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Abstract. This paper presents some explicit formulas for global Lipschitz solutions of the Cauchy
problem for first-order, nonlinear partial differential equations. The method used here is based on
the technique of multivalued functions.

1.. Introduction

The aim of this work is to present some formulas for explicit global Lipschitz solutions
of the Cauchy problem for Hamilton-Jacobi equations of the form

Eu r  0u : .
* + f \ t ,  u ) : o  

i n  { t > 0 ,  x e  R ' } ,

u ( O , x ) :  Q @ )  o n  { / : 0 ,  x  e  I R n } .

( 1 . 1 )

(r.2)

It is well-known that the Cauchy problem ( 1 . I )-( 1 .2) has a locally unique C2-solution
if the Hamiltonian / : f (t , p) and initial function S : g @) are of class C2 . However,
there is generally no possibility of finding a global classical solution. One therefore needs
to introduce a notion of generalized solutions and to develop theory and methods for
constructing these solutions. During the past five decades, many mathematicians have
obtained various global results by relaxing the smoothness conditions on the solutions.
In particular, the global existence and uniqueness of (generalized) solutions for convex
Hamilton-Jacobi equations were well studied by several approaches.

* This work was supported in part by the National Basic Research Program in Natural Science,
Vietnam.
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If the Hamiltonian / : f (p) is continuous and the initial function Q : @(x) is
global Lipschitz continuous and convex with the Fenchel conjugate S* : Q*(p),Hopf
[7] proved in 1965 that the formula

u(t, x): 
#ffitto, 

x) - Q*@) - tf (p)| (1 .3 )

determines a(generahzed) solution of the Cauchy problem (1.1)-(1.2) in the sense that

this solution satisfies (1.1) at every point where it is differentiable. Since the solution is

locally Lipschitz continuous, the well-known Rademacher theorem [11, Theorem 1.18]

shows that (1.1) is then satisfied almost everywhere.
IftheHamiltonian/ : f (p) isstrictlyconvexwithlimlpl-+oo f @)/lpl: *ooand

the initial function Q : Q@) is globally Lipschitz continuous, Hopf [7] also established

u(t,x): f f# {orr l  * ,  f .(7)l (r.4)

These formulas are often associated with the name of Hopf, although ( 1.4) was actually
first discoveredfor n - I by Lax [9] in 195'7 .

Step by step, certain more general cases of Hopf's formula (1.3) will thoroughly be

dealt with in this paper under a standing hypothesis like (but somewhat stricter than)
Carath6odory's condition on the Hamiltonian / : f (t, p). Section 2 concerns the case
of convex (but not necessarily global Lipschitz continuous) initial data. In Sec. 3, we
consider the Cauchy problem with non-convex initial data: First, for the case where

Q = Q@) can be represented as minimum of a family of convex functions, and second,
for the case where @ : Q@) is a d.c. function (i.e., it can be represented as the difference
of two convex functions). Finally, Sec. 4 discusses Hopf's formula (1.4) in case Q : Q@)
is just continuous.

Mostof theresultspresentedherewereoriginallypublishedin [15-17]. Someof them
have been revised and updated. Some materials are presented here for the first time. (For

other results in the field, see, for example, [3-6, 10, 13, 14].) Our method is based on
some techniques of multifunctions and convex functions.

Throughout, we use 2 to indicate the set {0 < t . *oo, x € R'}.Moreover, for any

G C IR,  putD6 
o9 ( (0,+oo) \G) x  IRn :  { ( t ,x)  eD:  t  d  G}.Thenotat ionS/0x

will denote the gradient (310xt,... ,010x). Let | '  I and (., .) be th9 Euclidean norm

and scalar product in Rn, respectively. Further, we define Lip(D) 
oS 

Lip(p) n C(D),
where Lip(D) is the set of all locally Lipschitz continuous functions u : u(t, r) defined
onD.

Definition l.l. A function u : u(t, x) inLip(D) is called a global Lipschitz solution

oJ the Cauchy problem (1.1)-(1.2) if it satisfies (1.1) almost everywhere in Cz7Y

{(t, x),0 < t < I, x e lRn} and if u(0, x) : Q@) for all x e W.

2. The Cauchy Problem with Convex Initial Data

In this section, we consider the Cauchy problem (1.1)-(1.2), with @ : QG) a finite
convex function on IR'. Denote by Q* : Q*@) the Fenchel conjugate function
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of  Q :  Q@),

Q.@)Ei  sup { (p,  x l  -  Q@)l  for  p € lR ' ,
J€IR,

and by E the effective domain of 0" - Q*(p),

E EJ domQ* : {p etRn : d*(p) < *m}.

We assume the following two hypotheses:

(E.I)TheHamiltonian f : f (t,p) is continuous in {(r, p) : t e (0, +m)\G, p € R"}
for some closed set G C lR of Lebesgue measure 0. Moreover, to each positive'number
N, there corresponds a function gN : gu(t) in Zf (lR) such that

sup l/(r, p)l S CN(t) for almost all t e (0, *oo).
lP l= l r

(E.II) For every bounded subset V of D, there exists a positive number N(V) so that

f t  f t
( p , x ) - Q . @ ) - l  f G , p ) d r <  m r x  { ( q , x l - Q . @ ) - l  f G . q ) d r }  ( 2 . r )

Jo " ls l<N(Y) '  
-  

Jo "

whenever ( t ,  x) e V, lpl  > N(Y).

