Vietnam Journal of Mathematics 27:2 (1999) 145-151

Vietnam Journal of MATHEMATICS © Springer-Verlag 1999

Clifford Semilattice Decompositions of Stratified Normal Bands of Monoids

Yonglin Cao

Department of Mathematics, Zibo College Zibo, Shandong 255013, China

> Received July 5, 1998 Revised December 31, 1998

Abstract. In this paper, we give a twisted spined product structure of a stratified band of monoids and prove that a stratified normal band of monoids is isomorphic to a Clifford semilattice of Rees matrix semigroups over some of these monoids.

1. Introduction

Petrich has proved that a semigroup which is a normal band of groups is a Clifford semilattice of completely simple semigroups [5, Construction 4.2; 6, Corollary 6.3; 7, Theorem IV.2.3]. A semigroup is completely simple if and only if it is isomorphic to a regular Rees matrix semigroup $\mathcal{U}(G, I, \Lambda; P)$ over a group G [1, Subsec. 3.5]. As a natural way of generalizing the concept of a completely simple semigroup, Lallement [3, Definition 3.4] and Petrich [7, Definition III. 2.10] have introduced a Rees matrix semigroup $\mathcal{U}(M, I, \Lambda; P)$ over a monoid. Now, a problem arises: If S is a normal band of monoids, is S a Clifford semilattice of Rees matrix semigroups over monoids?

Schein has proved that an E-band of monoids is proper if and only if it is isomorphic to a spined product of a Clifford semilattice of some of these monoids and E [2, Theorem 1]. In this paper, we introduce a twisted spined product structure of an arbitrary stratified band of monoids. As an application of this structure theorem, we prove that a stratified normal band of monoids is isomorphic to a Clifford semilattice of Rees matrix semigroups over some of these monoids.

In this paper, the symbol B^A denotes the set of all functions from a set A into a set B; ι_S denotes the identity automorphism of a semigroup S; $S = [Y; S_\alpha, \sigma_{\alpha,\beta}]$ denotes a Clifford (strong) semilattice Y of semigroups $\{S_\alpha\}_{\alpha \in Y}$ with respect to a system of transitive homomorphisms $\Sigma = \{\sigma_{\alpha,\beta} \mid \alpha, \beta \in Y, \alpha \geq \beta\}$ [2; 7, I.8.7].

A band E is an *idempotent semigroup*. A band E is a *rectangular band* if iji = i for all $i, j \in E$. It is *normal* if and only if it is isomorphic to a Clifford semilattice of

rectangular bands (cf. [4, Proposition 5.14]). A semigroup S is an *E*-band of a family of semigroups $\{S_i\}_{i \in E}$ if $\{S_i\}_{i \in E}$ is a partion of S into classes of a congruence relation, i.e., for any $i, j \in E$, $S_i S_j \subseteq S_{ij}$. A monoid M is a semigroup M with an identity 1. An *E*-band S of a family S of monoids $\{M_i\}_{i \in E}$ is called *stratified* if $1_i 1_j = 1_j$ for all $i, j \in E$ such that ij = j and $1_j 1_i = 1_j$ for all $i, j \in E$ such that ji = j. An *E*-band S is called *proper* if $1_i 1_j = 1_{ij}$ for all $i, j \in E$ (see [2, Sec. 1, Definition 1]).

Lemma 1. [2, Lemma 1] An *E*-band *S* of a family *S* of monoids $\{M_i\}_{i \in E}$ is stratified if and only if $1_i 1_{ij} = 1_{ij}$ and $1_{ij} 1_j = 1_{ij}$ for all $i, j \in E$. Every proper band of monoids is stratified.

Lemma 2. [2, Corollary 10] Given a monoid M, a rectangular band E, and a family $P = (p_i)_{i \in E}$ of invertible elements of M, consider a multiplication on the set $M \times E$:

$$(s,i)(t,j) = (sp_{ii}t,ij).$$

Then $M \times E$ is a stratified E-band of monoids isomorphic to M and every stratified E-band of monoids can be so obtained

In this paper, we denote the semigroup constructed in Lemma 2 by S = U(M, E; P). It is clear that S = U(M, E; P) is isomorphic to a Rees matrix semigroup over the monoid M (cf. [3, Definition 3.4] or [7, Definition III.2.10]).

