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Abstract. In this paper we investigate the Matheron theorem in the case of non-locally compact
setting, i.e., without the hypothesis of the local compactness for the topology on a metric space
E. Specifically, we show that the miss-and-hit topology on the space F of all closed subsets of E
is still separable and compact. However, the space F is no longer Hausdorff if the Polish space E
contains at least one non-locally compact point.

1. Introduction

Matheron [2] has shown that, for a locally compact Polish space E, the miss-and-hit
topology on the space F of all closed subsets of E is compact, separable, and Hausdorff.
The Matheron theorem is essential for the proof of the Choquet theorem in the case of
locally compact spaces. Note that in his proof, Matheron relied heavily on the hypothesis
of the local compactness. Since the natural domain of probability is that of non-locally
compact Polish spaces (or, more generally, metric spaces), it is necessary to know whether
or not the Matheron theorem holds for non-locally compact metric spaces.

It is shown in [5] that, if E is not locally compact at any point, then the miss-and-hit
topology on F is no longer Hausdorff.

Also, the miss-and-hit topology has been studied in two particular cases: the metric
space E being locally compact at every point and E being not locally compact at any
point.

We investigate the Matheron theorem in the non-locally compact setting, i.e., without
the hypothesis of the local compactness for the topology on E. Specifically, we show
that, with the miss-and-hit topology, F is still separable and compact. As far as the
Hausdorff property is concerned, we show that F is no longer Hausdorff if the Polish
space E contains at least one non-locally compact point.
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2. The Miss-and-Hit Topology

Let E be a metric space. Let K, F, and G denote the classes of all compact, closed, and
open subsets of E, respectively. Following Matheron [2], we topologize F as follows.
For every A C E, we denote

Fa={FeF:F()A#0} and FA={FeF:F()Aa=0)
The miss-and-hit topology on F is the topology with the base

(F§ ¢ :KeK and Gi,...,G,eG},

St

where

3. The Results

By a Polish space, we mean a complete, separable metric space. Theorems 1 and 2 are
generalizations of the Matheron theorem [2].

Theorem 1. Ifthe space E is separable, then so is the space F. In particular, if E is a
Polish space, then the miss-and-hit topology on F is separable.

Proof. Let M be a dense countable set in E. By M, we denote the family of all finite
subsets of M. Then M is countable. We will show that M is dense in F in the miss-and-hit
topology.

Suppose F' € F and U(F) is a neighborhood of F in the miss-and-hit topology. We
may assume

UFY=FE1lie

»
n

where K € K,G; € Gfori =1,2,...,nsuchthat FNK = @and F N G; # @ for
everyi =1,2,..,n.

Foreachi =1,2, ...,n,letx; € F N G; and U (x;) be aneighborhood of x; in E such
that U(x;) C G; and U(x;) N K = {. Since M is dense in E, for eachi = 1,2, ..., n,
there exists a point »; € M N U(x;). Then

T={ri,....1n}eM and T eUF)=F§ .

Thus, the theorem is proved. u

Theorem 2 will be proved by a similar argument as in [2] in a locally compact setting.
We include it here for the reader’s convenience.

Theorem 2. The miss-and-hit topology on F is compact.
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Proof. By the Alexandroff Theorem (see, e.g., [1]), in order to prove that F is compact,
it is sufficient to show that, if

{FX, KieK,iel}| J{Fe,. G €@, je T}

is a covering consisting of elements of a sub-base for the miss-and-hit topology, then it
has a finite cover consisting of elements of this sub-base.

AL F= (U Kiex) U (U, 6 €9).
Hence, B .
At a2l () (F\Fg,, Gj €9)]
0 m(f k<0 (mf 6 <o)
Let us put

a=Ja.

jeJ

Then the set €2 is open in E and
(N#)N(N7*)=(N#)NE=)
iel Jj€ ie
=(N#)NF=Nr2=0. © ®

iel fel

From the last equality, it follows that there exists an index ip € I with K;, C Q.
Otherwise, we have Q° N K; # @ for every i € I, where Q¢ = E\Q. It implies that
@ # Q° € Nie F , which is a contradiction to (1).

