,^ir"irri u, i. (", x) and D" (E, x) are defined bv D* 1n,x) : limn*- DI@, *l
and D*(E,x) : lim,-- U"g, x), where

Di,g,x) :  sup{n* (E, A);  x e A, P(A) <

*fs, x) : inf {m* (E, A); x e A, P'(A) <

and m*(E, A):  1t*(E n A) I  t t (A)-

I
n
1
n

, A e A ) ,

, A e A )
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Since both Di, *rd 4 *" monotone, the limits exist, and moreover,

o  <  D* (E ,  x1  <D*  1n , r )  <  1 .

If they are equal, their common value is denoted by D*(E,x) and we say that the
outer density of E exists at x.If E € S, we witeD*1E,x) : D(E,x) and
D*(E,x)  :  D(E,x) .  I f  they are equal ,  we wr i te  Dg,x7 :  D(E,x)  :  D(E,x) .
We call x an outer density point or an outer dispersion point of E as D* (E, r) : 1 or
D* (E,x)  :  o .

The density function is monotone, non-decreasing, and subadditive and further:

Theorem l. If E,F e S and D(E, x) and D(F, x) exist for x e X, where E C F,
then D(F - E, x) exists and D(F - E, x) : D(F, x) - D(E, x).

The proof is omitted.

3. Density Topology in X

We give the definition of density topology as in [2, 10] and make some critical
observations.

D e f i n i t i o n 3 .  t l 0 l  L e t D : l U : U  C X  a n d D * ( X - ( J , x ) : 0 V x  e  U ) . T h e n D i s
a topology on X which is called the density topology (d+opology for short) on X. The
sets belonging to D are called d-open in X.

Thus, (X, D) is a topological space.

Theorem 2. If G is open, then D* (G, x) : I for each x e G.

Proof. Let x e G. Then, by AxiomIII, there is an e > 0 such that, if x e A, p(A) < e,
and A e A, then A C G.Letns e N be such that llns < oo. If n > noand x e A,
p(A) < Iln and A e L, then A C G. From the definition ot $G,x), it follows that
Yn > ns 4(C,x) :  l .  Hence,  D*(G,x)  :  1 .  Therefore,  D*(G,x)  :  l .

Theorem 3. The d-topology D is finer than r.

P roo f .  Le tG  e  r .ThenG e  BandsoG e  S .ByTheorems  1and2 ,D(X  -G ,x ) :Q

Yx e G. Therefore, G e D. I

The following example shows that the d-topology is strictly finer than z.

Example l. Let X : R, the real number space with the usual topology, and let be
the Lebesgue measure on R. Let A denote the set of all open intervals of R. By Note
1, members of A are fundamental sets. Let B be the set of all irrational numbers in
[0, 1]. Then B is not open in R. But we shall show that B is d-open. Let a e B. Then
cv € (0, l). Let 6 : min{cv, (1 - a)}. Choose ns e N such that llno . d. Then for
a l l  A e A wi th a e A,  p(A)  < l ln ,n > ny,wemusthave A C [0,  1] .  For these
fundamental sets A, A n (R - B) is a subset of the set of the rational numbers and so
m* (R - B, A) - p{(R - B) a All p.@) : 0 VA e A with the above property. Thus,
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Di " tn -  B ,a ) :0vn  >  ns ,andhence ,D*1R -  B ,a ) :0 .  S incecv  e  B i sa rb i t r a r y ,
B is d-open.

By similar arguments, we can show that if B contains, in addition to the irrational

numbers in [0, 1], a finite number of rational numbers of (0, 1), then B is also d-open.

This fact will be required in Example 3.

Note 2. In Example 1, the closed interval [0, 1] may clearly be replaced by any bounded

closed interval.

We observe below that Axioms I-IV have an interesting implication on the basic

structure of the original topological space X. We prove this in the follorving theorem
which will also be needed to show that (X, D) is Hausdorff (Corollary 1)'

Theorem 4. (X, t) is regular.