Construction. Let Y be a semilattice and let E be a band which is the semilattice Y of a family of rectangular bands $\{E_{\alpha}\}_{\alpha\in Y}$. To each $\alpha \in Y$, we associate a monoid M_{α} and a family $P_{\alpha} = (p_i)_{i\in E_{\alpha}}$ of invertible elements of M_{α} , and suppose $M_{\alpha} \cap M_{\beta} = \emptyset$ if $\alpha \neq \beta$. For each pair $\alpha, \beta \in Y, \alpha \geq \beta$, let $\omega_{\alpha,\beta} : M_{\alpha} \times E_{\alpha} \to M_{\beta}^{E_{\beta}}$ be a function, with $\omega_{\alpha,\beta} : a \mapsto \omega_{\alpha,\beta}^{a} (\forall a \in M_{\alpha} \times E_{\alpha})$, satisfying the following conditions: For arbitrary $\alpha, \beta \in Y$ and $a = (s, i) \in M_{\alpha} \times E_{\alpha}, b = (t, j) \in M_{\beta} \times E_{\beta}$,

- (i) if $\alpha \ge \beta$, then $\omega^a_{\alpha,\beta}(j'j) = \omega^a_{\alpha,\beta}(j)$ for all $j', j \in E_\beta$;
- (ii) $\omega_{\alpha,\alpha}^{a}(i') = p_{ii's}$ for all $i' \in E_{\alpha}$; on $S = \bigcup_{\alpha \in Y} (M_{\alpha} \times E_{\alpha})$ we define a multiplication * by

$$a * b = (p_{ij}^{-1}\omega^a_{\alpha,\alpha\beta}(ij)\omega^b_{\beta,\alpha\beta}(ji), ij).$$
(1)

- (iii) if $\gamma \leq \alpha\beta$, then $\omega_{\alpha\beta,\gamma}^{a*b}(r) = \omega_{\alpha,\gamma}^{a}(r)\omega_{\beta,\gamma}^{b}(ri)$ for all $r \in E_{\gamma}$;
- (iv) for $e_i = (p_i^{-1}, i), \omega_{\alpha,\alpha\beta}^{e_i}(ij) = p_{ij}p_{ij}^{-1}$ and $\omega_{\alpha,\alpha\beta}^{e_i}(ji) = 1_{\alpha\beta}$.

The resulting system (S, *) is called the *twisted spined product* of the disjoint union of monoids $M = \bigcup_{\alpha \in Y} M_{\alpha}$ and the band $E = \bigcup_{\alpha \in Y} E_{\alpha}$, with respect to $P = \{P_{\alpha}\}_{\alpha \in Y}$ and $\omega = \{\omega_{\alpha,\beta} \mid \alpha, \beta \in Y, \alpha \ge \beta\}$, over the common semilattice skeleton Y. We denote this system by $S = M \otimes_{Y,P,\omega} E$.

Theorem 1. Given a semilattice Y, a family \mathcal{M} of monoids $\{M_{\alpha}\}_{\alpha \in Y}$, and a band $E = \bigcup_{\alpha \in Y} E_{\alpha}$, the system $S = \mathcal{M} \otimes_{Y, P, \omega} E$ obtained in the construction is a semigroup and a stratified E-band of a family of monoids $\{M_{\alpha} \times \{i\}\}_{i \in E_{\alpha}, \alpha \in Y}$.

Every stratified E-band of a family of monoids is isomorphic to a twisted spined product of a disjoint union of some of these monoids and E.