Thus, letip € 1 be anindex such that K;; C Q2 = Ujc;G;. Since K;, is compact, there

exists a finite cover {G;,, ... , G;,} of the compact set K;; for indices ji, ..., j, € J.
Since (G}, ... , Gj,}is a cover of K;,, we have Fg, NFC1 N..-NFO% = @.Itimplies
that

A(F Uz, U U%,) =0
F=F% | Fe, | | Fo.-

The theorem is proved. ]

Therefore,

A point x € E is said to be locally compact if it has a compact neighborhood in E. It
is shown in [2] that if E is locally compact at every point, then the miss-and-hit topology
on F is Hausdorff. However, there is an another extreme case: If the space E is not
locally compact at any point, then the miss-and-hit topology on F is not Hausdorff [5].

We prove here the following theorem.
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Theorem 3. If the separable metric space E contains at least one non-locally compact
point, then the miss-and-hit topology on F is no longer Hausdorff.

Proof. Assume E is a non-locally compact metric space at a point xo € E, i.e., no
neighborhood of xg is compact. Let x; € E be a point such that x; # xo.
Putting
F={xo,x;} and F' ={x},

we will show that L/ (F) N U(F’) # @ for every neighborhood U (F) of F and U(F’) of
F' in the miss-and-hit topology.
In fact, we may assume

UF)=FE g adUF)=F§ o,

where K, K’ € K and G,-,G} € Gfori =1,2,....,nand j = 1,2, ...,m such that
FNK =0,FNG; # @foreveryi = 1,...,nandF’ﬂK’=(Zi,F/ﬂG} # (@ for
every j=1,...,m.

Assume G1, ... , Gy, (ng < n) contain xg, and Gp,11, ... , G, contain x; but do not
contain xo. Putting

Go) =[G, Gx)= () Gi, and G'(x)=[)G},

i=1 i=ng+1 j=1

we have
K K K’ K’
F660).66) € F6u.6, a4 Foy CFg G-

Let U (xp) C G(xp) be a neighborhood of xg in £ such that U (xg) N K = @. Since xq
has no compact neighborhood and K’ is compact, there exists a point yg € U (xg) such
that yo ¢ K’. Putting T = {yo, x1}, we obtain

K K’ K K’ K /
T € Fluy,ceo [ 1F& e € Fwo.cw [ 1Foe € F&,. 6, (760

The theorem is proved. [

4. Remark

By Theorem 1, if the metric space is separable, so is the space F equipped with the
miss-and-hit topology. Here, we will show by an example that the space F may not be
separable if it is equipped with an another topology.

Let C[O, 1] be the space of continuous functions on the unit interval [0, 1]. Then
C[0, 1] is an infinite-dimensional Polish space, so it is not locally compact. Let E be the
closed unit ball of the space C[0, 1], that is,

E ={x(t) € C[0,1] : |lx|| = max {lx(®)]| <1}.
te[0,1]

Vi
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By Theorem 1, the space F of all closed subsets of E equipped with the miss-and-hit
topology is separable, but by Theorem 3, it is no longer Hausdorff. Thus, if we insist on
having F as a Hausdorff topological space, then we need to use another topology. The
most popular topology for the space of all closed subsets of a metric space is, perhaps,
the topology induced by the Hausdorff metric, that is,

max{sup [|x — Bf, sup lx — All}, ifA#0, B+#0,

! x€A xeB
d(A,By=1 ¢ if A=B =40,

2 otherwise,

where ||x — A|| = inf{|lx — y| : y € A}
We will show that, although the space F with the miss-and-hit topology is still
separable, but with the topology induced by the Hausdorff metric, it is not separable.
In fact, let {e,} be a sequence of continuous functions on the unit interval [0, 1] such
that 1
1 forallt €[5, 1],

el(r) = { 0 foralls € [0, I1\[3, 1],

and forn > 2
1 forallt € [5-, z15],

0 forallt € [0, 11\(zn, Zu—1),

where z, = 1/2((1/2n) + 1/(2n 4 1)). Such functions e,, n = 1, 2, ..., exist by the
Urysohn-Tietze Theorem. Then the sequence {e, : n € N} C E satisfies |le, — e[ =1
for every n # m.

