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Abstract. Concave minimization over a bounded polyhedral convex set with an additional reverse

convex constraint contains important problems in non-convex programming. Both theoretical and
practical studies ofthis class ofnon-convex programs can be made more convenient and easier when

the reverse convex constraint is penalized. We have proved that if the concave function defining

the reverse convex constraint is non-negative over bounded polyhedral convex set, then the exact
penalty and the stability of the Lagrangian duality hold. Consequently, equivalent difference of

convex ((d.c.) functions) programs are formulated.

1.. Introduction

Let K be a non-empty bounded polyhedral convex set in IRn and let f, I be concave
functions on K. We will be concemed with non-convex programs of the following type:

a : inf{f(x) i x e K, g(x) < 0}, (P)

where the non-convexity appears both in the objective function and the constraint

{ x e l R ' : g ( - x ) < 0 } .
As in convex optimization, to make the study of (P) easier, we generally try to penalize

difficult constraints, that is, {x e lRn : 8@) < 0}. For example, the usual exact penalty

process leads to
at : inf {f (x) * rg+(x) i x e K}, (PI)

where t is a positive number (called penalty parameter) and 8+ is defined by

g+ (x) : max(0, g(x)), vx e K.

Actually, the exact penalty holds if there is a positive number ls such that, for t > to,

the solution sets of (P) and @f ) are identical. Such a property generally holds in convex

optimization. However, for non-convex optirnization, it becomes more complex when

global solutions are involved, and therefore, a specific study should be carried out.
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The main contribution of this paper is to state the exact penalty for (p) in case the
function g is non-negative over K. It is worth noting that under such an assumption,
the exact penalty approach and the ordinary Lagrangian duality are identical. It follows
that there is the stability of the Lagrangian duality (i.e., there is no duality gap and
the solution set of (P) can be deduced from the solution ofits dual program (D) as in
convex optimization) and the set of exact penalty parameters is nothing but the solution
set of (D). This result allows us to transfer (P) into the more suitable d.c. optimization
framework [l-3, 14-16, 25-271.

The organization of the paper is as follows. The next section presents a list of
important non-convex problems which can be formulated as (P). They consist of convex
maximization over the Pareto set, bilevel linear program, linear program with linear
complementarity constraint, and mixed zero-one concave minimization programming.
Section 3 deals with the proof of the above mentioned result concerning the exact penalty
for (P) and the stability of the usual Lagrangian duality relative to this problem. Finally,
an equivalent d.c. program of (P) is formulated.

2. Non-Convex Programs of the Form (P)

we work, throughout the paper, with the n -dimensional Euclidean space IR, equipped
with the canonical inner-product (. , .) . The set of all proper lower-semicontinuous convex
functions on lRn will be denoted by fe(lR"). For g e fo0R'), the effective domain of rp
is

domg - {x e lR' : tL@) < *m}.

If ry' is concave proper and upper-semicontinuous, i.e., -rh e fsflRr), then we set

domlr : dom (-t) : {x e lR' : 9@) > -co}.

A d.c. program is that of the form

int{0(x) : e@) - rL@) : x e lRn}

n'ith 9. ry' e fo0R'). such a function d is called d.c. function. D.c. optimization has
been extensively developed in recent years from both combinatorial [6, 7, lg, 25-271

coN'ex approaches [r-3, L4-r6].It plays a key role in non-convex optimization and
realistic non-convex programs.

imization Over the Pareto Set

'bounded polyhedral convex set and let B be a p x n real matrix.
.rltiple linear objective programming problem

m a x f B x i x € C ] .  ( M L p )

t be a Pareto point of (MLP) when -r0 is in K and
. € K, then Bx : BxO. The set of all pareto points of

of (MLP) and is denotedby C p.
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NoW let g be areal-valued convex function on C and let us introduce the following
non-convex program:

m a x { g @ ) :  x e C p } .  ( P r )

To formulate (Pr) in the form of (P), we consider the function p defined by [3]

p(x) : maxlrr n1y - x) : By > Bx, y e cl .