Proof. Direct part. For arbitrary elements $a = (s, i) \in M_{\alpha} \times E_{\alpha}$, $b = (t, j) \in M_{\beta} \times E_{\beta}$, $c = (u, k) \in M_{\gamma} \times E_{\gamma}$, let (v, l) = (a * b) * c. In view of (i), (iii), and formula (1), we have l = ijk and

$$\begin{aligned} v &= p_{(ij)k}^{-1} \omega_{\alpha\beta,\alpha\beta\gamma}^{a*b} [(ij)k] \omega_{\gamma,\alpha\beta\gamma}^{c} [k(ij)] \\ &= p_{ijk}^{-1} \omega_{\alpha,\alpha\beta\gamma}^{a} (ijk) \omega_{\beta,\alpha\beta\gamma}^{b} [(ijk)i] \omega_{\gamma,\alpha\beta\gamma}^{c} (kij) \\ &= p_{ijk}^{-1} \omega_{\alpha,\alpha\beta\gamma}^{a} (ijk) \omega_{\beta,\alpha\beta\gamma}^{b} (jki) \omega_{\gamma,\alpha\beta\gamma}^{c} (kij) \end{aligned}$$

since ijki = (ijk)(jki). Analogously, we have a * (b * c) = (v, l). Thus (S, *) is a semigroup.

It is obvious that a mapping $\pi: S \to E$ defined by

$$\pi(s,i)=i, \ \forall (s,i)\in M_{\alpha}\times E_{\alpha}, \alpha\in Y,$$

is a homomorphism of S onto E. For every $i \in E_{\alpha}$, $\alpha \in Y$, we have

$$\pi^{-1}(i) = M_{\alpha} \times \{i\}$$

on which the multiplication *, by (ii) and formula (1), is given as follows: For every $s, t \in M_{\alpha}$,

$$(s,i) * (t,i) = (p_{ii}^{-1}\omega_{\alpha,\alpha\alpha}^{(s,i)}(ii)\omega_{\alpha,\alpha\alpha}^{(t,i)}(ii), ii)$$
$$= (p_i^{-1}p_isp_it, i) = (sp_it, i).$$

Thus, $(M_{\alpha} \times \{i\}, *)$ is a monoid with the identity $e_i = (p_i^{-1}, i)$. Hence, S is an E-band of a family of monoids $S = \{M_{\alpha} \times \{i\}\}_{i \in E_{\alpha}, \alpha \in Y}$.

For arbitrary $\alpha, \beta \in Y$ and $i \in E_{\alpha}, j \in E_{\beta}$, in view of (i), (ii), (iv), and formula (1), we have

$$e_{i} * e_{ij} = (p_{i(ij)}^{-1} \omega_{\alpha,\alpha\beta}^{e_{i}}[i(ij)] \omega_{\alpha\beta,\alpha\beta}^{e_{ij}}[(ij)i], i(ij))$$

= $(p_{ij}^{-1} p_{ij} p_{iji}^{-1} p_{ij(ij)i} p_{ij}^{-1}, ij)$
= $(p_{ij}^{-1}, ij) = e_{ij}.$

Analogously, we have $e_{ij} * e_j = e_{ij}$. From these, it follows by Lemma 1 that S is a stratified E-band of a family S of monoids $\{\pi^{-1}(i)\}_{i \in E}$.

Converse part. Let S be a stratified E-band of a family S of monoids $\{M_i\}_{i \in E}$. Then there exist a homomorphism f of S onto E and a homomorphism g of E onto a semilattice Y such that

$$(\forall i \in E) \ f^{-1}(i) = M_i,$$

$$(\forall \alpha \in Y) \ g^{-1}(\alpha) = E_{\alpha},$$

where E_{α} is a rectangular band for every $\alpha \in Y$, respectively. Let $\delta = gf$. Then δ is a homomorphism of S onto Y such that

$$(\forall \alpha \in Y) \ \delta^{-1}(\alpha) = f^{-1}(g^{-1}(\alpha)) = \bigcup_{i \in E_{\alpha}} M_i.$$

Let $S_{\alpha} = \delta^{-1}(\alpha)$. Then S_{α} is a stratified rectangular E_{α} -band of a family of monoids $\{M_i\}_{i \in E_{\alpha}}$ and S is the semilattice Y of subsemigroups $\{S_{\alpha}\}_{\alpha \in Y}$.