Hypothesis (E.I) implies the /-measurability and p-continuity of f : f (t, p) on
{/ > 0, p € R'}. Moreover, since rf : Q@) is finite on IRn, this hypothesis allows us to
define an upper semicontinuous function g : g(t, x, p) from 2 x IR' into [-oo, *oo)
by

95

(2.2)

which, for each p e E , is actually finite and continuous in (t , x) on D .
The next theorem will be fundamental in this section.

Theorem 2.1. Let Q : Q@) be a finite corwex function on IFrn. Assume (E.I)-(E.II)
hold. Then a global Lipschitz solutionu: u(t, x) of the Cauchy problem (1.1)-(1.2) is
given by

s(t, x, p) 9i @, x) - Q* @) - fo' f {r, i lar,

.  . d e f
u \ t ,  x )  : sup g(t, x, p)

p€R"

,rlp" {,u, *l - o.@) - 
Io f (r, f ldtl for (t, x) eD. e.3)

Remark 2.1. T\e requirement (E.II) could be in a sense regarded as a compatible
condition between Hamiltonian and initial data for the existence of global Lipschitz
solutions of the Cauehy problem (1.1)-(1.2). To see this, we first rewrite (E.tr) in an
alternative form that is essentially equivalent (by a standard compactness argument) but
seemingly more amenable to verification:



96 Tran Duc Van, Nguyen Hoang, and Nguyen Duy Thai Son

(E.II)/ For every (/0, x01 eD, there exist positive numbers r(tj, x0) and N(r0, x0; so
that

g ( t , x , o )  . , n , = T f f i , , ' ) e ( r , x , q )  w h e n e u e r  ( t , x )  e v ( t 0 , x \ ,  l p l  >  N 1 r 0 , x 0 ; ,

(2.1')

where v(ro,r0) E {Q, x) eD :  l t  - /01 + l r  -  r0l  < r1to, xo11.

We proceed now to consider, for example, the Cauchy problem

Then the method of characteristics gives the unique classical solution

y -:(#)'  :  o in {r > o, x e rR},

u(0, x) : 
f, 

ot{r :0, .r e IR}.

_ 2
- oer

u : u \ t , x ) : - t u
.1 ,  -  l )

(2.4)

in {0 < t < l, x e IR}. This solution cannot be extended continuously beyond the time
/ : 1. We should note that in this case the set of all (r0, xo1 eD such that (2.1/) holds
for some r1t0, x0) > 0 and N(ro, x0) > 0 is precisely the domain {0 < / < 1, x e IR}.
Moreover, if we try to apply Hopf's formula (1.3), ignoring the fact that the initial
function herc, S : x2 /2, is not globally Lipschitz continuous, then we also obtain the
same solution as(2.4) in {0 < r < 1, x e R}.

Remark 2.2. LetQ : QQ) be a finite convex function on IR'. Assume (E.I). Then (E.II)
is satisfled if 9Q, x, p) tends to (-m) locally uniformly in (t, x) e D as lpl tends to
(+m;, i.e., if the following holds:

(E.II)" For any ). e IR and any bounded subset V of D,there exists positive number
N(, i . ,  y)  sothat  eQ,x,  p)  < x whenever ( t ,x)  €V, lp l  > N(. i . ,  y) .

Indeed, fix an arbitrary q0 e E 
oS 

domd* + A ifrz, Theorem 12.21. Since, the finite
function D = G , x) r-+ gQ , x, 40 ) is continuous, it follows that

^u 9 
,, . l t l t  u eU. x. qo ) > -q

for any bounded subset V of 2. Under hypothesis (E.tr)", we find a finite number
Nv > lqol (for each such V) so that

e(t, x, p) < Lv < qQ, x,40) = 
tn-ry+. eo. x. q)

as (r, x) e V and lpl > Nv, thus obtaining the validir)' of tE.trr.
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Remark 2.3.'the condition "gN : gxG) e Zfl" in the hypothesis (E.I) could not be
replaced by "gr,r : g u G ) € Zt. ". To see this, consider the following Cauchy problem:

97

3u 0u /0x
- l  - : 0 i n { t t 0 . x e I R } ,

d t  l t  -  L l ' / '

u(0 ,  x ) :  . r  on  { t  : 0 ,  x  e  IR } .

' d e i  P  '  , ,  ' d e f
I \ t .  P)  :  

1 ,  _ 11, t ,  
u ts  Q\x)  :  x

f o r x e  l R ,  p e  I R , a n d  r > 0 . T h e n

[ * m  i f  p l t .
o t r , ) : l O  i f p : 1 .

hence, (E.II) holds when N(y) > 1. All the assumptions of Theorem 2.1 with 1,1o. in
place of Iffi for hypothesis (E.I) are therefore satisfied here. However, in this case, (2.3)
sives the function

u ( t , x )  
d 9 "  -  2 - 2 V  - Y r t z s i g n ( r  -  1 ) ,

which is not Lipschitz continuous in any neighborhood of a point ( I , x0).