It has been proved in [3] that

o -p is proper convex and lower-semicontinuous on lRn (i.e., -p e f6[Rn));
o if, in addition, C is polyhedral convex, then -p is polyhedral convex on lRn;
o domp is the projection onto lR' of {(x, y) € lR' x C : By > Bxl;
.  p(x)  > O,Yx e C;
o  x € C p i f a n d o n l y i f x e  C  a n d p ( x ) : Q .

Finally, (P1) admits the following equivalent form of (P):

max {p(x) : p(x) < 0, x e C} . (Fr)

2.2. Bi-Level Linear Program

Let K and L be non-empty bounded polyhedral convex sets in R.' and lRn, respectively.
Let a, c e IRU and b, d e IRn be given vectors and consider the following non-convex
program:

171

maxaTx*b ry

subject to x e K and y solves the linearprogram

max{cr x * dr y i y e L, Ax * By < r},

(Pz)

(LPz)

whereA isap x mrcalmatrix, B is a p xnrcalmatrix, andr e lRp.It istheso-called
bi-level linear program which is related to the economy concept due to von Stackelberg
(see [0] and references therein).

Le tC :  { z :  ( x , y )  e  K  x  L :  Ax *  By  <  r }and le tp l  be the func t i onde f i nedon
IR'by

pr(x)  : :max{dry i  y  e L,  Ax *  By < r l ,  Vx e lR- .

As in Subsec.2.1, the function -pr is polyhedral convex on IR' and finite on the
projection of C on IR'.

Consider now the function p(x, y) defined on lRn x lR' by

p(x, y) : p(x) - d' y, V(x, y) € IRn x IR'.

It is clear that -p is polyhedral convex on lR- x lR", finite and non-negative on C.
Moreover, x e K and y solves the linear program (LP2) if and only if (x, y) e C
and p(x, )) : 0. Consequently, the bi-level linear program (P2) takes the following
equivalent form of (P):

max{ar x + br y : (x, y) e C, p(x, y) S 0} (Pz)
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Remark that if we replace in (Pz) the ljnear function ar x I br y by a convex function

f (x, y), the corresponding program (Pz) is still of the form (P).

2.3. Linear Program with Mixed Linear Complementarity Constraint

Let A be an n x n real matrix andlet b, c € lRn be given vectors. Let 1 be a given subset
of{1, .  . .  ,n} .  Theproblemis def inedby

rnin 
{ f  f" l  :  Ax < b, x > 0, lx/@ - Ar);  :  o}, (P:)

where / is a finite concave function on the polyhedral convex set C :: {x e IR" :
Ax < b,.{ > 0} that is assumed to be bounded. Let F(x) :: b - Ax and define
p(x) = I;.r min[F,i @), xi]. Obviously, -p is finite polyhedral convex on lRn and p is
non-negative on C for every.r e C. Therefore, (Pg) is equivalent to

max{/ ( r )  i  x  e C,  p(x)  < 0} . (P:)

2.4. Mixed Zero-One Concave Minimization Programming

Let K be a non-empty bounded polyhedral convex set in IRn and let 1 be a given subset of
{ 1, . . . , n }. The mixed zero-one concave minimization programming problem is defined
AS

min{ / (x ) :  x  e  K ,  r ;  €  {0 ,  1 } ,  V l  e  1 } ,

where / is a finite concave function on K.

LetC :: {x e K : O < xi < 1, Vi e 1} anddefine

p ( x ) : f x ; ( 1  - x ; ) .
i e I

Clearly, p is a concave quadratic form on lRn and p(x) > 0 for every x e C. On the
other hand, we have, for x e C,

p (x ) :0  i f  andon l y i f  x ;  €  {0 ,  1 } ,  Y i  e  I .

It follows that (Pa) can be reformulated in an equivalent way as

min{ / ( r )  i  x  e C,  p(x)  < 0} . (P+)

3. Exact Penalty and Stability of the Lagrangian Duality in Problem (P)

Let us first recall the formulation of (P):

(P+)

(P)cv : inf {f (x) : x e K, s(r) < 0},
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in which K is a non-empty bounded polyhedrat convex set in IRn, and f , g are finite
concave functions over K. In non-convex programming, it is generally easier to treat the
non-convexity in the objective function rather than in the constraints. The exact penalty
technique aims to transform (P) into a more tractable equivalent problem of the d.c.
optimization framework which has been extensively developed in recent years [1-3, 6,
7, 14-16,25-271.