In view of Lemma 2, to each $\alpha \in Y$, there exists a monoid which is one member of the family of $\{M_i\}_{i \in E_\alpha}$, say M_α , and a family P_α of invertible elements $(p_i)_{i \in E_\alpha}$ of M_α such that $S_\alpha \cong \mathcal{U}(M_\alpha, E_\alpha; P_\alpha)$. We may identify S_α with $\mathcal{U}(M_\alpha, E_\alpha; P_\alpha)$ and assume that $M_\alpha \cap M_\beta = \emptyset$ if $\alpha \neq \beta$. From this, a simple argument shows that $M_i = M_\alpha \times \{i\}$ for all $i \in E_\alpha$ and $\alpha \in Y$, so that

$$(\forall \alpha \in Y)(\forall (s, i) \in S_{\alpha}) \quad f(s, i) = i.$$
⁽²⁾

We fix $\alpha, \beta \in Y$ such that $\alpha \geq \beta$ and let $a = (s, i) \in S_{\alpha}$. If $j \in E_{\beta}$, then $(1_{\beta}, j)a = (\omega_{\alpha,\beta}^{a}(j), j_{1}) \in S_{\beta}$. Since f is a homomorphism, by formula (2), we have

$$j_1 = f((1_\beta, j)a) = f(1_\beta, j)f(a) = ji.$$

Hence, there exists a function $\omega_{\alpha,\beta}: M_{\alpha} \times E_{\alpha} \to M_{\beta}^{E_{\beta}}$ defined by

$$\omega_{\alpha,\beta}: a \mapsto \omega^a_{\alpha,\beta}$$

with

$$\omega^{a}_{\alpha,\beta}: j \mapsto \omega^{a}_{\alpha,\beta}(j) \ (\forall j \in E_{\beta})$$

such that

$$(1_{\beta}, j)a = (\omega_{\alpha,\beta}^{a}(j), ji), \ a \in S_{\alpha}, j \in E_{\beta}, \ (\alpha \ge \beta).$$
(3)

For any $\alpha, \beta \in Y$, $a = (s, i) \in S_{\alpha}$, $b = (t, j) \in S_{\beta}$, let $(q, k) = ab \in S_{\alpha\beta}$. Then k = f(ab) = f(a)f(b) = ij by formula (2). Using formula (3), we have

(i) If $\alpha \geq \beta$, for every $j', j \in E_{\beta}$, from

$$\begin{aligned} (\omega_{\alpha,\beta}^{a}(j'j),(j'j)i)a &= (1_{\beta},j'j)a = (p_{jj'}^{-1},j')(1_{\beta},j)a = (p_{jj'}^{-1},j')(\omega_{\alpha,\beta}^{a}(j),ji) \\ &= (p_{j(ji)j'}^{-1}p_{(ji)j'}(\omega_{\alpha,\beta}^{a}(j)),j'(ji)) = (\omega_{\alpha,\beta}^{a}(j),j'ji), \end{aligned}$$

we obtain $\omega^a_{\alpha,\beta}(j'j) = \omega^a_{\alpha,\beta}(j)$.

(ii) For every $i' \in E_{\alpha}$, from

$$(\omega_{\alpha,\alpha}^{a}(i'), i'i) = (1_{\alpha}, i')a = (1_{\alpha}, i')(s, i) = (p_{ii'}s, i'i),$$

we obtain $\omega^a_{\alpha,\alpha}(i') = p_{ii'}s$.

(iii) If $\gamma \leq \alpha \beta$, for every $r \in E_{\gamma}$, from

$$\begin{aligned} (\omega^{ab}_{\alpha\beta,\gamma}(r),r(ij)) &= (1_{\gamma},r)ab = (\omega^{a}_{\alpha,\gamma}(r),ri)b \\ &= ((\omega^{a}_{\alpha,\gamma}(r))p^{-1}_{(ri)r},r)(1_{\gamma},ri)b \\ &= ((\omega^{a}_{\alpha,\gamma}(r))p^{-1}_{r(ri)r},r)(\omega^{b}_{\beta,\gamma}(ri),(ri)j) \\ &= ((\omega^{a}_{\alpha,\gamma}(r))p^{-1}_{r}p_{(rij)r}[\omega^{b}_{\beta,\gamma}(ri)],r(rij)) \\ &= (\omega^{a}_{\alpha,\gamma}(r)\omega^{b}_{\beta,\gamma}(ri),rij), \end{aligned}$$