For the proof of Theorem 2.1, we need some preparations. We first recall that a
directional derivative is defined as follows: Let rlr : ry'(6) be a finite-valued function f
near a point 60 e IR' and let 0 I e e R'. Denote

Here, r 
d$ 

l,

and

a! r4f1ol d9 h* rop
3+0

a;VGo) oi trninr

, l r G o + 6 e ) - r l r G o )
o

,lrGo + se) -',hGo)

If *oo , ajrlr3\ :0;{r(€0) > -oo forallnon-zero e e lRn, then tp : {(g)is
said to be directionalty dffirentiable at lo , and O"lt (10) Y aj rt fgo>: a; 12(60) will
be called its derivative at to in the direction e.

Lemma 2.2. Let O be an open subset ofN" and a; : at(€, p) an upper semicontinuous

function from O x Rn to l- a, * x) with the following tw o propertie s :

(l) there exists a non-empty set E C W such that a : a(€, p) is finite on O x E and

that o($, p)l1,p).cc,n : -oo where E'dS n' \ E. Moreoven to eachbounded
subset V of O, there corresponds a positive number N (V) so that

at(E 'd ' ,n ,?f f iu ,o(1 'q)  whenever  Eev '  lp l  >N(y) ;
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For every fixed p e E, the function a : a(8, p) is dffirentiable in € e O. Besides
that, the gradient 0o /Al - 3o(€ , p) I A€ is continuous on O x E.

Then

(a) t : ,lr@ 
d9: 

sup{ro(f , p) i p € IRn} lsa locally Lipschitzcontinuousfunction
in the domain O'.

(b) ry' : ,lr(E) is directionally dffirentiable in O with

where

a" ,Lc) :  H&,p 'V , , )  G e0 ,o teerm) ,

Z(1)  g 
{p e IR '  I  o(8,  D:  VG)}  c  E. (2.s)

We shall also need the following:

Lemma 2.3, Let prope rty ( i) in Lemma 2.2 hold for a given function a : a (€, p) which
we assume to be continuous in { e O (whenever p € E) and upper semicontinuous
with respect to the whole (€, p) on O xIFi". Then (2.5) determines a non-empty-valued,
closed, and locally bounded multifunction L : L(€) of I e O.

Remark 2.4. Lemma 2.3 implies that L : L(E) is a compact-valued and upper
semicontinuous multifunction. In this lemma, the set O C R^ is not necessarily open.

Proof of Lemma 2.3. For any bounded subset V of (2, denote Nu 
oi 

N(V) (see (i)),
then Z(f) C B(0,Ny) as E e V. This means that L : L(f) is locally bounded.
Moreover, with ar : ot(€, p) being upper semicontinuous, we can deduce (also from (i))
that the supremum ,b(€) : sup{ar(f , p) i p e R'} should always be finite and attained.
Consequently, 7 : L(€) C E is a non-empty-valued multifunction of I e O.

To complete the proof, one need only check the closedness of Z : Z(f ). For this
pu{pose, let {(4r, p\}ts be a sequence convergent to a point (€o , po) in O x IR, such
that pK e L(€*) as k : 1,2,3,... . By the definit ions of ry' - lr({) and L : L(l), we
have

a ( l k ,  pk ) ,  , ( €k ,p )  f o r  a l l  p , k . (2.6)

Since al : o(€, p) is upper semicontinuous in (f , p) and continuous in f , (2.6) shows
that

t (€0 ,  po )  >  l imsup ro (€k ,  pk )  >  . l im  a ( | k ,  p ) :  r ( €o ,p )  f o ra l l  p .
t++oo r++oo

Thus, p0 e Z(60), and the multifunction L : L(il is therefore closed. r

Proof of Lemma 2.2. (a) Let V be an arbitrary compact convex subset of O and let

N g N(y). lor any two points €r, €2 e V, pick up an element p I in the non-empry ser
L(€') C E n BQ, N) (cf. Lemma 2.3). Then

,LG\ -  ,hG2) .  , (€r ,  pr)  -  to(€z, pl) ,
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hence, the mean-value theorem gives

, lr9\ - r lr(€2) . larG.:!t) |  fgt - €21 . xl€t - t2l,
l o q l

where f* e [61, E2] c V and .1. is a (finite) upper bound of Oa(€, p)/}ll over
G, D e V x B(O,N). Analogously, ry'(62) - rl/G\ . .1.161 - 62;. rhe tunction
,lr : lr(t) is thus locally Lipschitz continuous in (?.