For / > 0, consider the penalized problems [8]:

a a Q ) : i n f  [ / ( r )  + t g + ( x ) :  x e  K ] (PI)

with g+(-t) : max{0, g(x)} for eYery x € K.

Since g+ is a d.c. function on K, Pl) is a d.c. program. On the other hand, the
Lagrangian duality relative to (P) introduces the following d.c. programs [8]:

a(t) : inf {/(x) -f tg(x) : x e K} .

The corresponding dual problem is given by

(Pr)

(D)P : s u p l a ( t ) : / € R + l

withlR+beingthesetofnon-negativerealnumbers.It isclearthatot(t) < oa(/)forevery
t e lR+. If g is non-negative over K, then (Pf ) and (Pr) are identical: The exact penalty
approach for (P) is then nothing but the Lagrangian duality relative to this problem.

In the sequel, the solution sets of (P), eI), and (Pr) will be denoted by P, Pl . and
21, respectively.

In this section, we shall discuss relationships between these problems and establish
the exact penalty and the stability of the Lagrangian duality in case the function g is
non-negative on K. Let us first state a general result about the exact penalty in which K
is an arbitrary set in IRn and f , g are arbitrary real-valued functions defined on K.

Clearly, cv+(0) < cv. There are two cases to be distinguished:

(a) the constraint g(x) < 0 is essential in (P): a1(0) < a. In this case we have

A * U e K :  f ( x )  < c v l c  [ x e K :  g ( r ) > 0 ] .  ( 1 )

(b)  a+(0) :  cv.Thiscaseoccurs i f  andonly i f  e i ther  {x  e K:  g(x)  > 0} isempty( i .e . ,
K : lx e K : g(x) < 0)) or intlf(x) : x e K, g(x) > 0) t o. In otherwords,
under the usual convention inf A : J-cc,

a 4 ( 0 ) : a 9 i n f  { f  ( x ) :  x  € K ,  g ( x )  > 0 }  Z o .  ( 2 )

Theorem 1.
(i) a+ is an increasing function of t e R+ and is bounded above by a.

(ii) f cv+(0) < a, then a+(t) - a if and only if

[ a  -  f ( x )  I
t 0 :  sup i - ; - ]  :  x  e  K .  f  ( x )  <u l i s f i n i t eand t  >_ ts .

(iii) 1/ cv+(O) : a, then the corresponding ts is zero and q*(t) : a for every t > ts.

If ts is finite andP is non-empty, then

( iv) Pn Pl + g + P cPl + uaQ) - a.
(v) Pi :P if t > to.
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Proof. We have for / € lR+
a+(t )  -  in f  Imf{ / ( r ;  +tg+(x)  i  x  € K,g(x)  < 0} ,  in f { / (x)  } tg+(x) :

x e K , S ( r ) > 0 ] l
: i n f  [ i n f { , f  ( x ) : x  e K , g ( x )  < 0 } , i n f { / ( r ) + / s + ( r ) : x e K , g ( x )  > 0 } ] . -  ( 3 )

So cz-.(r) < cy. The rest of (i) is straightforward.

(ii) It follows from (3) that a+(t) - a if and only if

inf {f (x) * tg(x) : x e K, g(x) > 0} > a,

1.e.,
t g @ ) > a -  f  ( x ) , Y x  e  K ,  s ( r )  >  0 .  ( 4 )

Since cv1(0) < cv, according to (1), the relation (4) is equivalent to

t >  t  I
/ o : s u P t  ' x e K ,  s ( t ) t o i .

But /g > 0, then we can write

t s  l q - f ( x )  I- 'upl -a;J :  x  e K,  f ( r ) . "1

and (ii) is proved.
The proof of (iii) follows by using (2) and the same reasonings as above.
Now,let xf eP n P,+. Then

a + ( t ) -  f  @ D + t c + @ f ) :  f ( x ! ) > a .