148

Clifford Semilattice Decompositions of Stratified Normal Bands of Monoids

we obtain $\omega_{\alpha\beta,\gamma}^{ab}(r) = \omega_{\alpha,\gamma}^{a}(r)\omega_{\beta,\gamma}^{b}(ri)$. From this, it follows by (i) and (ii) that

$$p_{ij}q = p_{(ij)(ij)}q = \omega^{ab}_{\alpha\beta,\alpha\beta}(ij) = \omega^{a}_{\alpha,\alpha\beta}(ij)\omega^{b}_{\beta,\alpha\beta}[(ij)i]$$
$$= \omega^{a}_{\alpha,\alpha\beta}(ij)\omega^{b}_{\beta,\alpha\beta}[(ij)(ji)] = \omega^{a}_{\alpha,\alpha\beta}(ij)\omega^{b}_{\beta,\alpha\beta}(ji).$$

Thus, $q = p_{ij}^{-1} \omega^a_{\alpha,\alpha\beta}(ij) \omega^b_{\beta,\alpha\beta}(ji)$ and

$$ab = (q, ij) = a * b, \forall a, b \in S.$$
 (4)

(iv) Since S is a stratified E-band of monoids $M_{\alpha} \times \{i\}$ with identities $e_i = (p_i^{-1}, i)$ $(i \in E_{\alpha}, \alpha \in Y)$, by (ii), (4), and Lemma 1, we have

$$\begin{split} (p_{ij}^{-1}, ij) &= e_{ij} = e_i e_{ij} = (p_i^{-1}, i)(p_{ij}^{-1}, ij) \\ &= (p_{i(ij)}^{-1} \omega_{\alpha,\alpha\beta}^{e_i} [i(ij)] \omega_{\alpha\beta,\alpha\beta}^{e_{ij}} [(ij)i], i(ij)) \\ &= (p_{ij}^{-1} \omega_{\alpha,\alpha\beta}^{e_i} (ij) p_{(ij)(iji)} p_{ij}^{-1}, ij), \end{split}$$

which shows that $\omega_{\alpha,\alpha\beta}^{e_i}(ij) = p_{ij} p_{iji}^{-1}$. Similarly, by (i), (ii), and (4), it follows from $e_{ji} = e_{ji}e_i$ that $\omega_{\alpha,\alpha\beta}^{e_i} = 1_{\alpha\beta}$.

As stated above, we conclude that $S = M \otimes_{Y,P,\omega} E$.

Theorem 2. If S is a stratified normal band of a family of monoids, then S is isomorphic to a Clifford semilattice of a family of Rees matrix semigroups over some of these monoids, i.e., S is isomorphic to a Clifford semilattice of a family of stratified rectangular bands of some of these monoids.

Proof. Let $E = [Y; E_{\alpha}, \theta_{\alpha,\beta}]$ be a normal band which is a Clifford semilattice Y of a family of rectangular bands $\{E_{\alpha}\}_{\alpha \in Y}$. Let S be a stratified E-band of a family S of monoids $\{M_i\}_{i \in E}$. In view of Theorem 1 and its proof, we have $S = M \otimes_{Y,P,\omega} E$ and S is a semilattice Y of $S_{\alpha} = \mathcal{U}(M_{\alpha}, E_{\alpha}; P_{\alpha})$ which is isomorphic to a stratified E_{α} -band of a family of monoids $\{M_i\}_{i \in E_{\alpha}}$ ($\alpha \in Y$). First, we claim that