(b) For any 60 e 0 and O I e e IR', we find two sequences {"d[3, {fldf] ot
positive numbers convergent to zero such that

a;',hc\: oIT_
, l r (€o+ake) - th6o)

and 
ilr(Eo a flre) _ rlr(Eo)aj'bG\:,,If-

Let us take an arbitrary p € LGj C E and apply the mean-value theorem to obtain

where 47. e (0, cvr). A passage to the limit as k -+ *oo shows that

a;,hco)z (a, ,"1

for any p € LG\. Hence

a;'bc'\ - 
ojl,?., (" ,") (2.7)

Now choose an element pk e L(Eo + Fte) for each ft : I,2,... . Since the multifunction
L : L(€) is closed and locally bounded (Lemma 2.3), by taking a subsequence if
necessary, we can assume that pk 

1o_-f_, 
p0 e L(€0). Therefore, a passage to the limit

(similar to the above) in the inequality

tLGj  + f lne)- l te \  .a(€o + f l *e ,pk)  -a(Eo,  pk)  _  l^ , . ,
Pk ft 

: 
\o'

(€0 + 81,e, pk1

")

(2.8)

(where flr e (0, Bp)) gives

a!.,t,t€ot 5 ia,glJo), ") 
. sup (u,9'.2,,1 .-  

\  a€ |  
-  

p.zi los\ a6 |

Finally, combining (2.7)-(2.8) yields

a;vrl\: ajvrl\: o5?f., (rr+?,rl
forany €o e O,O I e e IR-. This implies the directional differentiability of ry' : V(€)
and completes the proof. I

We are now in a position to prove Theorem 2.1.
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Proof of Theorem 2.1. It can be verified that the function, - r.(t, p; 9J 9Q, x, p)
(see (2.2)) satisfies all the assumptions of Lemma 2.3 where E dS 

domd* + 0lI2,
Theorem 12.21 and, * Ei n+ 1, 6 E (t, x). Herc,we put O y D and conclude that the
definition

L( t ,  x )E i  b  .  E  :  9Q,  x ,  p )  :  u ( t ,  x ) l (2.8a)

determines a non-empty-valued, locally bounded (and closed) multifunction Z : L(t , x)
of (t, x) e D.

Our proof starts with the clai m that u : u (t, x) is in Lip (D). To this end, arbitrarily take

anr e (0, *oo) anddenote V, E {e, x) eD : t+lxl < rl,N,9lf tv,l (cf. (E.II)).Let
gN, : gN,Q) be as in hypothesis (E.I). Then for any two points (tL, *r), (t2, x2) e V,,
we may choose an element pl of the non-empty set L(tr ,r1) c B(0, N,) and obtain

u(tr , xr) - u1t2, x2) ,  1 .
, x - , p - )

f(t, pr)dr

L

wheres,  
o9"rr rupr . ,o, r lgN,( t ) .Analogously,  

u1t2,x21 -u( t l  , r l )  < N,  1x l  -x2 l+

s,lt l - 121. Thus, u : u(t,t) belongs toLip(D).

Next, let ,0 
dJ 

1t, 0, 0, . . . ,0), et 
dg 

10, t, 0, . . . , 0), . . . , €, 
dJ 

10, 0, 0, . . . , 0, 1)
. pn{1. It follows from Lemma 2.2 (we now replace O 9ll Oc,the set G being as in
(E.I)) that u : u(t, x) is directionally differentiable in D6 with

a"ou( t , r )  :  max { - f  ( t ,  p)  i  p  e L( t ,x) } ,

1-"ou(t, ,r) : max {f (t, p) : p e L(t, x)}
(2.e)

and( fo r  I  < i  <n )

Ertu(t, x) : max {pi : p e L(t, x)1,

} - " ,u( t ,  r )  :  max { -  p i  :  p  e L( t ,  x)1.
(2.10)

on the other hand, according to Rademacher's Theorem [11, Theorem 1.18], there exists
aset Q C D of ((n * 1)-dimensional) Lebesgue measure 0 such thatu : u(t,x) is
(totally) differentiable with

.  gQt ,  r ' ,  p ' )  -  q( t2

:  (pr,* '  - * ') + 1,,
.  N ,  l *1  -  x21+ s ,  1 t1

0u(t .  x \- ;  : \ r ou ( t ,  x ) :  - 1 - "ou ( t ,  x ) ,

1u ( t .  x \- f ;  :  Ee 'u( t '  x)  :  -1-" 'u( t ,  x)

at any point (t , x) e D \ Q. Hence , (2.10)-(2.11) show that the equaliries (for I

3u(t .  x\
;  

-  max{p; :  p e L(t ,x)}  :  min(pi  :  p € L(t ,  x))

(2.r1)

< i  < n )
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hold outside the null set 2 E (G x IRn) lJ Q,i.e., L(t,x) is precisely the singleton
{Au(t, x) lAx} except on 2. Consequently, (2.9), together with (2.11), implies that (1.1)
must be satisfied almost everywhere in 2.

Further, by a well-known property of Frenchel conjugate functions [12, Theorem
12.21, (9.7) gives

u(0,  x)  -  max{(p,  x)  -  Q*@)}:  Q**(x)  :  Q@) for  a l l  x  e IR' .
p€R

From what has already been proved, we conclude thalu : u(t, x) is a global Lipschitz
solution of(1.1)-(1.2). I

Theorem 2.4. The function u(t, x) defined by (2.3) is continuously dffirentiabtle in an
opensetV CD6ifandonlyifthemultifunctionL(t,x)definedby(2.8a)issingle-valued
i n V .