But a-r'(l) < cu by (i), hence, u,r(t) : cy. On the other hand, we have for x e P

f (x) + tg+ (r) : f (x) : ot : o\G),

i . e . ,  x  eP f  .

The converse part is straightforward since P C Pl when cva(r) : cv. So it remains
to prove thatP/ : P if t > ts.Let t > to. Then according to the just shown result, we
haveP cPI andP cPI.Hence,proving P:Pl amountstoprovingg(x) < 0for
everyr ePf .f i i t is notthe case, then there is x ePI suchthat g(x) > 0.It implies

aaQ) : f (x) + t g+ (x) : f (x) -l t s@) > f (x) -t tsg(x) Z aavss : q.

It is in contradiction to (i). r

Now, let us briefly discuss the stability of the Lagrangian duality relative to (P).

Proposition 1.
(1) a(t) < d+(t) < a for every t € R+,' o1(0) : a(0); Pt - Po. For t > O, if

aqQ) : a(t), then Pj : {x e Pt : S@) Z 0}.

(11) For t > 0, if a(t) : a, then aa(t) : a(t) : a. This possibility occurs
only if ts (in Theorem 1) is finite and t > to. In this case, we have t e D,
Pl  :  {x  eP:  g(x)  Z0l . Inpar t icu lar i i f  suchat  is  greater thants, ( t  > to) ,
then

P I : P  - { x e  P 1 :  g @ ) : Q } .
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Proof. (i) Lett > 0 verify d+(t) : a(/). Since

t75

f (x) + tg+@) > f (x) * tg(x) > a(t) yx e K,

x e  P /  i f a n d o n l y r f  x e P t a n d r g + ( x ) : t g ( x ) , i . e . , p f  - { r e  l > y :  g @ ) > 0 } .
(ii) is straightforward from Theorem 1 and the complementarity property for the

Lagrangian duality is without gap. I

Rem-ark 1. (i) If g(x) is non-negative on K, then the exact penalty approach and the
Lagrangian duality relative to (p) are the same.

(ii) Theorem 1 states that the exact penalty holds if and only if rs is finite.
We are now in the position to prove the main result.

Theorem 2. Let K be a non-empty, bounded poryhedrar convex set inw and let f, g be
finite concave on K. Assume the feasible set of (p) be non-empty and g be non-n-rgiir"
on K. Then the problems (Ps) and e! ) are identical. Furtheriore,
(1) If the vertex set of K, V (K), is contained in {x e K : g(x) < O}, then /0 = 0.

(ii) If V (K) is not contqined in {x e K : g(x) < 0}, then

" 
= 4,5@ for every xo € K,g(xo) < o

where S :: min {s@) : x e V (K), g(x) > 0} .
(lii) The solution set D of the dual problem (D) is lto, +6[.

Proof. Fist, note that the exact penalty approach and the Lagrangian duality relative to
(P) are identical since the function 6(x) is assumed to be non-negative on K.

(i) We have

V(K)  c  { x  e  K :  g (x )  <  0 }  c  r .

It implies

m in { / ( x )  :  x  eV(K) )>  m in { / ( x )  :  x  e  K ,  s@)  <0 }  >  m in  { f ( x )  :  x  e  K } .

Since / is concave on K,

cv (0 )  :m in { / ( x )  :  x  e  K } :m in  ( f ( x )  :  x  e  K ,  g (x )  <0 }  : a .

(ii) consider now the case where v(K) is not contained in {x e K : g(x) < 0}. For
this, S > 0. Since f arrd g+ - g tre finite concave on K. we have

a(t )  :min{ / (x)  *  tg(x)  :  x  e K} :  min{" f (x)  + tg(x)  :  x  e V(K)} .