(v) for every $\alpha, \beta \in Y, a = (s, i) \in S_{\alpha}, b = (t, j) \in S_{\beta}$, and for all $k \in E_{\alpha\beta}$, we have

$$p_{ijk}^{-1}\omega_{\alpha,\alpha\beta}^{a}(k)\omega_{\beta,\alpha\beta}^{b}(ki) = p_{ij}^{-1}\omega_{\alpha,\alpha\beta}^{a}(ij)\omega_{\beta,\alpha\beta}^{b}(ji).$$

In fact, let $(q, ij) = a * b = (p_{ij}^{-1}\omega_{\alpha,\alpha\beta}^a(ij)\omega_{\beta,\alpha\beta}^b(ji), ij)$. For any $k \in E_{\alpha\beta}$, $e_k = (p_k^{-1}, k)$, by (i) and (ii), we have

$$\omega_{\alpha\beta,\alpha\beta}^{e_k}(kij) = \omega_{\alpha\beta,\alpha\beta}^{e_k}(ij) = p_{k(ij)}p_k^{-1},$$
$$\omega_{\alpha\beta,\alpha\beta}^{a*b}(ijk) = \omega_{\alpha\beta,\alpha\beta}^{a*b}k.$$

In view of formulas (1), (iii), and the equalities above, we have

$$(qp_{k(ij)}p_k^{-1}, ijk) = (q, ij) * (p_k^{-1}, k) = (a * b) * e_k$$

= $(p_{ijk}^{-1}\omega_{\alpha\beta,\alpha\beta}^{a*b}(ijk)\omega_{\alpha\beta,\alpha\beta}^{e_k}(kij).ijk)$
= $(p_{ijk}^{-1}\omega_{\alpha,\alpha\beta}^{a}(k)\omega_{\beta,\alpha\beta}^{b}(ki)p_{k(ij)}p_k^{-1}, ijk),$

Yonglin Cao

which shows that $q = p_{ijk}^{-1} \omega_{\alpha,\alpha\beta}^{a}(k) \omega_{\beta,\alpha\beta}^{b}(ki)$, so (v) holds.

For any $\alpha, \beta \in Y, \alpha \geq \beta$, we define a mapping $\rho_{\alpha,\beta} : S_{\alpha} \to S_{\beta}$ by

$$\rho_{\alpha,\beta}(a) = (p_{\theta_{\alpha,\beta}i}^{-1} \omega_{\alpha,\beta}^{a}(\theta_{\alpha,\beta}i), \theta_{\alpha,\beta}i), \quad \forall a = (s,i) \in S_{\alpha}.$$
 (5)

By putting $l = \theta_{\alpha,\beta}i \in E_{\beta}$ and $e_l = (p_l^{-1}, l)$, for any $k \in E_{\beta}$, with $E = [Y; E_{\alpha}, \theta_{\alpha,\beta}]$ and $\alpha\beta = \beta$, we have

$$lki = l(\theta_{\beta,\beta}k)(\theta_{\alpha,\beta}i) = lkl = l$$

and analogously, li = il = l. In view of (ii), we have

$$\begin{split} \omega_{\beta,\alpha\beta}^{e_l}(li) &= \omega_{\beta,\beta}^{e_l}(l) = p_{ll} p_l^{-1} = 1_{\beta},\\ \omega_{\beta,\alpha\beta}^{e_l}(ki) &= p_{l(ki)} p_l^{-1} = 1_{\beta}. \end{split}$$

By formulas (1), (5), (v), and the equalities above, we have

$$\begin{split} \omega_{\alpha,\beta}(a) &= (p_{il}^{-1}\omega_{\alpha,\alpha\beta}^{a}(il)\omega_{\beta,\alpha\beta}^{e_{l}}(li), l) = a * e_{l} \\ &= (p_{ilk}^{-1}\omega_{\alpha,\alpha\beta}^{a}(k)\omega_{\beta,\alpha\beta}^{e_{l}}(ki), l) \\ &= (p_{(\theta_{\alpha,\beta}i)k}^{-1}\omega_{\alpha,\beta}^{a}(k), \theta_{\alpha,\beta}i) \quad (\forall k \in E_{\beta}). \end{split}$$
(6)