Proof. Intheproof of Theorem2.I, we have seen that if z(r, r) is differentiable at (t, x),
then L(t,r) is single-valued. Conversely, suppose now that L(t,x) is a single-valued
function for all (1, x) in an open set V c Dc. By virtue of Lemma 2,3, we see that
V > (t,x) r-+ L(t,x) is continuous. Note that, for each fixed x,O"nu(t,x) (resp.
8",u(t,x)) is the right-hand partial derivative of u(t,x) with respect to / (resp. x;).
Using Maximum Theorem t2, p.381 together with the formulas (2.9)-(2.1I), we have
that u,(t, x) and ur,(t, x) exist and are continuous in V. Theorem 2.4 is then proved. I

Corollary 2.5. Let Q : Q@) be afinite corwexfunction onW. Under hypothesis
(E.I), supposethatinf pen, f (t, p)/(l + lpl) ts locallyessentiallyboundedfrombelow
in t e 10,6 ). Then (2.3) determines a global LipschitT, solution of the Cauchy problem
( r.1)-( 1.2).

Proof. Only (E.II) needs verifying. Given any r e (0. *oo), denote V, dS 
ttr, i eD :

t  + lx l  < r)  ands, d9essinf i . lo,ry infpen" f  Q, D/Q1 lpl) .  Then

e( t .x ,  p )  :  (p ,  x )  -  Q.@) -  [ '  fG.  p )a ,
J O

< r lp l  _  Q.@) _ rs , (1 *  lp l )
< r(1 + 2ls, l) max{1, lpl} - Q.@) (2.r2)

for all (t,x) e V,,p e R.n. On the other hand, it being known (cf. Remark 4.2)
that lim;p1++*Q.@)llpl : *oo, there exists a finite number Nr > 1 such that
Q.@)llpl > r(l * 2lt, l) + 1 whenever lpl > N,. Thus, (2.12) implies

e(t, x, p) < -lpl, provided (t, x) e V,, lpl > N,.

Finally, since r e (0, *oo) is arbitrarily chosen, (E.II)/ holds, and hence, so does
(E.II). r

Corollary 2.6. Let f : f (t, p) be continuous onD and let $ : Q@) be convex and
globally Lipschitz continuous on R' . Then (2. j) determines a Lipschitz solution of the
Cauchy problem ( 1. I )-( 1.2).
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Proof. Srnce 0 : Q@) is convex and globally Lipschitz continuous, A 
dS 

dom@*
should be bounded lI2, 13.31(and non-empty). Independent of (r, x) e D, it follows
that

e \ t ,  x ,  p )  :  ( p , x j  -  Q*@)  -  
[ '  f r t ,  p )d t  :  - x

J O

whenever lpl is large enough. Hypothesis (E.tr) therefore holds while (E.I) is trivially
satisfied.

Remark 2.5. As we have mentioned in the introduction, Corollary 2.6 was proved by
Hopf [7] in a different way for the case where / : f (p) depends only on p.

Example 2.1. Investigate the smoothness of the global Lipschitz solution defined by
(2.3) of the following problem:

where

Note that u(0, x) : x2 /2is not globally Lipschitz continuous and we cannot use Hopf's
formula (1.3). But by Theorem 2.1 and formula (2.3), a global Lipschitz solution of this
problem is

,  ( t , x ) e o 1 9 p > 0 ;  x < 0 )

(t ,  x) e o2Y 1t )  max{x, f l ,  *  ,  ol

-  t  ,  ( t ,  x )  e  oaqgJ  p ,0 ,  x  e  R) (D 1U D2U D3 l

+ ' ]  - x t ,  ( t , x )  e O 3  
d 9 { m a x { O , 2 ( x  -  1 ) }  <  /  < r , 0  <  x  < 2 1 .

The singularities of this solution is the curve

y 2
C :  

7 - t : 0 ,  
t > 2 .

I o '  q  o '
, r , : I n , . ,  o n  n = r ,

(2.r3)

This fact can be foreseen by applying Theorem 2.4.Indeed,, L(t,x) : {0,.r} if
t  :  x2 l2,x  )  2,  and L( t ,x)  :  {x  -  t ,x l  i f  t  :  2(x -  l ) ,1  < x < 2,  whi le
L(t, x) is a singleton if (t, x) f (C).Direct computation shows that L(t, x) : {x} for
( t , x )  e  D1 ,L ( t , r ) :  { 0 }  f o r ( t , x )  e  Dz \ (C ) ,L ( t , x ) : { x  - t } f o r ( t , - r )  e  D3 \ (C ) ,
and L(t,.r) : {x} for (t,x) : D4\(C). Thus, Theorem 2.4 provides a method for
investigating the smoothness of the global Lipschitz solutions.
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3. The Case of Non-Convex Initial Data

In this section we consider the Cauchy problem (1.1)-(1.2) under the more general
assumptions that f : f (t, p) is still l-measurable and p-continuous as in Sec. 2, while

Q : Q@) is now a non-convex function: First for the case where @ : Q@) can be
represented as the minimum of a family of convex functions, and second, for the case
where @ : Q@) is a d.c. function, i.e., the difference of two finite convex functions on
IR'. The class DC(lR') of d.c. functions plays an important role in the theory of global
optimization. This class is rather large; it contains all the semiconcave functions. We
emphasize that it also contains all functions of class C2 1of the whole lRn) with second
derivatives bounded either from below or above. The reader is referred to [1] and,[8] for
a sufficiently complete study of d.c. functions.

We first prove the following result.

