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Abstract. In this paper, we give a twisted spined product structure of a stratified band of monoids
and prove that a stratified normal band of monoids is isomorphic to a Clifford semilattice of Rees
matrix semigroups over some of these monoids.

1. Imntroduction

Petrich has proved that a semigroup which is a normal band of groups is a Clifford
semilattice of completely simple semigroups [5, Construction 4.2; 6, Corollary 6.3; 7,
Theorem IV.2.3]. A semigroup is completely simple if and only if it is isomorphic to
a regular Rees matrix semigroup (G, I, A; P) over a group G [1, Subsec. 3.5]. As a
natural way of generalizing the concept of a completely simple semigroup, Lallement
[3, Definition 3.4] and Petrich [7, Definition III. 2.10] have introduced a Rees matrix
semigroup U(M, I, A; P) over a monoid. Now, a problem arises: If S is a normal band
of monoids, is S a Clifford semilattice of Rees matrix semigroups over monoids?

Schein has proved that an E-band of monoids is proper if and only if it is isomorphic
to a spined product of a Clifford semilattice of some of these monoids and E [2, Theorem
1]. In this paper, we introduce a twisted spined product structure of an arbitrary stratified
band of monoids. As an application of this structure theorem, we prove that a stratified
normal band of monoids is isomorphic to a Clifford semilattice of Rees matrix semigroups
over some of these monoids.

In this paper, the symbol B4 denotes the set of all functions from a set A into a set
B; 15 denotes the identity automorphism of a semigroup §; S = [¥; Sy, 0o, g] denotes
a Clifford (strong) semilattice ¥ of semigroups {Sy}scy With respect to a system of
transitive homomorphisms ¥ = {0, |, B € Y, a0 > B} [2; 7,1.8.7].

A band E is an idempotent semigroup. A band E is a rectangular band if iji = i
for all i, j € E. It is normal if and only if it is isomorphic to a Clifford semilattice of
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rectangular bands (cf. [4, Proposition 5.14]). A semigroup S is an E-band of a family
of semigroups {S;};cr if {S;}icg is a partion of § into classes of a congruence relation,
e, forany i, j € E, §;5; C S;j. A monoid M is a semigroup M with an identity 1.
An E-band § of a family S of monoids {M;};cg is called stratified if 1;1; j = 1; for all
i,j € Esuchthatij = jand 1;1; = 1; forall i, j € E such that ji = j. AnE band §
is called proper if 1;1; = 1;; for alli, j € E (see [2, Sec. 1, Definition 1]).

Lemma 1. [2, Lemma 1] An E-band S of a family S of monoids {M;};cE is stratified
ifandonly if 1;1;; = 1;5 and 1;;1; = 1;; for alli, j € E. Every proper band of monoids
is stratified.

Lemma 2. [2, Corollary 10] Given a monoid M, a rectangular band E, and a Sfamily
P = (pi)ick of invertible elements of M, consider a multiplication on the set M x E:

(s, D), j) = (spjit, ij).

Then M x E is a stratified E-band of monoids isomorphic to M and every stratified
E-band of monoids can be so obtained

In this paper, we denote the semigroup constructed in Lemma 2 by § = (M, E; P).
It is clear that § = U(M, E; P) is isomorphic to a Rees matrix semigroup over the
monoid M (cf. [3, Definition 3.4] or [7, Definition II1.2.10]).

Construction. Let Y be a semilattice and let E be a band which is the semilattice ¥ of
a family of rectangular bands {E, }ocy. To each @ € Y, we associate a monoid M, and
a family Py = (pi)ick, of invertible elements of M,, and suppose M, N Mg = @ if

a # B. Foreachpaira BeY, a=>pBletwypg: M, x E, —>M§ be a function, with

Wa,p 4 > @F ﬂ(Va € My x E,), satisfying the following conditions: For arbitrary
o, ,BGYanda_(s i) € My x Eq,b=(t, ) € Mg x Eg,