Now, let t > (f (xo) - cv(O))/S, where x0 e K, g(x') < 0 and let x7 e V (K) be a
solution to (Pr). We have

f (xt) + ts(x,) < f (x) + ts@), Yx e K.
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In particular,

So,
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f (*,) + ts@) < f (ro) + ts@\.

t7 (x )  <  f  (xo) -  f (x , ) .11x0; -a1o; .  (5 )

It follows that g(x1) < 0. In facI, if g(x1) > 0, then g(xt) > S and (5) implies

f (xo) - a(o) /(xo) - cv(0)' =  
r t * ,1  

-  
s  '

a contradiction. Since g@) < 0, we have x1 e P and /6 < ("f (r0) - cv(0))/S by virtue
ofTheorem 1.

(iii) is straightforward. r

Remark 2. (i) It is worth noting that if g is concave on K and if the feasible set
of (P) is non-empty, then V(K) fl {x e K : SG) < 0} + 0. Indeed, if V(K) c

{ x e K :  g ( r ) > 0 } , t h e n  K  c  ( x e K :  g ( x )  > 0 } b e c a u s e g i s c o n c a v e o n K .  I t
thus implies the emptiness of the feasible set of (P).

( i i )  I f  / isconcaveonK and V(K) C {x e K:  g( . r )  < 0} , thencv(0) :  cY. Inth is
case the constraint g(x) < 0 is not essential for (P).

(iii) If the functions f al;td S are finite concave on a non-empty, bounded polyhedral
convex set K and if g is non-negative on K, then (Pr) and @f ) are identical and belong
to the d.c. optimization framework

""=ffifityi#illtr;lJ:re R'] Gr)

Here,ry' = -(f +ti lande - XKulreconvexfunctionsonRn,XTsstandsfortheindicator
function of K: Xy@) : 0if x e K, and *oo otherwise. According to Theorem 2,there
is a finite, non-negative number /6 such that, for t > to, (&) is a d.c. program equivalent
to (P).

Letus close the paperby the following result which is useful to computational methods.

Proposition 2. Under the assumptions of Theorem 2, we have

cv :  min { f (x)  :  x  e K,s(x)  < 0}

: min {"f (x) : x e V (K), S(r) < 0} .

Proof. We have for t > 0

q( t ) :  min { / (x)  *  tg(x)  :  x  e Kl .

Since / and g are concave on K,

u(t) : min {/(x) * tg(x) : x e V (K)l

:  min Imin1/1x)  *  tg(x)  :  x  e V (K) ,g(x)  < 0] ,

min{ / (x)  *  tg(x)  :  x  e V (K) ,s(r )  > 0} ] . (6)
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If {x e V(K) : s@) > 0} : A (i.e.,V(K) C {x e K, s@) < 0}), then

a ( t ) -  m in { / ( r )  :  x  eV(K ) ,  S ( r )  <0 }

> min{/(x) : x e K, g(x) < 0} : cy.

But cv(t) < cv by virtue of Theorem 1, so

min{ / (x)  :  x  e K,  g(x)  <0}  :  min { f (x)  :  x  e V(K),  g(x)  < 0} .

If {.r e V (K) : g(x) > 0} + A, then a(t) > cv when

min{ / ( . t )  * tg(x) :  x  eV(K),  g(x)  > 0}  > cv.  (7)

Indeed, we then have, according to (6), a(t) > cv since

m i n { / ( x )  * t g ( x ) :  x  e V ( K ) , s @ )  <  0 } :  m i n  { f  ( x ) :  x  e v ( K ) ,  g ( x )  <  0 }
> min {/(x) : x e K, g(r) < 0} : cv.

It then follows from Theorem 1 that q(t) : q.

Now, translate condition (7) into

f  (x)  + tg(x)  > u,  Yx e V(K),9(r )  > 0,

1.e. .

/ > m a x {  ' x e v ( K ) , g ( " ) ' 0 } .
t l

Finally, with such a t, we obtain

ot(t) - cy : min {f (x) : x e V (K), g(x) < 0}.

Remark 3. Under the assumptions of Theorem 2, it is easy to show that

l x e K : g ( x ) < 0 l c c o { x e V ( K ) : g ( x ) < 0 } ,  ( 8 )

where co stands for the convex hull. Moreover, if g is strictly concave on K, then
lx e K: g(x) < 0):  { . r  eV(K):  g(x) < 0}.Proposit ion2canthenalsobededuced
from (8).
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