Proof. Let E be z-closed andx (. E.Thenx e X - E - G, say. ByRemark 1, we

associate with each x e X, a sequence of fundamental sets {Ar,* } such that x e Ar,r,

&(A,,,) < lln Yn.By Axiom IV, we can find a 8,,, e A such that x e A2n,a C B2,a

and p,(Br., - Azn.,) < Il2n. Then p'(Bn,') < p(8",, - Azn,r) * p(A2",) <

ll2n 1- l/2n : lln.Thus, we have a sequence {8,,'} from A such that x e 8,,*
and pt(Br,r) < llnYn. Again proceeding as above, we obtain a sequence {Cn,r} from
Asatisfying x € 82n,1, C Bzr,, C Cr,'andU'(C",r) < l lnYn.Sincex e G,by Axiom
III, thereexists s > 0 such that, if x e A, p(A) < e, A e A, then A C G.Choose
m e N suchthat  I lm <s.  Then C*, ,  C G andx € B2m,x -  U,say,  C B2a,a :  F,

s a y , C C m , x  C  G . T h u s , w e h a v e U  e r  a n d V : X  -  F  e r  s a t i s f y i n g  x  e U , E  C V
a n d U f l  V : 4 .

Corollary l, If (X, r) is 71, then (X,D) is Hausdorff.

Corollary 1 follows from the fact that (X, z) is regular 7r and so Hausdorff, and D is

finer than z.

Theorem 5. (cf. [0, Theorem 2.1]) (X,D) is regular

The proof is omitted.

4. Density Topology Through Closure

Fo rE  c  Xandx  e  X , i fD* (n , r )  >  0 , t henx i sca l l eda  d - l im i t po in to f  Eand
the collection of all d-limit points of E is denoted by E/. For each subset A, we may
consider d-cl (A) : A U A/ called the d-closure of A. Assuming further that X is second

countable and we have the following axiom.

AxiomU It A e A, then A is compact.

One can verify that the operator d-closure satisfies all the axioms of Kuratovski for

beingatopologicalspace.Cal l ingasetEtobed-c losedl fE:d-c l (E)anddenot ing
byCthecol lect ionof  a l ld-c losedsets inX, letU -  {A:  A e X andX-A e C}.  One
can verify as in [2, 10] that Ur : D.
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5. Approximately Continuous Mappings

In this section, we consider the idea of approximately continuous mapping in topological
spaces and state only those basic properties which do not seem to be available in the
literature for other spaces.

Definition 4. t10l A mapping f : (X,r) --> (Y,o), where (Y,o) is an arbitary
topological space is called approximately continuous in X if, for each 6-open set V in
Y, f 

-1fl) 
is d-open in X.

By Theorem 3, a continuous mapping is approximately continuous but the converse
is not true as the following example shows.

Example 2. Let X and p,be as in Example l.Let a,b e R, a + b and let I be the
topologicalspaceconsist ingof theopensets@,{a,b}and{a} .Let f :R">Ybedef ined
by

I a ifx is irrational,
f(x) : 

I u ifx is rarionar.

Clearly, / is approximately continuous.

Note 3. The class of all continuous but not continuous mapping is a proper subclass of
the class of all approximately continuous mappmgs.

In this section, we shall assume further that X is second countable and Axiom V also
holds. The proofs of the following theorems are omitted.

Theorem 6. Let f : X --+ Y be a mapping. Then the following are equivalent.

(i) / ,s approximately continuous;

(ii) for each o -closed set F is Y, f 
-1 g1 is d-closed in X;

(t i t) forAcX, f (d-cr(A)) c /(A);
( iv) for B cY, f-L(E) r d-cl(/-t(B));

where bar here denotes the o-closure.

Theorem 7. If X is the union of two d-closed sets A, B and f : A --> Y and let
g : B --+ Y be continuous mappings in the subspace topologyDn and.Ds, respectively,
such tha t  f  ( x ) :  g ( x ) ,Yx  e  AnB , thenh :  X  ->  Y  de f i nedbyh (x ) :  f  ( x ) ,Yx  e  A ,
and h(x) : g(x),Yx e B, is approximately continuous.