@) ifa > 8, thenwa’ﬁ(] j) = a‘ﬂ(]) forall j/, j € Eg;

(i) w§,@") = pips foralli’ € Eg;
on § = Uyey (M, x E,) we define a multiplication * by

axb = (p;' @l 15 (1)@} 4p(j1), 1)). )

(iii) if y < aB, then wg;,by (r)= wgyy(r)a)g‘y(ri) forallr € Ey;

(v) for e; = (p; ', i), 0 45 (i)) = pijpi;; and @ 45 (ji) = lap.
The resulting system (S, *) is called the rwisted spined product of the disjoint union
of monoids M = Ugcy M, and the band E = U,ey E,, with respect to P = {Pylaey

and w = {wy g | @, B € Y, @ > B}, over the common semilattice skeleton ¥. We denote
this system by S = M Qy.p o, E

Theorem 1. Given a semilattice Y, a family M of monoids {My)ycy, and a band
E = Uyey Ey, the system S = M ®y p ., E obtained in the construction is a semigroup
and a stratified E-band of a family of monoids {M, x {i)}icE, aey-

Every stratified E-band of a family of monoids is isomorphic to a twisted spined
preduct of a disjoint union of some of these monoids and E.
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Proof. Direct part. For arbitrary elements a = (s,i) € My, X Ey, b = (t,j) €
Mg x Eg,c = (u, k) € M, x E,, let (v,]) = (a * b) * c. In view of (i), (iii), and
formula (1), we have [ = ijk and
V= P @y [G)KIS o, TG )
= P upy LRG0, [0S g, (ki)
= Pip @ oy (TR)0] o5, (KD, o, (Kif)
since ijki = (ijk)(jki). Analogously, we have a x (b x ¢) = (v,[). Thus (S, *) is a

semigroup.
It is obvious that a mapping 7: S — E defined by

m(s,i)=1i, V(s,i)e My X Ey,a €7,
is a homomorphism of S onto E. Forevery i € E,, o € Y, we have
7716 = M, x {i}

on which the multiplication *, by (ii) and formula (1), is given as follows: For every
s,t € My,
(5,0) % (1, §) = (p7 0l ()f 2, (D), 11)
= (p; ' pispit, i) = (spit, i).
Thus, (M,, x {i}, ) is a monoid with the identity e; = (p; 1, i). Hence, S is an E-band
of a family of monoids § = {My x {i}}icE, acy-
For arbitrary o, B € Y and i € E,, j € Eg, in view of (i), (ii), (iv), and formula (1),
we have
ei * eij = (pr 0% L liGDwgh (s LGN, 1))

= (7' pi; Piji Pijpi P+ i)

= (p5', 1)) = &j.
Analogously, we have e;; * e; = ¢;;. From these, it follows by Lemma 1 that S is a
stratified E-band of a family S of monoids {7 ~!(i)};ck.

Converse part. Let S be astratified E-band of a family S of monoids {M; };cg. Then there
exist a homomorphism f of S onto E and a homomorphism g of E onto a semilattice ¥

such that
i€ E) f7'() =M,

(Ve € Y) g7 (@) = E,,

where E, is a rectangular band for every o € Y, respectively. Let § = gf. Then § is a
homomorphism of § onto ¥ such that

Va eY) 5 ) = f e (@) = Uiep, M,.
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Let Sy = 8~ !(a). Then S, is a stratified rectangular E,-band of a family of monoids
{M;};cE, and S is the semilattice ¥ of subsemigroups {Sy }uey-

In view of Lemma 2, to each « € Y, there exists a monoid which is one member of
the family of {M;};ck,, say M, and a family P, of invertible elements (p;);cg, of M,
such that S, = U(My, Ey; Py). We may identify S, with 4 (M,, E,; P,) and assume
that M, N Mg = @ if o # B. From this, a simple argument shows that M; = M, x {i}
foralli € E, and o« € Y, so that

