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Abstract. Concave minimization over a bounded polyhedral convex set with an additional reverse
convex constraint contains important problems in non-convex programming. Both theoretical and
practical studies of this class of non-convex programs can be made more convenient and easier when
the reverse convex constraint is penalized. We have proved that if the concave function defining
the reverse convex constraint is non-negative over bounded polyhedral convex set, then the exact
penalty and the stability of the Lagrangian duality hold. Consequently, equivalent difference of
convex ((d.c.) functions) programs are formulated.

1. Introduction

Let K be a non-empty bounded polyhedral convex set in R” and let f, g be concave
functions on K. We will be concerned with non-convex programs of the following type:

o =inf{f(x): x € K, glx) <0}, P

where the non-convexity appears both in the objective function and the constraint
{x e R": g(x) <0}.

As in convex optimization, to make the study of (P) easier, we generally try to penalize
difficult constraints, that is, {x € R” : g(x) < 0}. For example, the usual exact penalty
process leads to

o = inf{f(x) +tg7(x) : x € K}, ®hH

where 7 is a positive number (called penalty parameter) and gt is defined by
gt (x) = max(0, g(x)), VxeK.

Actually, the exact penalty holds if there is a positive number #y such that, for ¢ > #o,
the solution sets of (P) and (P;") are identical. Such a property generally holds in convex
optimization. However, for non-convex optimization, it becomes more complex when
global solutions are involved, and therefore, a specific study should be carried out.
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The main contribution of this paper is to state the exact penalty for (P) in case the
function g is non-negative over K. It is worth noting that under such an assumption,
the exact penalty approach and the ordinary Lagrangian duality are identical. It follows
that there is the stability of the Lagrangian duality (i.e., there is no duality gap and
the solution set of (P) can be deduced from the solution of its dual program (D) as in
convex optimization) and the set of exact penalty parameters is nothing but the solution
set of (D). This result allows us to transfer (P) into the more suitable d.c. optimization
framework [1-3, 14-16, 25-27].

The organization of the paper is as follows. The next section presents a list of
important non-convex problems which can be formulated as (P). They consist of convex
maximization over the Pareto set, bi-level linear program, linear program with linear
complementarity constraint, and mixed zero-one concave minimization programming.
Section 3 deals with the proof of the above mentioned result concerning the exact penalty
for (P) and the stability of the usual Lagrangian duality relative to this problem. Finally,
an equivalent d.c. program of (P) is formulated.

2. Non-Convex Programs of the Form (P)

We work, throughout the paper, with the #-dimensional Euclidean space R equipped
with the canonical inner-product (-, -). The set of all proper lower-semicontinuous convex
functions on R" will be denoted by T'o(R"). For ¢ € I'g(R"), the effective domain of 7
is

domg = {x e R" : ¥(x) < +00}.

If 4 is concave proper and upper-semicontinuous, i.e., — € ['o(IR"), then we set
domyr =dom(—¢) = {x e R": ¢(x) > —o00}.
A d.c. program is that of the form
inf(f(x) = p(x) — ¥(x) : x € R")

with 9. ¥ € 'p(R"). Such a function § is called d.c. function. D.c. optimization has

been extensively developed in recent years from both combinatorial [6, 7, 18, 25-27]

"N convex approaches [1-3, 14-16]. It plays a key role in non-convex optimization and
\‘a!mml realistic non-convex programs.

“aximization Over the Pareto Set

" bounded polyhedral convex set and let B be a p x n real matrix.
‘ultiple linear objective programming problem

&
o?ﬁ max(Bx : x € C). (MLP)
o &
) s be a Pareto point of (MLP) when x° is in K and

. € K, then Bx = Bx?. The set of all Pareto points of
of (MLP) and is denoted by Cp.
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Now, let ¢ be a real-valued convex function on C and let us introduce the following
non-convex program:
max{p(x) : x € Cp}. P

To formulate (P;) in the form of (P), we consider the function p defined by [3]
p(x) =max{eTB(y —x): By>Bx, ye C}.

It has been proved in [3] that

e —p is proper convex and lower-semicontinuous on R" (i.e., —p € I'y(IR™));
e if, in addition, C is polyhedral convex, then — p is polyhedral convex on R”;
e domp is the projection onto R” of {(x, y) € R” x C: By > Bx};

. px) >0,Vx € C;

e x € Cpifandonlyifx € C and p(x) = 0.