Theorem 8. Let (Y, p) be a metric space. Then the unifurm limit of a sequence of
approximately c ontinuous mappin gs is als o approximately continuous.

6. K;-Topology

The following definition and lemma will be needed in this section.
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Definition 5. A C X is said to be d-cornpact if every d-open cover of A has a finite
subcoven

But the converse is not true as the following example shows:

Clearly, every d-compact set is compact because any open set is d-open.

Example 3. With reference to Example 1, let us consider the closed interval [0, 1] which
is compact in R with the usual topology. We shall show that [0, 1] is not d-compact.
Let B : [1, 2]. Write all rational numbers in (-1, 2) as a sequence {x,} and consider a
sequence of sets {Gr}, where G, contains all irrational numbers in [-1, 2f and xn. By
Example 1, the sets G, are d-openYn. Clearly, {Gr} forms ad-opencover of [0, 1]. But
it cannot contain a finite subcover {G,,, . . ., G,,} of [0, 1] for this will imply that there
are only a finite number of rational numbers in [0, 1]. Hence, [0, 1] is not d-compact.

Lemma l. The approximately continuous image of a d-compact set is compact.

The proof is omitted.

If X and Y are topological spaces, Arens [1] introduced a topology on the set of all
continuous mappings from X to I as follows. If K C X is compactand W C Y is open,
then the collection of all continuous mappings / such that f (K) C IV' is denoted by
the symbol (K, W).The collection of all such (K, I/') forms a sub-base of a topology
which Arens calls a K-topology.

Now, if (X, z) is equipped with the above d-topology and we include the set of all
approximately continuous mappings from X to (Y, o) into our consideration, then we
observe that following the above method, we can generate several topologies as follows:

(D K c X d-compact,W c Y open, and / continuous. The corresponding topology
is called Kl-topology.

(i i) 1( CXcompact,W CY open,and/approximatelycontinuous.Thecorresponding
topology is called K2-topology.

(iii) 1( c X d-compact, W C Y open, and f approximately continuous. The
corresponding topology is called Kd-topology.

To obtain various topological properties of these topologies (including K-topology),
we feel that the property "the image of a compact set is compact" is frequently needed.
This is true if the mapping is continuous (and so is true in the case of Ktopology [1]),
but may fail to be true if the mapping is approximately continuous, because d-open sets
need not be open (see Example 1). Clearly, K1-topology is a subspace topology of the
K7-topology. As such in our present discussion, we dispense with K1 and K2 topologies
and adhere to the K7-topology.

We denote by AC the collection of all approximately continuous mappings from
X to Y. From the definition of K,7-topology as given in (iii) and considering the
fact that sets (K, I4z) form a sub-base of the Ka-topology, we observe that given
arry f e AC, there exists a basis of Ka-open neighborhoods of / of the form
U( f ) :  (K r ,W i  n . . ' n  (Kn ,W, ) ,whe reK ;  i sd -compac t ,W iopa \and  f  (K ; )  CW;
for  i  :  7 ,  2,  .  .  . ,  n .  The set  U ( f )  wi l l  be denoted by (Kr ,  .  .  . ,  Kni  Wr,  .  .  . ,  W,) .

Note 4. Clearly, f : (X,t) --> (Y,o) is approximately continuous if and only if

f : (X, D) -+ (Y, o) is continuous. So it appears that the study of K7-topology should
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run analogously to the study of K-topology [1]. In Arens' paper [1], the question of
metrizability of the K-topology has been dealt with under several conditions including
the assumption that the range space is a metric space. The primary object of this section
is to show that the K,7-topology is metrizable under certain conditions which do not go
in the line of Arens' treatment. To do this, we need to present the proofs of two theorems
where we use only the properties of d-compact sets and d-open sets as formulated in
this paper.

Theorem 9. The Kalopology in AC is Ts,71, T2 and regular if Y is so.