Theorem 3.1. Let I be an arbitrary non-empty set anduo : ud(t, x) a global Lipschitz
solution of the Cauchy problemfor the same Hamilton-Jacobi equation

i n  { t >  0 ,  x e  I R " } ( 1 . 1 )

(r .2a)

with the initial condition

0u(0,  x)  :  Q"@) on { t  :0 ,  x  e R. ' }

for each ot e I. Suppose that, to each bounded subset V of D, there correspond a
set W(V) C V of lzbesgue measure O, a non-negative number M(V), and a subset
J(V) of I such that all the functions uo : uo(t,x) for a € J(V) are Lipschitz
continuous in V with a common Lipschitz constant M(V) and satisfy (1.1) at every
point of V \ IV(y) and that inf oE1 uo(t, x) : minoe.r g) uor(t, x) for (t, x) e V. Then

the function u : u(t,r) 
di 

inf*.r uo(t, x) is a global LipschitT solution of the Cauchy

problem (1.1)-(1.2) where Q : Q@) 
ui 

inf"., O"(").

Proof. By assumption, u(t, x) : minaeJ(v) uo(t, x) on each bounded subset V of 2.
Moreover, luoQl, xl) - uoQ2, x\l < M(D ft\ - t ' l  + lrr - r2l)for any a e J (V)
and any f lxed ( l l ,  x \ ,Q2,x21 e v.  Assume u( t r ,x l1 > u( t2,x2)  :  uoo( tL,x21 for
somecvo e J(V). Then

0 < u( t r  ,  * r1 -  u1t2,  x2)  < uoo( t r  ,  xr )  -  uoo1tz,  x2)

< M(v) (tt - t2l + lx1 - x2l).

This means that u : u(t, x) is in Lip(2).

Now, denote v1,9J l | : t ,x)  eD:  r  *  lx l  < kJ,  JnEJ t (vD,w*Y wynl fbr  each
k : 1,2, ... andlet Wo C D be aset of Lebesgue measure 0 such Ihat u : u(t, x) is
differentiable at eyery point of D \ Wo (Rademacher's theorem). It will be shown that

u : u(t,x) satisfies (1.1) except on the null set Q 
dg 

Uil$ w*
Indeed, given any (t0, *0) e D \ Q,we choose apositive integer k > t0 * lxOl and

some index ao e Jp so that u(to , xo) : uao(to ,;0). Obviously,
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# *  t ( , '#) :o

u(t ,  x)  -  u( to ,  ,01 .  uoo1t ,  x)  -  u ,o( to ,  xo) (3 .1 )
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fora l l  ( r ,x)  c loseenoughto (10,r0) .  S incez :  u( t ,x)  and uoo:  t lon( t ,x)  areboth
differentiable at (to, x0), (3.1) implies

\u(to, xo) _ \uoo(to, xo)

At  0t

and
\u(to, xo) _ \uoo(to, xo)

0x Dx

Butuoo : uao(t,r) satisfies (1.1) at (/0, 
"0), 

and so does u : u(t, x).
On the other hand, it is clear from the hypotheses that

u(0, x) - tf ua(O, r) : 
;tf, Q"@) : @(x) for all x e IR".

The function u = u(t, x) is thus a global Lipschitz solution of (1.1)-(1.2). r
Now, suppose that Q : Q@) is given in the form

Qg)tri inf Q"@) for x € tR',
q e l  

' "  "

with @" : Q"@) a finite convex function for every a e L Combining Theorems 2.1
and 3.1, we obtain the following first results for the representation of a global Lipschitz
solution in the case of non-convex initial data.

Coroflary 3.2. Assume (E.I)-(E.II) hold for each problem (1.1)-(L2u), with go -

Q"@) a finite convex function, a e I. Furthermore, assume that all the hypotheses of
Theorem 3.1 holdfor the solutions

, -  , d e f  r ,  \  , * , ,  f '  ^ .a : ua(t, ") 
= 

nftT {(p, x) - ei,@) - 
Jo f G, natl

of those problems. Then u : u(t,r) I info.r uo(t, x) is a global Lipschitz solution of
the Cauchy problem (1.1)-(1.2) where Q : Q@) is defined by (3.2).

Corollary 3.3. Let Q : Q@) 
d$ 

^ini.{r.z,.,nlf i i@), with Or : er@), Qz :
Qz@), . . . , Qt : $p(x), be sorne convex and globally Lipschitz continuous functions.
If f : f (t, p) is continuous onD, then a global Lipschitz solution u : u(t, x) of the
Cauchy problem (l.I)-(1.2) can be found in the form

u(t, x)9,.,13.1.0, 
#ffi {to, x) - Qi@) - 

lo ro, oa,1

for (t. x) e D.

Proof. since r dJ 
1 r, 2, . . . , kt is a finite set, the conclusion is straightforward from

Corollary 2.6 andTheorem 3.1. I

(3.2)
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Example 3.1. Consider the Cauchy problem

o u  l ' ^  ' 2  |
^  + l ( - )  - l l : o  i n  { o < r < + o o .  x € l R l ,
0 r  l \ 4 " /  |

u(0, x): exp(-lxl) : min{exp(r)' exp(-r)} on {/ : 0, x e IR}'

By Corollary 3.3, a global Lipschitz solution of the problem is

u: u(t,"1 I,.Til 
TS{p" 

- ht@) - t lpz - I l},

where
I  p l n p - p  i f  p > 0 .