Let $a = (s, i), b = (t, j) \in S_{\alpha}$. By (i), (iii), (1), (5), and (6), we have

$$p_{\alpha,\beta}(a) = (p_{(\theta_{\alpha,\beta}i)(\theta_{\alpha,\beta}j)}^{-1} \omega_{\alpha,\beta}^{a}(\theta_{\alpha,\beta}j), \theta_{\alpha,\beta}i)$$
$$= (p_{\theta_{\alpha,\beta}(ij)}^{-1} \omega_{\alpha,\beta}^{a}[\theta_{\alpha,\beta}(ij)], \theta_{\alpha,\beta}i)$$

and $\rho_{\alpha,\beta}(b) = (p_{(\theta_{\alpha,\beta}j)(\theta_{\alpha,\beta}i)}^{-1} \omega_{\alpha,\beta}^{b} [\theta_{\alpha,\beta}(ji)], \theta_{\alpha,\beta}j)$, so

$$\rho_{\alpha,\beta}(a) * \rho_{\alpha,\beta}(b) = (p_{\theta_{\alpha,\beta}}(ij)^{-1}\omega^a_{\alpha,\beta}[\theta_{\alpha,\beta}(ij)]\omega^b_{\alpha,\beta}[(\theta_{\alpha,\beta}(ij)i], (\theta_{\alpha,\beta}i)(\theta_{\alpha,\beta}j)) \\
= (p^{-1}_{\theta_{\alpha,\beta}(ij)}\omega^{a*b}_{\alpha,\beta}[\theta_{\alpha,\beta}(ij)], \theta_{\alpha,\beta}(ij)) = \rho_{\alpha,\beta}(a*b).$$

Thus, $\rho_{\alpha,\beta}$ is a homomorphism of S_{α} into S_{β} .

(A) For any $a = (s, i) \in S_{\alpha}$, since $\theta_{\alpha,\alpha}i = i$, by (ii) and (5), we have

$$\rho_{\alpha,\alpha}(a) = (p_i^{-1}\omega_{\alpha,\alpha}^a(i), i) = (p_i^{-1}p_{ii}s, i) = (s, i) = a$$

Hence, $\rho_{\alpha,\alpha} = \iota_{S_{\alpha}}$ for all $\alpha \in Y$.

(B) Let $\alpha, \beta, \gamma \in Y$ be such that $\alpha \geq \beta \geq \gamma$. For every $a = (s, i) \in S_{\alpha}$, $e = (p_{\theta_{\alpha,\beta}i}^{-1}, \theta_{\alpha,\beta}i) \in S_{\beta}$. Since

$$\begin{aligned} \theta_{\beta,\gamma}\theta_{\alpha,\beta}i &= \theta_{\alpha,\gamma}i, \quad (\theta_{\alpha,\gamma}i)i = \theta_{\alpha,\gamma}i, \\ (\theta_{\alpha,\beta}i)(\theta_{\alpha,\gamma}i) &= \theta_{\alpha,\gamma}i = (\theta_{\alpha,\gamma}i)(\theta_{\alpha,\beta}i), \end{aligned}$$

by (iv) and the equalities above, we have

$$\omega_{\beta,\gamma}^{e}[(\theta_{\alpha,\gamma}i)i] = \omega_{\beta,\beta\gamma}^{e}[(\theta_{\alpha,\beta}i)(\theta_{\alpha,\gamma}i)]$$

= $p_{(\theta_{\alpha,\beta}i)(\theta_{\alpha,\gamma}i)}p_{(\theta_{\alpha,\beta}i)(\theta_{\alpha,\gamma}i)(\theta_{\alpha,\gamma}i)}^{-1}$
= $p_{\theta_{\alpha,\gamma}i}p_{\theta_{\alpha,\gamma}i}^{-1} = 1_{\gamma},$