By 2N, we denote the family of all non-empty subsets of N. For every § € 2N, let
As = {e, : n € S}. It is easy to see that d(As, Ar) = 1 for every S # T. Since
{As: S € 2N} is uncountable, it follows that F is not separable.

en(t) = {

5. Examples

There is evidence of the existence of metric spaces being locally compact at every point
and of metric spaces being not locally compact at any point. The following examples
show that there are metric spaces which contain only one non-locally compact point.

Example 1. For each n € N, let e, denote the nth standard unit vector of the Hilbert
space

b= {x= G Ixl = 1) < oo,
n=1

that is, e, has 1’s at its nth position and 0’s elsewhere. The zero element of the space I
is denoted by 6. Let us put
1
=oU(Uzs),

={e,:n=12,...} Ch.

||C8

where
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Obviously, every point x € E \ {6) is locally compact. Let us show that the point @ is
not locally compact.

To obtain a contradiction, we assume the contrary that 6 is a locally compact point
and U is a compact neighborhood of 6 in E. Then there exists a neighborhood Uy such
that § C Up C U and Uy is of the form

UO=B(0, %)(’]E (no € N),

where B(x,r) = {y € I : [[x —y|| < r} (r > 0). Let € be a number such that
0 <e€ < 1/ng.
For each x,, € E, we put

Un = BGin, ) | E.

Then the family {U,,}°° , is an open covering of E. Because of the compactness of the set

U and the relation Uy C U C E, there exists a set consisting of finitely many elements

X1, ..., x; of E such that
k

UocUclu.
i=1
We may assume without loss of generality that x; = (1/n;)e;,i = 1,2, ..., k. Let
x0 = (1/no)ex+1, then xg € Uy. Since {U; }f.‘zl is a covering of Uy, there exists an index

io € {1,2, ..., k} such that xy € U;,. Then we have
llxo — x;p|| < €. @)
Assume x;, is of the form x;, = (0, ..., 0, 1/n;,0,...), that is, x;, is the vector with
1/n;, in the igth slot and O’s elsewhere. It is then straightforward to check that
1 1\1/2 1
[lxo — x5, || = (n—% + "—,20) > % > €.

The latter is a contradiction to (2), and therefore the assertion is proved.

Example 2. Let E = [0, 1]\{1/n,n € N}. Then the point 0 is the unique non-locally
compact point of the space E. In fact, let { f,(x)} be a sequence of functions defined by
Ju(x) =cos(m/x — (1/n)) forn e Nand x € E.

Then the function f, : E — R! is continuous. Putting

fE) =) d"frx) 0 <a<D),

i=1

we obtain a continuous function f : E — R'. By a similar argument as in the proof of
Theorem 1 in [4], one readily verifies that there is no neighborhood of 0 in E on which
f is uniformly continuous. Therefore, the point O € E is not locally compact. Moreover,
it is easy to see that every point x € E\{0} is locally compact.
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Abstract. Starting from the idea of density of sets in a topological space X fitted with certain
axioms, we generate a density topology in the space making certain critical observations on this
topology. As far as it is known, the idea of the space of approximately continuous functions
considered in this paper is not available in the literature. We construct the space of such mappings
from X to another topological space and show that this space is metrizable under some conditions.

1. Introduction

The notion of density of sets and approximately continuous mappings has been widely
studied in various spaces such as in real number space, measure space, Romanovski
space, and topological group by many authors (see, for example, [2-5,7-11]). In this
paper we treat density of sets in a topological space fitted with certain axioms. These
axioms together with some others make a topological space into a Romanovski space
[12]. However, we observe that to build up the said theory in a topological space, we
need only some of the several axioms for a Romanovski space.

As far as it is known, no attempt has been made to study the space of approximately
continuous mappings from a topological space into another. This we do in the last section
where we show ultimately that this space is metrizable under some general situations.

