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1. In [2] (cf. [1]), we established some common fixed point theorems for a pair

of commuting self-mappings on a complete metric space satisfying the so-called
g-quasi-contraction and a metric condition of Fisher-Sessa type or Fisher-Iseki type.
The case of three commuting mappings requires a new metric condition along these lines.
Moreprecisely ,  le t (X,  d)beacompletemetr icspace,  f i , i :0 ,1,2,  threecommut ing
self-mappings on X such that

( l )  i ( X )  c  " f o ( X ) ,  
i : 1 , 2 .

(2) fi nd fz satisfy the following g-quasi-contractive condition:

d( f tx ,  fzy)  < s(6({" fox.  foy,  f ix ,  fzy}) )Y*,y  e x.  (1.1)

Here,6(4) : :  sup{d(x.  l )  :  x ,y  e Al  for  A c X and g:R- -+ R+ is  a funct ion
satisfying the following properties

(g1)g is a non-decreasing function;
(92) g is right-continuous ;

k3)sQ)(t Yt\o;
(94)3lim'*- g(t)/t < L

(Note that in the case fo :idx, (1.1) is nothing but the g-quasi-contraction treated in

tzl).

*This work was supported in part by the National Basic Research Program in Natural Science,
Vietnam.
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Let us introduce the following new conditions which generalize the metric conditions
ofFisher-Sessa type or Fisher-Iseki type ([6,71, cf. ll,2]): There exists a point x e X
such that Yy, y' e Oyr@)

s u p  l a 6 i + 1 y ,  f : y ' ) ,  n : 0 , 1 , 2 , . . .  i  i : 1 , 2 )  <  m ;  ( 1 . 2 )

thereexistapointr € X andaconstantM suchthatVy, y' eOyo@)

d ( f i + r y ,  f i y ) .  ( n * l ) M  f o r n : 0 , 1 , 2 , . . .  a n d  i : 1 , 2 .  ( 1 . 3 )

(Here, Oyo@) denotes the orbit of x under /s.)
Based on the approaches of Das-Naik [5] and ours mentioned above we can prove the

following theorem.

Theorem l, Let (X,d) be a complete metric space, and fi, i : 0, 1,2 commuting
self-mappings of X such that

(1) fi, i : 0, 1,2 satisfy conditions (1.1), (1.3) for a function g with properties
G1)-Gq;

( i i )  ; | (x)  c fo(x) ,  j : r ,2;
(iii) ,fo is continuous.

Then there exists a unique commonfixed point in X for fs, fi, f2.

Corollary l. Let (X,d) be a complete metric space, and f;,i : 0, 1,2 commuting
self-mappings of X such that

( i )  f i ,  i :O , l , 2sa t i s fucond i t i ons (7 .1 )and (1 .2 ) fo ra func t i ongw i thp rope r t i es
(gl) and (g4);

( iD  , ( x )  c  f o$ ) ,  j : 1 ,2 ;
(iii) 

"fo is continuous.

Then there exists a unique commonfixed point in X for fs, f1, f2.

Corollary I is an immediate consequence of Theorem I in view of the implication
(1 .2 )  4  (1 .3 ) .

Corollary 2,[2, cf.ll Let (X,d) be a complete metric space, and f1, f2 commuting
self-mappings of X satisfuing conditions ( 1.1) and ( 1.3) above with fo :idfor afunction
g with properties (gl)-(g4). Then f1, f2 possess a unique commonfixed point in X.

Corollary 3. [2, ct.ll Let (X, d) be a complete metric space, and fi, f2 cornmuting
self-mappings of X satisfying conditions ( I .l ) and ( I .2) above with fo : idfor afunction
g with properties ( g I )-( g4). Then f1, f2 possess a unique common ftxed point in X .

corollaries 2 and 3 follow immediately from Theorem I and corollary 1 by putting

"fo 
= id, and as noted before (loc. cit.), they generalize and unify the results of 13,4,6,71.

2. We can give various examples satisfying the conditions of Theorem I and Corollary 1.
Let X : [0, *oo) with the usual metric. Consider the following self-mappings /6(x) :
qox, fr@) : q1x withqo > qr > 0, and fz@) =0. Onechecks easilythat fo, ft, fz
satisfytheconditionsofTheoremlandCorollarylwithfunctiong(r) : qt, q;= q1f q6.
Hence, they have a unique common fixed point in X.
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One can have more complicated examples. Let X : N be the set of positive integers
which can be metrized as follows: d(n,n) : O, d(n,m) : d(m,n) : to * 1f n" for
m > n,wheret6 > 0andcv > 0. If 16 > 0, thenXiscompletewithrespecttod.Consider
thefollowing self-mappings of X : fo:id, ft(n):: nl7, f2(n):-- nl2. Clearly /s,
ft, and /2 are commuting and have no common fixed points in X; since they satisfy the
conditions of the above theorem and corollary for a function g with properties (g 1)-(ga),

except for a "discontinuity" at t : t0. These examples show that conditions (92) and
(g3) in the above theorem and corollary are essential. In order to remove the mentioned
"discontinuity", one has to take /o : 0. But in this case, (X, d) is not complete. Clearly,
we have a completion by adding the point oo to X with natural ordering n < @, Vn e N,
ffid fi, i : 0, 1,2 are well extendedto the whole X U {m} : "f;(oo) 

: oo, i.e., oo is
the unique common fixed point for /e, f1, and f2.

It should be noted that the method here can be extended to the case of Menger
probabilistic metric-spaces with a further application to the theory of random operator
equations.

A detailed version with full proof of Theorem 1 will appffir somewhere else.
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