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Abstract. In this paper, the existence and the concrete calculation of the limit limy— o
| P™(D) f IIIIV:” for any function f € N¢ (IR") with bounded spectrum are shown.

1. Introduction

HaHuy Bang [1] has proved the following result: Let @ (¢) be an arbitrary Young function,
f(x) € Ly(R"), P(§) a polynomial with constant coefficients, and supp f bounded.
Then there always exists the limit

A m 1/m
df = mh—l;noo ”P (D)f”(q;) s

and moreover, I
df = sup{|P(§)| : § € suppf(§)},

where f is the Fourier transform of the function f and ||.||(¢) is the Luxemburg norm.

In this paper, by modifying the methods of [1], we prove this result for another norm
generated by concave functions. Note that the Luxemburg norm is generated by convex
functions and here we must overcome some difficulties due to the difference between
convex and concave functions.

Let £ denote the family of all non-zero concave functions ®(¢) : [0, o0) — [0, oo],
which are non-decreasing and satisfy ¢(0) = 0. For ® € L, denote by No = Ng (IR"),
the set of all measurable functions f such that

£ 1l v =/0 D (rs (3))dy,
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where Ay (y) = mes{x : |f(x)| > y}, (y > 0), and by Mo = Mg (IR"), the set of all
measurable functions g such that

1
= _ d :AC]R",0<mesA<oo} 0.
lellor, = sup | 5 [ lgcolas <

Then Ng and Mg are Banach spaces [S — 6].

2. Result

We give the main theorem:

Theorem 1. Let ® € L, f(x) € No(R"), P(§) be a polynomial with constant
coefficients, and supp f bounded. Then there always exists the limit

i 1
dp = 1im |P"(D)fIy,",

and moreover, 4
dy = sup{|P(§)| : & € suppf}.

Note that Theorem 1 is a generalization of a result obtained in [3]. To prove Theorem 1,
we need the following known result.
Let m € Z. Denote by W,, > the usual Sobolev space, i.e., the set of all functions f

such that 2
1£lmz=( D 1D*F13) " < oo.

loe|<m

We have the topological equality H,y = Wy, 2 (see [4], (7.9)), where

Hoy = {1 €817k = ([ @ +16P"17@Pd)" < oo},

Lemma 1.[6] If f € No, g € Mo, then fg € L, and

/ Lf)g)ldx < || fllv, g llae-
.

Lemma 2.[2] If f € No,u € Ly then f xu € No and

I f s ullvg < I fllwe el

Proof of Theorem 1. We shall begin by showing that

lim IIPm(D)fIIII\{d,m > sup [P(§)I, (M

m—00 &esp(f)



A Property of Entire Functions of Exponential Type 141

where we denote supp f by sp(f) for simplicity.
Let {-’0 € sp(f) such that |P($0)I = SUPg,(5) [P (£)]. Without loss of generality, we

may assume P(£%) > 0. Further, we fix a number 0 < € < P(£%)/4 and choose a
domain G such that £° € G and

PE) > PEY) —¢, £€G. )

Fix ii, ip € C§°(G) such that £° € suppii f and < i f, §p > 0. Let ¢ € C°(G) and
¥ = 1 in some neighborhood of supp tip. Then, for any m > 1, we obtain

(i f, o)l = (W@ P& P (E)i(®) f (&), 90(&))|
= (P"®)aE) f &), v EP™(E)50(©))|
= |(F~'P™if, FP™"{)|
= [(P™(D)(u * £), Fim)l,

where 1, = P~™vy(£). Therefore, by virtue of Lemmas 1 and 2, we obtain
| <if, o> | < |P™(D)fllne w1l Fomliar,, Vm > 1. (3

Next we prove
I Fimllms < C(PED —)™, m > 1. )

Let |a| < 2n. Since P(§) # 0 in G, we obtain by the Leibniz formula

af p—m A ol a! o—pB .~ B p—m
D*(PT(§)00(8)) —éiﬁ!(fx—ﬁ]!D 0o(§) D" P™™(§), ©)

! 1 m
DPP &) = ) T,pfﬁ—ymDyP“l(s)---Dy Pl®.  (®

yitet+ym=8
Therefore,
(o2 Al — —ix§ nofp—m A ol
|x* F dm (x)| = [fGe D¥(P (S)vo(s))d§’ ngm
! ) )
« T / [D* @)D" P71 ®) - D" PTI®)|ds ()
y‘+-~-+ym=ﬁy' yUiJe

for all x € IR". By arguing as in [1], we obtain a constant C; = C(P, 0y, 2n) such that
%% Fim (x)] < @m)*"Cy(P(E%) — €)™ *™, Vm > 2n,

where

Cy = max|(P(E®) — ©)/#1-2" f Do)D" PA(E) - DY PN @) d
G

B<alal<2ny'+--+y¥ =g}
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Since €0 -2
P — 2e\m
P(EO)—G) ol

we obtain a constant C; = C»(€) such that

lim (2m)2"(
m—0o0

sup |x* Fip,(x)| < C2(P(E%) —26)™

x€R”

for all |@| < 2n and m > 2n. Therefore,

sup (1 + x2) - - (1 + x2)| Fim(x)| < C3(P(E®) —26)™™, ¥m > 2n.