Finally, (P;) admits the following equivalent form of (P):

max {p(x) : p(x) <0, x € C). @)

2.2. Bi-Level Linear Program

Let K and L be non-empty bounded polyhedral convex sets in R™ and IR", respectively.
Leta, ¢ € R™ and b, d € R" be given vectors and consider the following non-convex
program:

maxa’x 4+ b7y P2)
subject to x € K and y solves the linear program
max{cTx +dTy: ye L, Ax+ By <r}, (LPy)

where A is a p x m real matrix, B is a p x n real matrix, and » € IR”. It is the so-called
bi-level linear program which is related to the economy concept due to von Stackelberg
(see [10] and references therein).
LetC ={z=(x,y) € K xL: Ax+ By < r}and let p; be the function defined on
R™ by
pi(x) :=max{d’y: ye L, Ax+ By <r}, VxeR".

As in Subsec. 2.1, the function —p; is polyhedral convex on IR” and finite on the
projection of C on R™.

Consider now the function p(x, y) defined on R™ x R” by
px,y) =pi1x) —d’y, V(x,y) e R" xR".

It is clear that —p is polyhedral convex on R™ x R”, finite and non-negative on C.
Moreover, x € K and y solves the linear program (LP,) if and only if (x,y) € C
and p(x, y) = 0. Consequently, the bi-level linear program (P;) takes the following
équivalent form of (P):

max {a’x +b"y: (x,y) € C, p(x,y) <0}. (P2)
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Remark that if we replace in (P2) the linear function alx + bTy by a convex function
f(x, y), the corresponding program (P,) is still of the form (P}.

2.3. Linear Program with Mixed Linear Complementarity Constraint

Let A be an n x n real matrix and let b, ¢ € IR" be given vectors. Let I be a given subset
of {1, ..., n}. The problem is defined by

min {f(): Ax <b,x 20, ) x(b— Ax) =0}, (P3)
iel
where f is a finite concave function on the polyhedral convex set C := {x € R” :

Ax < b, x > 0} that is assumed to be bounded. Let F(x) := b — Ax and define
p(x) =) ;.; min{F;(x), x;}. Obviously, —p is finite polyhedral convex on IR" and p is
non-negative on C for every x € C. Therefore, (P3) is equivalent to

max {f(x): x € C, p(x) < 0}. (P3)

2.4. Mixed Zero-One Concave Minimization Programming

Let K be anon-empty bounded polyhedral convex set in IR” and let 7 be a given subset of
{1,..., n}. The mixed zero-one concave minimization programming problem is defined
as

min{f(x): x € K, x; € {0, 1}, Vi € I}, (Pg)

where f is a finite concave function on K.
LetC:={xeK:0<ux; <1, Vi€ I}anddefine

pi) =) x(l—=x).

iel

Clearly, p is a concave quadratic form on R” and p(x) > 0 for every x € C. On the
other hand, we have, for x € C,

p(x) =0 ifandonlyifx; €{0,1}, Vi € I.
It follows that (P4) can be reformulated in an equivalent way as

min {f(x) : x € C, p(x) < 0}. Ps)

3. Exact Penalty and Stability of the Lagrangian Duality in Problem (P)

Let us first recall the formulation of (P):

a=inf {f(x): x € K, g(x) <0}, @P)
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in which K is a non-empty bounded polyhedral convex set in IR”, and f, g are finite
concave functions over K. In non-convex programming, it is generally easier to treat the
non-convexity in the objective function rather than in the constraints. The exact penalty
technique aims to transform (P) into a more tractable equivalent problem of the d.c.
optimization framework which has been extensively developed in recent years [1-3, 6,
7, 14-16, 25-217].

For ¢ > 0, consider the penalized problems [8]:

ar () =inf {f(x) + g% (x) : x € K} P
with g (x) = max{0, g(x)} for every x € K.

Since gt is a d.c. function on K, (P}) is a d.c. program. On the other hand, the
Lagrangian duality relative to (P) introduces the following d.c. programs [8]:

a(t) =inf {f(x) +tg(x) : x € K}. ()]
The corresponding dual problem is given by
B = sup {oz(t) 1te ]R+} (D)

with RT being the set of non-negative real numbers. It is clear that « (¢) < o4 (¢) forevery
t € RT.If g is non-negative over K, then (P;") and (P,) are identical: The exact penalty
approach for (P) is then nothing but the Lagrangian duality relative to this problem.

In the sequel, the solution sets of (P), (P,+), and (P;) will be denoted by P, Pt+ , and
P;, respectively.

In this section, we shall discuss relationships between these problems and establish
the exact penalty and the stability of the Lagrangian duality in case the function g is
non-negative on K. Let us first state a general result about the exact penalty in which X
is an arbitrary set in R” and f, g are arbitrary real-valued functions defined on K.