Ya € Y)(V(s,i) € So) f(s,i)=1. 2

We fix 0,8 € Ysuchthat o > Bandleta = (s,i) € S,. If j € Eg, then
(g, j)a = (o, s, J1) € Sg. Since f is a homomorphism, by formula (2), we have

= fg, pa) = fg, j)fa) = ji.
Hence, there exists a function wy g : My X Eq — Mg" defined by
Wa,p:a > wg,ﬂ
with
Wy p i J > oy p(j) (Vj€ Ep)

such that
(1, j)a = (0 g (j), ji), a € Sa,j € Ep, (= B). 3

Forany o, B € Y,a = (s,i) € Su, b = (¢, ) € S, let (g, k) = ab € Sug. Then
k = f(ab) = f(a)f(b) = ij by formula (2). Using formula (3), we have

(i) fa > B, for every j', j € Eg, from

@5 (', G = g, j' a = (wjy. ), fa = (P}, I)@5 (), j)
= (Pj 5oy PGDi @5 (G §' (1)) = (@8 (). §'ji),
we obtain @f 4(j'/) = &f ()

(ii)) Foreveryi’ € E,, from
(wg,a(l./), l/l) = (Ia’ i/)a = (la, i/)(s, i) = (pii/s5 i/i)y

we obtain wf , (i) = piss.

(iii) If y < B, forevery r € E,,, from

(@35, (), 7 (@) = (1y, r)ab = (0§, (r), ri)b
= (@ , (M Pgh, )y, ridb
= (@ , NPy, @], (D), (i) )
= (@, (NP7 priprlofy, (D], r(rif))

= (&f , (), (i), rij),



Clifford Semilattice Decompositions of Stratified Normal Bands of Monoids 149
we obtain a)a By (rN=aof, (r)wz’y (ri). From this, it follows by (i) and (ii) that

Pijd = Paj)ind = @i ap(if) = @ 1)} o4[G7)i]
= @ o3 (1)} 0p LG (D] = & 5 ()0} 5 ().

Thus, ¢ = p;;'f 45 (1))} 4 (ji) and
ab=(q,ij)=axb, Ya,beS. @)

(iv) Since § is a stratified E-band of monoids M, x {i} with identities ¢; = (p; )
(i € Ey,a € Y), by (i), (4), and Lemma 1, we have ’

(p;' i) = eij = eieij = (p; ', i)(py;' s i)
= (P15 ap D105 ol G1)i1, 1))
= (p; @ Wp G PGpGin D5 1)

which shows that wa af GJ) = pij p,;ll Similarly, by (i), (ii), and (4), it follows from
eji = ej;e; that wa’aﬁ = lap.
As stated above, we conclude that S = M ®y.p, E. ]

Theorem 2. IfS is a stratified normal band of a family of monoids, then S is isomorphic
to a Clifford semilattice of a family of Rees matrix semigroups over some of these monoids,
i.e, S is isomorphic to a Clifford semilattice of a family of stratified rectangular bands
of some of these monoids.

Proof. Let E = [Y; E,, 6,,p] be a normal band which is a Clifford semilattice ¥ of
a family of rectangular bands {E}scy. Let S be a stratified E-band of a family S of
monoids {M;};cg. In view of Theorem 1 and its proof, we have S = M Qy p ,, E and §
is a semilattice ¥ of S, = U(M,, Eq; P,) which is isomorphic to a stratified E,-band
of a family of monoids {M;};cg, (¢ € Y). First, we claim that

(v) foreveryo,BeY,a= (s, i) e Sq,b=(t,j) € Sg,and forall k € Eqp, we have
P08 g ()0} s (ki) = p @ s (1))} 45 (ji).
In fact, let (q,ij) = axb = (pi; o“Xﬂ(tj)wﬁ01/5(]1) ij). For any k € Eug,

er = (pk_l, k), by (i) and (ii), we have

03ty op Kkif) = 03 05 () = Prajypy
Zzbaﬂ (l-]k) = aﬂ ozﬂk
In view of formulas (1), (iii), and the equalities above, we have
(aprjpr > 1K) = (g, 1)) * (P ' k) = (@ % b) * e
—1 axb