150

Clifford Semilattice Decompositions of Stratified Normal Bands of Monoids

SO

$$\rho_{\beta,\gamma}\rho_{\alpha,\beta}(a) = \rho_{\beta,\gamma}(a*e) = (p_{\theta_{\beta,\gamma}\theta_{\alpha,\beta}i}^{-1}\omega_{\alpha\beta,\gamma}^{a*e}(\theta_{\beta,\gamma}\theta_{\alpha,\beta}i), \theta_{\beta,\gamma}\theta_{\alpha,\beta}i)$$
$$= (p_{\theta_{\alpha,\gamma}i}^{-1}\omega_{\alpha,\gamma}^{a}(\theta_{\alpha,\gamma}i)\omega_{\beta,\gamma}^{e}[(\theta_{\alpha,\gamma}i)i], \theta_{\alpha,\gamma}i)$$
$$= (p_{\theta_{\alpha,\gamma}i}^{-1}\omega_{\alpha,\gamma}^{a}(\theta_{\alpha,\gamma}i), \theta_{\alpha,\gamma}i) = \rho_{\alpha,\gamma}(a)$$

by formulas (5), (6), and (iii). Thus, $\rho_{\beta,\gamma}\rho_{\alpha,\beta} = \rho_{\alpha,\gamma}$.

(C) For arbitrary $\alpha, \beta \in Y$, let $a = (s, i) \in S_{\alpha}, b = (t, j) \in S_{\beta}$. In view of (5), (6), (i), and (1), we have

$$\rho_{\alpha,\alpha\beta}(a) = (p_{(\theta_{\alpha,\alpha\beta}i)(\theta_{\beta,\alpha\beta}j)}^{-1} \omega_{\alpha,\alpha\beta}^{a}(\theta_{\beta,\alpha\beta}j), \theta_{\alpha,\alpha\beta}i)$$
$$= (p_{ij}^{-1} \omega_{\alpha,\alpha\beta}^{a}(ij), \theta_{\alpha,\alpha\beta}i)$$

and $\rho_{\beta,\alpha\beta}(a) = (p_{ji}^{-1}\omega^b_{\beta,\alpha\beta}(ji), \theta_{\beta,\alpha\beta}j)$, so

$$\begin{aligned} &\rho_{\alpha,\alpha\beta}(a) * \rho_{\beta,\alpha\beta}(b) \\ &= (p_{ij}^{-1}\omega^a_{\alpha,\alpha\beta}(ij)p_{(\theta_{\beta,\alpha\beta}j)(\theta_{\alpha,\alpha\beta}i)}p_{ji}^{-1}\omega^b_{\beta,\alpha\beta}(ji), (\theta_{\alpha,\alpha\beta}i)(\theta_{\beta,\alpha\beta}j)) \\ &= (p_{ij}^{-1}\omega^a_{\alpha,\alpha\beta}(ij)\omega^b_{\beta,\alpha\beta}(ji), ij) = a * b. \end{aligned}$$

Therefore, $S = [Y; S_{\alpha}, \rho_{\alpha,\beta}]$ which is a Clifford semilattice Y of a family of Rees matrix semigroups $\{\mathcal{U}(M_{\alpha}, E_{\alpha}; P_{\alpha})\}_{\alpha \in Y}$.

References

- 1. A.H. Clifford and G.H. Presten, *The Algebraic Theory of Semigroups*, Vol. I, American Mathematical Society, Providence, 1961.
- B. M. Schein, Bands of semigroups: Variations on a Clifford theme, in: Semigroup Theory and Its Applications, Proceedings of the 1994 Conference Commemorating the Work of Alfred H. Clifford, Cambridge University Press, 1996, pp. 53–80.
- G. Lallement and M. Petrich, A generalization of the Rees theorem in semigroups, Acta Sci. Math. Szeged 30 (1969) 113-132.
- J.M. Howie, An Introduction to Semigroup Theory, Academic Press, London, New York, 1976.
- M. Petrich, Regular semigroups satisfying certain conditions on idempotents and ideals, Trans. Amer. Math. Soc. 170 (1972) 245-267.
- 6. M. Petrich, The structure of completely regular semigroups, Trans. Amer. Math. Soc. 189 (1974) 211-236.
- 7. M. Petrich, Lectures in Semigroups, John Wiley & Sons, New York, 1977.