xeR”

We obtain
C3(P(EY —26)™"

A+xH)---A+x2)

By the definition of ||. ||, , we have

|Fp, (x)] < Vm > 2n, Vx € R”.

dx )
D(mes A) Ja (1+x2) - (1 +x2)
A C R",0<mesA < oo}

| Fom ()l p, < C3(P(E®) —2€)™" sup {

From & € £, we see that u /® (1) increases as u increases [6]. Note that ®(¢) > 0 for
t > 0. We assume the contrary. Then there exists a number ¢ > 0 such that ®(¢) = 0.
Since ® is non-decreasing, then ®(x) = 0, Vx € [0, ¢]. Put #; = max{s : ®(z) = 0}.
Then

o= Jo(2) +1o(2) 0

a contradiction.

Therefore,
1 d
sup { - ad :ACR", 0<mesA <1}
®(mes A) Ja (1+x1)"'(1+x3)
mes A 1
< —— — _:ACRY,O mesASl]S— 00,
F SuP[CD(mes A) ¥ @(1) =
and
1 d
sup[ 5 a :AC]R",1<mesA<oo]
P(mes A) Jao (1+x7)---(1+x2)
1 dx "

= O(1) Jre (1+x3) - (1 +x2) ~ o) -

‘We obtain
I Fm ()l < C(PE®) —26)7,
where
C—Cmax{ 1 JT"}_C371"
- oM’ o)) T o)
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By combining (3) and (4), we obtain

I/m

lim [|P™(D) £l = P(E°) — 2e.

m—-0Q

Letting ¢ — 0, we obtain (1).
To complete the proof, it remains to show that

< sup |P(&)|. ®)
sp(f)

Tm | PTD)flly," <

Given € > 0, we choose a domain G D sp(f) and a function ¢ € Cg°(IR") such that
¢ = 1 in some neighborhood of sp( f) and

sup |P(§)| < sup |P(§)| +e. 9)
G sp(f)

We have for all m > 0,
IP™(D) flin, = IF &P &) &) llny
< IF (@@ P™E)1ll flln,- (10)
Putting 4,,(§) = @(E)P™(E),m > 1, and s = [n/2] + 1, we obtain from Holder’s
inequality that
IF " Rmlls < ( / )21+ £12)°d(€)) /*( / a+ g ~d®)"?
= C4”hm ”(s),

where Cy4 is independent of m. Therefore, due to (10) and the topological equality
Hs) = Ws2, we obtain

1P (D) flin, < Csllhmlls,2ll £l n- (11)
On the other hand, it follows from the Leibniz formula that

D°hn(§) = ) =———D* P& D P (§), 12)
PG o ﬂ)
! m
BYER(EN= a1 D L IO Y 1) (13)
yidotym=p
Further, we note that, for || < s < m and y! + ... + ™ = B, there are at least
m — |B| = m — s multi-indices among y, ... , ™ equal zero. Therefore, combining

(9), (11)—(13), we obtain a constant Cs = Ce{(P, ¢, s) such that
| P™(D) flln, < C5C6(51(1;P [PEN™ N fllng
< C5Ce(sap |[PE) + )" | flin,, Ym = 5.
sp(f)

Hence, 1/
m

llm IP™(D)flly, < sup|P)l+e.
sp(f)

Letting ¢ — 0, we obtain (8). The proof of Theorem 1 is complete. |
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3. An Application
From Theorem 1, we have

Theorem 2. Let f € No(R"). Then sp(f) C B(0,r) if and only if

1
2 m m 2
lim |A™ flly, <r*.
m—00

Moreover, let P(§) be a polynomial, V C R”, 0 = (o1, . .. ,On), 07 > 0,and r > 0.
We put

Q(V,P)={§ € R" : |P(§)] <sup|P (&)},
Q(V,P,0)=Q(V,P)NA,,
Q,P,r)=Q(V,P)NnB(Q,r).

Itiseasily seenthatV C Q(V, P), Q(V, P) canbe non-compactalthough V is compact,
and Q(V, P), Q(V, P,o),and Q(V, P, r) can be non-convex.
By virtue Theorem 1, we have the following results:

Theorem 3. Let f € No(IR"). Then sp(f) C Q(V, P, o) if and only if
() Lim,, o P"(D) £ 4" < supy |P@)],

- 1 .

(i1) hmm%wuam/ax;" f||N®m <0, j=1,... ,n

Theorem 4. Let f € No(R"). Then sp(f) C Q(V, P, r) ifand only if

@ lim,, o P"(D) f[| " < supy |P(E)I,

(if) Lim,, o0 | A7 £ ] <72
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