Proof .  F i rs t le tYbeaTz-space.Let f ,g  e ACandf  *  S.  Sothereisx e Xsuch
that f (x) * e@). Further, there exists U, V e o such that f (x) e U, S@) e V, and
UaV -  0.Thenwehave f  e({x} ,U)af ig  e ( {x} ,  V)andclear ly , thesetwo K4-open
sets are disjoint. So K,7-topology is 72. The proof is similar when Y is Io or Zr.

Let Y now be regular. Let f e AC and U be a Kyopen set containing /. Then there
i s a s e t o f  t h e f o r m  U ( f ) :  ( K r , . . . , K n i W r , . . . , W " )  s u c h t h a t  f  e  U ( f )  c  U .
Since K; is d-compact, f (Ki) is compact in Y (by Lemma l) and f (Ki) c Wi.

Now, for each y e f (Ki), there is a V, e o such that

/ e Vy C V y C I4z; (since I is regular).

The collection of sets {V, i y e f (Ki)} form an open cover of f(K;) and so
there ex is t  h, . . . , !^  e f  (Kt)  such that  f  (K;)  c  UT: tVy,  

-  G; ,  say.  Then

f  (K )  C  G t  C  V : rVy ,  
:  G i  C  Wi  and  th i s  i s  t r ue  f o r  i  :  I , 2 , . . . , n .Le t

V ( f ) :  ( K t , . . . , K , i G t , . . . , G " ) .  T h e n  /  €  V ( f )  c U ( f ) .  W e s h a l l s h o w t h a t t h e
K,7-closure of V (f) is a subset of U (f). Let g f U(/). Then for some I : l, 2, . . ., n,

S 4 6t ,Wt) , i .e . ,  5@) f  IV ' l  forsome x € K1.So g(x)  e Y -  Wt c Y -  Gt  :  Ht ,
say. Clearly, the Kd-open set ({x},I{) containing I is disjoint from V(/). Thus,
g ( KrcI(V(/)). This shows that Ka-cI(V(f)) C U(f) and so the Ka-topology
is regular. r

Theorem 10. If (X,D) is locally compact and has a basis of cardinality c and Y has
a basis of cardinality c, then the K6lopology has a basis whose cardinality does not
exceed c where c denotes the power of the continuum.

Proof. The basis B* of (X, D) may be supposed to consist of only those d-open sets
whose d-closure are d-compact. Let Br be the basis of L

We shall show that the members of the Ka-topology of the form

V s :  ( d - c l ( U r ) ,  . . .  ,  d - c l ( U " ) ; W r , . . . , W , ) ,

where U; e B" for i : 1,...,n form a basis of the K,7-topology. LeL (K,l4z) be a
sub-basememberof the K7-topology. Let x e K and f e (K,W) and so f (x) e W.
Then there is a W" € By such that f (x) € W, C W. Since / is approximately
continuous, there exists U* e B, such that x € Ux and f (U*) C Wr. Again since
(X, D) islegular (see Theorem 5), we can find a d-open set V, such that

x € Vx c d-cl(V,) c U, .
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Finally, we can obtain G" e
and this gives d-cl(G,) C U,
d-cl(G*) is compact. Now, {G,
e x i s t x l ,  . . . , x m  e  K s u c h t h a t

B. K. Inhiri and P. Das

By satisfyingx € Gx C V, C d-cl(Vx) c U,
and so f (d-cl(Gx)) C W*.It may be noted that
i x e K\ form a d-open cover of K and so there

m

x cl)c",.
j : r

This shows that

f  e  ( d - c l ( G , , ) ,  . . . ,  d - c l ( G , . ) ;  W * , ,  . . . , W , - )  C  ( K , W ) .

Thus, the sets of the form vs form an open base of the Ka-topology. Since B" and By
both have cardinality c, it is clear from the above construction that the cardinality of the
class V6 does not exceed c. This proves the theorem. I

The proof of the following theorem is similar and so omitted.

Theorem ll. suppose (x, D) is locally compact and second countable. If y is second
countable, then so is the Ka topology.

corollary 2. If (x,D)istocallycompactsecondcountableandy isregularTl,second
countable, then the Kalopology is metrizable.

This follows from Theorems 9 and 11.
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