2. The Space X and Density of Sets

Let (X, t) be a locally compact topological space. Let B denote the class of all Borel
sets in (X, 7). Let u be a measure defined on B such that (X)) is finite. We assume uto
be non-zero for all non-void open sets. Let 4* be the outer measure on P(X), the power
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ot of X generated by p. Let S denote the class of all pw*-measurable sets and let A be a
ibfamily of B, each member of which is open.

efinition 1. By a decomposition Sy of U € B, we mean a finite disjoint family
\1, ..., A, from A such that
i) Ui, Ai c Uand
i) w(U — Ui A) =0.
The members of A need to satisfy the following axioms.

\xiom I. A form a base of 7.

\xiom II. For arbitrary ¢ > 0 and A € A, there exists a decomposition S4 of A such
hat B € S4 implies w(B) < .

\xiom I1I. For each pointx € X and for each open set U containing x, there exists & > 0
uch that, if £(A) <&, x € A,and A € A, then A CU.

A\xiom IV, Given A € Aand¢ > 0, thereisa B € Asuchthat A ¢ Band u(B—A) < &,
vhere the bar over a set denotes the closure.

In this situation, the members of A are called fundamental sets (cf. [12]). We shall
issume throughout that (X, 7) is fitted with the above axioms.

Note 1. If X = R, the real number space with the usual topology, 4 is the Lebesgue
neasure, and A is the collection of all open intervals, then it is clear that the above

axioms hold for the class A.
Let Sy be a decomposition of an open set U, consisting of a finite disjoint family
A1, ..., A, from A. Then

n

u(U —iL:JlX,-) < ,u(U _ UA,-) —0.

i=1

Now, U — \UJ/_; A; is open. Since  is positive for all non-void open sets, U —
U, A; = 8. Also, from Axiom I, it follows that, for x € X, there is A € A such that
x € A. These facts together with Axiom II imply the following:

Remark 1. For each x & X, there exists a sequence of fundamental sets {A,,x} such
that x € A, x, u(Anx) < 1/n Vn.

The definition of density of sets as in [10, 11] is reproduced here for easy reference.
Definition 2. For E C X, the upper and lower outer density of E at x_denoted,

respectively, by D' (E, x) and D*(E, x) are defined by B*(E, x) = limy 00 B: (E,x)
and D*(E, x) = lim,_,» D} (E, x), where

_ _ 1

D, (E, x) = sup{m*(E, A); x € A, i(4) < —, A €A},
, o 1

DI (E, x) = inf{m"(E, A); x € A, w(A) < o A €A}

and m*(E, A) = u*(E 0 A) / n(A).
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Since both 5: and D’ are monotone, the limits exist, and moreover,
0<D*(E,x) <D (E,x) < 1.

If they are equal, their common value is denoted by D*(E, x) and we say that the
outer density of E exists at x. If E € S, we write 5*(E,x) = D(E,x) and
D*(E,x) = D(E, x). If they are equal, we write D(E, x) = D(E,x) = D(E, x).
We call x an outer density point or an outer dispersion point of E as D*(E, x) = 1 or
D'(E,x) =0.

The density function is monotone, non-decreasing, and subadditive and further:

Theorem 1. IfE, F € S and D(E, x) and D(F, x) exist for x € X, where E C F,
then D(F — E, x) exists and D(F — E, x) = D(F, x) — D(E, x).

The proof is omitted.

3. Density Topology in X

We give the definition of density topology as in [2,10] and make some critical
observations.

Definition 3. [10] LetD ={U : U C X and 5*(X —U,x)=0Vx e U}). ThenD is
a topology on X which is called the density topology (d-topology for short) on X. The
sets belonging to D are called d-open in X.

Thus, (X, D) is a topological space.
Theorem 2. If G is open, then D*(G, x) = 1 for each x € G.

Proof. Letx € G. Then, by Axiom III, there is an & > 0 such that, if x € A, u(A4) < &,
and A € A, then A C G.Letng € N be such that 1/ng < co0.If n > ng and x € A,
u(A) < 1/nand A € A, then A C G. From the definition of D} (G, x), it follows that
Vn > ng D; (G, x) = 1. Hence, D*(G, x) = 1. Therefore, D*(G, x) = 1.

Theorem 3. The d-topology D is finer than t.

Proof. LetG € 1. ThenG e Bandso G € S. By Theorems 1 and 2, D(X — G, x) =0
Vx € G. Therefore, G € D. ]

The following example shows that the d-topology is strictly finer than .