=~ (pl]kwaﬂ af (ljk)wzl;g,aﬂ (kij).ijk)
= (P12 ap ®)0f o5 ki) prijy Py ' 1K),
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which shows that ¢ = pi;iwz,aﬂ (k)wg,aﬂ (ki), so (v) holds.
Forany a, B € ¥, @ > B, we define a mapping oy g : S — Sp by

Pa,p(@) = (py 04 5Ou i), Oua,p), Va = (5,i) € Sa.
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By putting ! = 6, 3i € Eg and ¢; = (pl—l,l), forany k € Eg, with E = [Y; Eq, 0, g]

and o8 = B, we have
lki = 1(6p,8k) (60,p1) = Ikl =1

and analogously, /i = il = . In view of (ii), we have
0f op1i) = 0f s0) = pup;' = 1p,
0§ ki) = payp; ' = 1p.
By formulas (1), (5), (v), and the equalities above, we have
Pap(@) = (P @ 0p (DG 45 (11). D) = ax e
= (Dip @5 4p RV} o5 ki), 1)
= (PG5, s 5 K), Oapi) (VK € Ep).
Leta = (s, i), b = (¢, j) € Se. By (i), (iii), (1), (5), and (6), we have
Pa.@) = (Pigh 1i)(0,.0 /)08 Cet.81); Ba 1)
= (P;.} ijy @5 5100, )1, G, )

and po,p(5) = (PG, , (6, 5ty @, 51008 U], B, p.1), 50

©)

Pu, (@) * pa,p(b) = (ps, , (1))~ @ 516, GNI0E 41Ou,p ()i, (Ba,87) (Bu.p)))

1

= (P} 67y @5 5 06,6GD], 6,8 () = pu,p(a xb).

Thus, p, g is a homomorphism of S, into Sg.
(A) For any a = (s, i) € Sy, since 0, 4i = i, by (ii) and (5), we have

-1 a

Paa(@) = (p7 0l (), 1) = (p; ' piis, i) = (5, i) = a.

Hence, py o = s, foralla € Y.

(B) Let o, 8,y € Y be such that « > B > y. For every a = (s5,i) € S,

e= (Pg,l,,i’ 0y,p1) € Sg. Since
08,y 00,8l = Ou,yi, (Buyi)i =041,
(ea,ﬂi)(ea,yi) . eot,yi - (9a,yi)(9a,/:3i),
by (iv) and the equalities above, we have
05, [a,yi)i] = 05 5, [Ba,81) O,y )]
-1
= PCapD)OarDP 6, 1) (00 1) (6ny?)

— e r—
= P8,,iPg,,; = ly,
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SO _1
P,y Po,p(@) = ppy(axe) = (Pet,vygw,-wgﬁy (08,y9%.81), 08,y 0u i)
= (Pt 103y Oy D05, (B y1)i], O )
= (pg,) 1% BuyD), Ou,yi) = pa y (@)
by formulas (5), (6), and (iii). Thus, pg,y pu,g = Pa,y-
(C) For arbitrary o, B € Y, leta = (s,i) € Sq, b = (¢, j) € Sp. In view of (5), (6), (i),

and (1), we have

Pa,af (a) = (P@iuﬂi)(gw,-)wﬁ,ms (Gﬂ,aﬁj)» 9a,a,3i)

a

= (p;; @ 4p (]), Ou,api)
ard pg.ap(@) = (pj;' @5 45 (ji), 6p.apJ), 5O

Pa,ap(@) * pg.ap(b)
= (p;; "ol g (iJ')P(eﬂ,nﬁjxen,api)Pﬁlw,bs,a,a (1), (Ba,api) Op,epJ))

a

= (P 0% 5 ()0} o5 (j1), i) = a xb.

Therefore, S = [Y; Sy, po,p] Which is a Clifford semilattice ¥ of a family of Rees
matrix semigroups {U (M, Ex; Po)}acy. u
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