, - t l '
f t r ( p ) =  {  0  i f  p : Q .

[ * *  i r  p < 0 ,

a n d  
[ + o o  i f  p > 0 ,

n z f p l t r i l o  i f  p - 0 ,
[  - P h ( - P ; 1 P  i r  P  <  o .

The solution can also be rewritten as

u(t, x): min{mal{p x-plnp + p-tlpz-tl}, max{px * pln(-p1-p-tlp2-ll}
P>o  P<u

: max{-plxl - plnp + p - tlpz - t11,
p>l)

in which we adopt the conventionthat plnp : 0 if p : 0.

Example 3.2. Let h : h(a) be a finite-valued continuous function of a on a given
compact set K C IRn. We put

d(xl 
d$ 

mrg{h(a) + lcvl ' l-t l} for t € lRn.

If f : f (t,p)belongstoC(D),dependsonlyon/andlpl,andisdecreasingwithrespect
to lpl, then it follows from Corollary 3.2 that a global Lipschitz solution u : u(t, x) of
the Cauchy problem (1.1)-(1.2) can be found by the formula

' '  '  d e r  ' r [ n o ) *  m a x  . l ( p , r )  -  [ '  f  , r ,  D a r l lu \ t . x )  :  P l  l " \ u . ,  T  
r i i iD r  l ' t , ^ ,  Jo  

-  , I

t  f '  I
:  rT ' i !  lh \o)  + lc l  .  l " l  -  

I  f  Q.ddr  I  for  ( r .  x)  eD.
0 € K  t  J O

We now consider the Cauchy problem (1.1)-(1.2) in the main case of this section
where @ : Q@) belongs to the class DC(IR'), i.e., it has a representation of the form

Q@) = or@) - o2(;) on R.n (3.2a)
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for some finite convex functions ot : ot(x) ando2 : oz(x). We call (3.2a) ad.c.
representation of Q : Q@).(of course, there are always an infinite number of such
representations for each d.c. function Q : Q@).) The notations oi - o{(p) and
ui: of (DwillsignifytheFrenchelconjugatefunctionsofol : or(xfandoz': oz(x).
The effective domains of the theses conjugates are denoted by E1 and 82, respectively.

Besides hypothesis (E.I), we shall also assume the following ones.
(E.IID To any bounded sets v c D and E c N, there corresponds a positive number
N(V, E) so that

(3.4)

are actually single-valuedinD\Qwhere Qis acertainclosedset of ((n*l)-dimensional)
Lebesgue measLtre O and is independent ofa elF{.

Remark 3.1. Let ot = ot(x) be a finite convex function on IRr, and / : f (t, p) a
p-convex function on {r > 0, p € lRn}. Assume (E.I) and (E.III) hold. Then it can be
proved that (E.IV) is satisfied with Q 

o9 
C 

" 
lR", the set G being as in (E.I), if one of

the following two conditions holds:

(E.IVy f : f (t, p) is strictty p-convex, i.e., it is strictly convex with respect to p on
R" for almost every fixed r e (0, *oo).

(E.IV)'/ o{ : o{ (p) is strictly convex on its effective domain E r 
dg 

dom oi.

Theorem 3.4. Let Q : Q@) be in the class DC(R") with a d.c. representation (3.2a)
such that oz : oz(x) is globally Lipschitz continuous onlF''. Under hypotheses (E.I),
(E.III), and (E.N), theformula

go(t ,  x ,  D .  
,n ,5,1 i ,n19o(t ,  

x ,  q)  as ( t ,  x)  e v ,  u e E,  lp l  > N(v,  E) .

Here,

eo(t ,  x,  p)Y \p,  x l  -  o i@*a) -  
ln f<r,  dar.

(E.IV) AU the multifunctions Lo : Lo(t, x) of (t, x) e D defined by

LdQ, x)  -9$ { r  e R'  :  qo( t ,  x ,  p)  :  maxgoQ, x,  q) l

u(t, x) o9 rnrn l"t@) * q* eoG, x, dl on D, (3.s)

inwhichf2 d9 
dom o| determines a global Lipschitz solution u : u(t, x) of the Cauchy

problem (1.1)-(1.2).

Proof. Let Q"@) Ej or@) - (a, x) -t o|(a) asr € Rn, a € IRn. Then eo : eo(x) are
obviouslyconvexfunctions.Foreachcv €.E2,considerthecauchyproblem(1.1)-(1.2).
By (E.I) and (E.IID, it follows from Theorem 2.1that rhe formula

(3.3)

u( t .x )E-  
" ;1 "1*  

mq{  eo | ,x ,  D  onD- 
relR'

(3.6)
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determines a global Lipschitz solution ua : ua(t,x) of this problem. Moreover, we
may assume Q > c x IRn, the sets Q and G are as in (E.I) and (E.IV), and then see that
all the solutiotts u.o : uo(t, x) satisfy (1.1) at every point of D\Q. (For the smoothness
of such uu : ua(t, x), see Theorem 2.4.)