Clearly, o1 (0) < «. There are two cases to be distinguished:

(a) the constraint g(x) < 0 is essential in (P): «4.(0) < «. In this case we have
G#{xeK: f(x)<a}C{xeK: glx)=>0}. (1)

(b) a4 (0) = «. This case occurs if and only if either {x € K : g(x) > 0} is empty (i.e.,
K={xeK:gkx)<0horinf{f(x): x € K, g(x) > 0} > «. In other words,
under the usual convention inf # = 400,

2 (0)=ac <inf {f(x): x €K, gx) >0} > . )

Theorem 1.
() a4 is an increasing function of t € R and is bounded above by a.
(i) Ifay(0) < «a, then ay (¢t) = « if and only if

o— f(x)

tx ek, f(x) < a] is finite and t > ty.
g(x)

g = sup {

(iii) If - (0) = o, then the corresponding 1y is zero and a™ (t) = « for every t > 1.
If ty is finite and P is non-empty, then

V) PNPrH£0&PCP ©ai@t) =c

V) P =Pift > 1.
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Proof. We have fort € Rt
oy (¢) = inf [inf{f(x) + 1g7(x) : x € K, g(x) <0}, inf{f(x) +tg*(x) :
xe K, glx) > 0}]
= inf [ inf{f(x) : x € K, g(x) < 0}, inf{f(x) +1g7(x) : x € K, g(x) > 0}]. 3)
So a4+ (¢) < a. The rest of (i) is straightforward.
(i1) It follows from (3) that & (¢) = « if and only if

inf {f(x)+1tg(x): x €K, g(x) >0} >q,

ie.,
tgx) >a— f(x), Vx € K, g(x) > 0. @)

Since a4 (0) < «, according to (1), the relation (4) is equivalent to

t2t0=sup[a_—'m :x ek, g(x)>0}.
g(x)
But 7y > 0, then we can write
t0=sup{°‘_—f(x) . x ek, f(x) <(x}
g(x)

and (ii) is proved.
The proof of (iii) follows by using (2) and the same reasonings as above.
Now, let x;” € P N P;. Then

ar(t) = fO) +167 (@) = ) 2 e
But o4 () < @ by (i), hence, o (t) = «. On the other hand, we have for x € P
f@) +18tx) = fx) =a=ay (),
ie,x e P

The converse part is straightforward since P C P;" when o () = «. So it remains
to prove that P;" = P if ¢ > 1. Let ¢ > to. Then according to the just shown result, we
have P C 73,1' and P C P;t. Hence, proving P = P, amounts to proving g(x) < 0 for
every x € P;7. If it is not the case, then there is x € P;" such that g(x) > 0. It implies

ap(f) = f(x) +1g7(x) = f(x) +18(x) > f(x) +t0g(x) = i (to) = c.
It is in contradiction to (i). [ |

Now, let us briefly discuss the stability of the Lagrangian duality relative to (P).

Proposition 1.

@) a(t) < a () < aforeveryt € RY; a (0) = a(0); P(;L = Po. Fort > 0, if
o (t) = at), then P = {x € P : g(x) > 0}.

(ii) For t > 0, if a(t) = «, then a1 (t) = «t) = «. This possibility occurs
only if ty (in Theorem 1) is finite and t > ty. In this case, we have t € D,
P = {x € P: g(x) > O}. In particular, if such a t is greater than ty, (t > 1),
then

Pt=P={xeP: glx)=0).
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Proof. (i) Lett > 0 verify oy () = (¢t). Since
f@) +1g7(x) 2 f(x) +18(x) > a(t) Vx €K,

x € P}t if and only if x € P, and g (x) = tg(x), i.e., Pt={xepP: g(x) = 0}

(i) is straightforward from Theorem 1 and the complementarity property for the
Lagrangian duality is without gap. [ ]

Remark 1. (i) If g(x) is non-negative on K, then the exact penalty approach and the
Lagrangian duality relative to (P) are the same.

(it) Theorem 1 states that the exact penalty holds if and only if 7y is finite.
We are now in the position to prove the main result.

Theorem 2. Let K be a non-empty, bounded polyhedral convex set in R" and let f, g be
finite concave on K. Assume the feasible set of (P) be non-empty and g be non-negative
on K. Then the problems (P,) and ( P,Jr ) are identical. Furthermore,

(i) If the vertex set of K, V (K), is contained in {x e K: g(x) <0}, thenty = 0.
(i) If V(K) is not contained in {x € K : g(x) <0}, then

0
fo f(x") —a(0)

3 for every x° ¢ K, g(xo) <0

where S :=min {g(x) : x € V(K), g(x) > 0}.
(i) The solution set D of the dual problem (D) is [ty, +oo.