Example 1. Let X = R, the real number space with the usual topology, and let be
the Lebesgue measure on R. Let A denote the set of all open intervals of R. By Note
1, members of A are fundamental sets. Let B be the set of all irrational numbers in
[0, 1]. Then B is not open in R. But we shall show that B is d-open. Let o € B. Then
a € (0,1). Let § = min{o, (1 — )}. Choose ng € N such that 1/ny < 8. Then for
all A € A witha € A, u(A) < 1/n, n > ng, we must have A C [0, 1]. For these
fundamental sets A, A N (R — B) is a subset of the set of the rational numbers and so
m*(R — B, A) = u{(R — B) N A}/u(A) = 0 YA € A with the above property. Thus,
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EZ(R — B, a) = 0Vn > ngp, and hence, B*(R — B, a) = 0. Since o € B is arbitrary,
B is d-open.

By similar arguments, we can show that if B contains, in addition to the irrational
numbers in [0, 1], a finite number of rational numbers of (0, 1), then B is also d-open.
This fact will be required in Example 3.

Note 2. InExample 1, the closed interval [0, 1] may clearly be replaced by any bounded
closed interval.

We observe below that Axioms I-IV have an interesting implication on the basic
structure of the original topological space X. We prove this in the following theorem
which will also be needed to show that (X, D) is Hausdorff (Corollary 1).

Theorem 4. (X, 1) is regular.

Proof. Let E be t-closed and x ¢ E. Then x € X — E = G, say. By Remark 1, we
associate with each x € X, a sequence of fundamental sets {A, .} such that x € Zn,x,
w(An,x) < 1/n Vn. By Axiom IV, we can find a B, » € A such that x € Zzn,x @B,
and w(Byy — Aonyx) < 1/2n. Then p(Bnx) < U(Bnx — Aznzx) + p(Azx) <
1/2n + 1/2n = 1/n. Thus, we have a sequence {B, .} from A such that x € B, ,
and (B, y) < 1/n Vn. Again proceeding as above, we obtain a sequence {C, .} from
A satisfying x € By, x C Bopx C Cyxand u(Cp x) < 1/nVn.Since x € G, by Axiom
III, there exists & > O such that, if x € A, u(A) < &, A € A, then A C G. Choose
m € N such that 1/m < &. Then C,, x C G and x € Bopx = U, say, C Bomx = F,
say, C Cyyx C G.Thus, wehave U e tand V = X — F € 7 satisfyingx e U, ECV
andUNV =0.

Corollary 1. If (X, 1) is Ty, then (X, D) is Hausdorff.

Corollary 1 follows from the fact that (X, t) is regular 77 and so Hausdorff, and D is
finer than .
Theorem 5. (cf. [10, Theorem 2.1]) (X, D) is regular.

The proof is omitted.

4. Density Topology Through Closure

For E C X and x € X, if D'(E,x) > 0, then x is called a d-limit point of E and
the collection of all d-limit points of E is denoted by E’. For each subset A, we may
consider d-cI(A) = AU A’ called the d-closure of A. Assuming further that X is second
countable and we have the following axiom.

Axiom V. If A € A, then A is compact.

One can verify that the operator d-closure satisfies all the axioms of Kuratovski for
being a topological space. Calling a set E to be d-closed if E = d — cl(E) and denoting
by C the collection of all d-closed setsin X,letU={A: A <€ X and X — A € C}. One
can verify as in [2, 10] that U= D.
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5. Approximately Continuous Mappings

In this section, we consider the idea of approximately continuous mapping in topological
spaces and state only those basic properties which do not seem to be available in the
literature for other spaces.

Definition 4. [10] A mapping f : (X,t) — (Y, 0), where (Y, c) is an arbitrary
topological space is called approximately continuous in X if, for each o-open set V in
Y, f~Y(V) is d-openin X.

By Theorem 3, a continuous mapping is approximately continuous but the converse
is not true as the following example shows.

Example 2. Let X and u be as in Example 1. Leta,b € R, a # b and let Y be the
topological space consisting of the open sets ¢, {a, b} and {a}. Let f : R — Y be defined
by

a 1if x 1s irrational,

b if x is rational.

f(X)=[

Clearly, f is approximately continuous.