Proof. First, note that the exact penalty approach and the Lagrangian duality relative to
(P) are identical since the function g(x) is assumed to be non-negative on K.

(1) We have
VIK)C{xeK: g(x) <0} CK.

Tt implies
min {f(x) : x € V(K)} 2 min{f(x) : x € K, g(x) <0} > min{f(x) : x € K}.
Since f is concave on K,
@(0) = min {f(x) : x € K} =min {f(x): x € K, g(x) < 0} = .

(ii) Consider now the case where V (K) is not contained in {x € K : g(x) <0). For
this, § > 0. Since f and g+ = g are finite concave on K , we have

() =min{f(x) +tg(x) : x € K} =min{f(x)+1g(x): x € V(K)}.

Now, let # > (f(x%) ~ «(0))/S, where x° € K, g(x°) < 0 and et x, e V(K) be a
solution to (P;). We have

FO)+1tg(x) < f(x) +1tg(x), Vx e K.
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In particular,
Flx) +1g(x) < fx0) +1g(x0).

So,
1g(x) < f(x°) — fx) < F(x%) — 2(0). (5)

It follows that g(x;) < 0. In fact, if g(x;) > O, then g(x;) > S and (5) implies
0y _ 0y _
tgf(x) a(O)Sf(X) 01(0)’
g(x1) N

a contradiction. Since g(x;) < 0, we have x; € P and #y < (f (x°) — «(0))/S by virtue
of Theorem 1. ’

(iit) is straightforward. a

Remark 2. (i) It is worth noting that if g is concave on K and if the feasible set
of (P) is non-empty, then V(K) N {x € K : g(x) <0} # 0. Indeed, if V(K) C
{xeK: g(x)>0},then K C {x € K: g(x) > 0} because g is concave on K. It
thus implies the emptiness of the feasible set of (P).

(ii) If f is concave on K and V(K) C {x € K : g(x) < 0}, then «(0) = «. In this
case the constraint g(x) < 0 is not essential for (P).

(iii) If the functions f and g are finite concave on a non-empty, bounded polyhedral
convex set K and if g is non-negative on K, then (P;) and (P;") are identical and belong
to the d.c. optimization framework

o(t) = min {f(x) +1g(x) : x € K} (Pr)
= min {xx (x) — [-f(x) — 1g(x)] : x e R"}
= min {p(x) — ¥ (x): x € R"}.
Here, ¢ = —(f+tg)and¢ = xx areconvex functionsonIR", xx stands for the indicator
function of K: xx (x) = 0if x € K, and +oc otherwise. According to Theorem 2, there
is a finite, non-negative number 7y such that, for ¢ > #o, (P;) is a d.c. program equivalent
to (P).
Let us close the paper by the following result which is useful to computational methods.

Proposition 2. Under the assumptions of Theorem 2, we have

a=min{f(x): x € K, gx) <0}
=min {f(x): x € V(K), g(x) <0}.

Proof. We have fort > 0
a(t) =min{f(x) +1g{(x) : x € K}.
Since f and g are concave on K,

a(t) = min (f(x) + tg(x) : x € V(K)}
= min [ min{f(x) +18(x) : x € V(K), g(x) < 0},
min{ f (x) + 1g(x) : x € V(K), g(x) > 0}]. (6)
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If{xe V(K): g(x) >0} =0 (i.e, V(K) C {x € K, g(x) < 0}), then

a@) =min{f(x): x € V(K), g(x) <0}
>min{f(x): x €K, g(x) <0} =«.

But ¢(t) < « by virtue of Theorem 1, so
min {f(x) : x € K, g(x) <0} =min{f(x) : x € V(K), g(x) <0}.
If{x e V(K): g(x) > 0} # @, then a(¢) > o when
min (f(x) +1g(x) : x € V(K), g(x) > 0} > a.
Indeed, we then have, according to (6), «(#) > « since

min {f (x) + tg(x) : x € V(K), g(x) <0} =min{f(x) : x € V(K), g(x) <0}

177

)

>min{f(x):x €K, g(x) <0} =c.

It then follows from Theorem 1 that «(z) = a.
Now, translate condition (7) into

f)+tgx) >a, VxeV(K), g(x) >0,

ie.,

t>max{Lfm . x € V(K), g(x)>0].
g(x)

Finally, with such a ¢, we obtain

at) =a =min{f(x) : x € V(K), g(x) <0}.

Remark 3. Under the assumptions of Theorem 2, it is easy to show that

freK:gx)<0}Ccofx e V(K): gx) <0},

®)

where co stands for the convex hull. Moreover, if g is strictly concave on K, then
{xeK:gkx)<0}={x e V(K): g(x) < 0}. Proposition 2 can then also be deduced

from (8).
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