Note 3. The class of all continuous but not continuous mapping is a proper subclass of
the class of all approximately continuous mappings.

In this section, we shall assume further that X is second countable and Axiom V also
holds. The proofs of the following theorems are omitted.

Theorem 6. Let f : X — Y be a mapping. Then the following are equivalent.

(i) f is approximately continuous,

(ii) for each o-closed set F is Y, f~'(F) is d-closed in X;
(i) for A C X, f (d-cl (A)) C f(A);

@(iv) for B C Y, f~1(B) D d-cl(f~(B));

where bar here denotes the o-closure.
Theorem 7. If X is the union of two d-closed sets A, B and f : A — Y and let
g . B = Y be continuous mappings in the subspace topology D4 and Dp, respectively,

suchthat f(x) = g(x),Vx € AN B, thenh : X — Y defined by h(x) = f(x), Vx € A,
and h(x) = g(x), Vx € B, is approximately continuous.

Theorem 8. Let (Y, p) be a metric space. Then the uniform limit of a sequence of
approximately continuous mappings is also approximately continuous.

6. K,;-Topology

The following definition and lemma will be needed in this section.
A
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Definition 5. A C X is said to be d-compact if every d-open cover of A has a finite
subcover.

But the converse is not true as the following example shows:

Clearly, every d-compact set is compact because any open set is d-open.

Example 3. With reference to Example 1, let us consider the closed interval [0, 1] which
is compact in R with the usual topology. We shall show that [0, 1] is not d-compact.
Let B = [1, 2]. Write all rational numbers in (—1, 2) as a sequence {x,} and consider a
sequence of sets {G,}, where G, contains all irrational numbers in [—1, 2] and x,,. By
Example 1, the sets G, are d-open Vn. Clearly, {G,,} forms a d-open cover of [0, 1]. But
it cannot contain a finite subcover {G,,, ... , G, } of [0, 1] for this will imply that there
are only a finite number of rational numbers in [0, 1]. Hence, [0, 1] is not d-compact.

Lemma 1. The approximately continuous image of a d-compact set is compact.
The proof is omitted.

If X and Y are topological spaces, Arens [1] introduced a topology on the set of all
continuous mappings from X to Y as follows. If K C X is compact and W C Y is open,
then the collection of all continuous mappings f such that f(K) C W is denoted by
the symbol (K, W). The collection of all such (K, W) forms a sub-base of a topology
which Arens calls a K -topology.

Now, if (X, 7) is equipped with the above d-topology and we include the set of all
approximately continuous mappings from X to (Y, o) into our consideration, then we
observe that following the above method, we can generate several topologies as follows:

(i) K C X d-compact, W C Y open, and f continuous. The corresponding topology
is called K-topology.

(i) K C X compact, W C Y open, and f approximately continuous. The corresponding
topology is called K;-topology.

(iii) K C X d-compact, W C Y open, and f approximately continuous. The
corresponding topology is called K;-topology.

To obtain various topological properties of these topologies (including K -topology),
we feel that the property “the image of a compact set is compact” is frequently needed.
This is true if the mapping is continuous (and so is true in the case of K-topology [1]),
but may fail to be true if the mapping is approximately continuous, because d-open sets
need not be open (see Example 1). Clearly, K1-topology is a subspace topology of the
K ;-topology. As such in our present discussion, we dispense with K and K topologies
and adhere to the K-topology.

We denote by AC the collection of all approximately continuous mappings from
X to Y. From the definition of K,;-topology as given in (iii) and considering the
fact that sets (K, W) form a sub-base of the K;-topology, we observe that given
any f € AC, there exists a basis of K -open neighborhoods of f of the form
U(f) =Ky, Wp)N---N(Ky, Wp), where K; is d-compact, W; open, and f(K;) C W;
fori =1,2,...,n.The set U(f) will be denoted by (K, ..., K,; Wi, ..., W,).

Note 4. Clearly, f : (X,t) — (¥, 0) is approximately continuous if and only if
f:(X,D) — (¥, 0) is continuous. So it appears that the study of K -topology should
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run analogously to the study of K-topology [1]. In Arens’ paper [1], the question of
metrizability of the K-topology has been dealt with under several conditions including
the assumption that the range space is a metric space. The primary object of this section
is to show that the K;-topology is metrizable under certain conditions which do not go
in the line of Arens’ treatment. To do this, we need to present the proofs of two theorems
where we use only the properties of d-compact sets and d-open sets as formulated in
this paper.

Theorem 9. The K;-topology in AC is Ty, T1, T» and regular if Y is so.

Proof. First let Y be a Tr-space. Let f, g € AC and f # g. So there is x € X such
that f(x) # g(x). Further, there exists U, V € o such that f(x) € U, g(x) € V, and
UNV = @.Thenwehave f € ({x}, U) and g € ({x}, V) and clearly, these two K;-open
sets are disjoint. So K4-topology is 7. The proof is similar when Y is T or Tj.

Let Y now be regular. Let f € AC and U be a K;-open set containing f. Then there
is a set of the form U(f) = (K1, ..., Ku; Wi, ..., W) such that f € U(f) C U.
Since K; is d-compact, f(K;) is compactin ¥ (by Lemma 1) and f(K;) C W;.

Now, for each y € f(K;), there is a Vy € ¢ such that
v eV, CcV,CW, (since Y is regular).

The collection of sets {V, : y € f(K;)} form an open cover of f(K;) and so
there exist yi,...,yn € f(K;) such that f(K;) C U;":l Vy, = G, say. Then
f&) C G; C U;"zlvyj = G; C W; and this is true for i = 1,2,...,n. Let
V(f)=(K1,...,Ky; Gy, ...,Gy). Then f € V(f) C U(f). We shall show that the
K ;-closure of V(f)isasubsetof U(f).Letg ¢ U(f). Thenforsome!l =1,2,...,n,
g ¢ (K, W), ie, g(x) ¢ Wy forsomex € K. Sog(x) e Y — W, Cc Y -G, = H,
say. Clearly, the K, -open set ({x}, H;) containing g is disjoint from V (f). Thus,
g ¢ Kg-cl(V(f)). This shows that Kz-cI(V(f)) C U(f) and so the K -topology
is regular. [ |

Theorem 10. If (X, D) is locally compact and has a basis of cardinality ¢ and Y has
a basis of cardinality c, then the K -topology has a basis whose cardinality does not
exceed c where c¢ denotes the power of the continuum.

Proof. The basis B, of (X, D) may be supposed to consist of only those d-open sets
whose d-closure are d-compact. Let By be the basis of Y.
We shall show that the members of the K;-topology of the form

Vo = (d-cl(Uy), ... ,d-cl(Uy); Wi, ..., W),

where U; € B, fori = 1,...,n form a basis of the K;-topology. Let (K, W) be a
sub-base member of the K;-topology. Let x € K and f € (K, W) and so f(x) € W.
Then there is a Wy, € By such that f(x) € W, C W. Since f is approximately
continuous, there exists U, € B, such that x € U, and f(U,) C W,. Again since
(X,D) is\regular (see Theorem 5), we can find a d-open set V, such that

x eV, cd-cl(Vy) cU,.
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Finally, we can obtain G, € By satisfying x € G, C V, C d-cl(Vx) c U,
and this gives d-cI(Gy) C U, and so f(d-cl(Gx)) C W,. It may be noted that
d-cl(Gy) is compact. Now, {G, : x € K} form a d-open cover of K and so there
exist xy, ..., x, € K such that

m
KC U Gy, .
j=1
This shows that
f e d-cl(Gy),...,d-cl(Gyx,); Wy, ..., W) C(K,W).

Thus, the sets of the form Vj form an open base of the K ;-topology. Since B, and By
both have cardinality c, it is clear from the above construction that the cardinality of the
class Vp does not exceed c. This proves the theorem. ]

The proof of the following theorem is similar and so omitted.

Theorem 11. Suppose (X, D) is locally compact and second countable. If Y is second
countable, then so is the K4 topology.

Corollary 2. If (X, D) is locally compact second countable and Y is regular Ty, second
countable, then the K ;-topology is metrizable.

This follows from Theorems 9 and 11.
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