Now, since oz : oz(x) is globally Lipschitz continuous on IR,, the (non-empty)
set E2 - domot should be bounded ll2, 13.31. Given any r e (0, *oo), denote

v,-Y.  gt ,^x)  eD :  t - t lx l  < r )  and AL E N(v, ,Ez)  (c f .  (E. I r I ) ) .  Forany
(tr , *r), (t2, *2) in Vr, we can then choose p" e Loer ,"1) c a(0, ar,) and deduce
from (3.3)-(3.a), (3.6) that

uoTtr , xr1 - uo1t2, x21

where s, 
d9 

esssupre(o,r),gN,(r) (cf.(E.I)). The solutions ud : t4d(t,x) therefore
satisfy a Lipschitz condition on % with constants N, and sr, which are independent of
a e E 2 .

Next, rewrite (3.6) as

uo(t ,  x):  o[(u) *  
#f ,+ 

eo(t ,  x,  p -  d)

and fix temporarily (t,x) e D.By (3.3) and hypothesis (E.I),qoQ,x,p - a) is
continuous in cy e IR'. Hence, by ll2l, the right side of (3.7), being the supremum of
a family of continuous functions, actually determines a lower semicontinuous function
from the whole IRn into (-oo, *oo) whose effective domain is precisely the non-empty
bounded set Ez C IRn. It follows that

* oo > 
or!E,u"{t, 

*1

- inl l"t@l * max go(t, x, p - a)l
oeE , '  

-  
P€ IR '

: mllr lotf[+ ggT eo(t, x, p - d)l
oeE" 

- 
PeR' 

'

- min l" i@)* me4 eo|, x, p - a)l
u e E 2 '  

'  p € l R "  
'

= 
Ytuo( t 'x )  

(> -m) '

Finally, since o2(x) : 
ft2;{{", 

u) - o}(a)l (see [7, p.96al, one has

\f;Q"Q): ot(x) + 491{-(cl,  xl - o}(a)}

: or(x) - y: i{@,u) - o}(a)}

: ot(x) - oz@) : d@) for all x e IRn.

As a consequence of Theorem 3.1, u : u(t, x) 
d$ 

mino.r, uoe, x) is therefore a
global Lipschitz solution of the Cauchy problem (1.1)-(1.2). I

r07

< goQt  ,  * r  ,  po)  -  go( t2 ,  *2 ,  p " )
^ t

^  I ':  ( p " , x '  - x " l  I  I  f@,p " )d r
JO

< N ,  l x r  - r 2 l + s ,  1 t l  - t l  1 ,

(3.7)
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Corollary 3.5. Let f : f (t, p) be of class Co onD and let Q - $(x) have a d.c.

representation (3.2a) such that o1 : o1(x) and o2 : oz(x) are globally Lipschitz

continuous onW. Assume (E.IV) holds. Then the function u : u(t, x) given by (3.5) is

a global Lipschitz solution of problem ( I . I )-( I '2 ).

Proof Since the non-empty set El E domof is bounded t12, 13.31, hypothesis (E.II!

must hold while (E.I) is trivially satisfied. Hence, the conclusion is immediate from

Theorem 3.4.

Example 3.3. Consider the Cauchy problem

0u
At

+  f  ( y \ :  o  i n  t o  <  I  <  *m,  x  e  IR ) .
\  dx . /

u ( O , x ) :  Q @ )  o n  { /  : 0 ,  x  e  I R } ,

with f (p) "9 1t + lplt)t/3 (for p 
1 

IR) and

a @ ) Y [ +  1  
i r x e [ - 1 ' 1 ] '

l x - j s i g n x  i f x f  [ - l . l ] .

We first note that neither the formula (1.3) of Hopf nor the formula (2.3) of Theorem
2.1 works in this case since the initial function here is not convex. Although the present

Hamiltonian f : f (p) is in fact convex, we should also mention that Hopf's formula
(1.4) could not be applied directly to the problem because

f (o \

rp r l l l - f r : t++6 '
In this case, however, it is easy to check the validity of d.c. representation (3.2a) where

i f x < 0 ,

i f ; e [ 0 ,  l ] ,

i f .x > 1,

and o2 : oz(x) 9! o1(x) are globally Lipschitz continuous on IR. Further, we may
invoke either (B.IV)/'or (E.IV)'to deduce that (E.IV) holds. Therefore, by Corollary 3.5,

a global Lipschitz solution u : u(t, x) ofthe problem can be found in the form

u(t,x)9".flt, 
otifi, {'rp - u) -l{tof ' ' - lolt/ ') - t(r-rlp - ol')tttl.

As we have seen, Theorem 3.4 and its Corollary 3.5 concern the Cauchy problem
(1.1)-(1.2) in the case where initial function Q : Q@) has a d.c. representation

Q@) = ot@) - o2(.x) such that domof is bounded in IR". The following will be

devoted to the case where dom oi : IR'.

Theorem 3.6. Let 0 : Q@) be in the class DC(N) with a d.c. representation
(3.2a) such that limy4+yrcoz@)llxl : *oo. Under hypotheses (E.I), (E.III), and
(E.N), suppose there exists a function g : g(t) ln fi.(R) with the property that

sup{/(r, p) i p € R'} < g(t) for almost all t e (0, +m). Then (3.5) determines a
global Lipschitz solution of the Cauchy problem ( I . I )-( I .2).

o 1 : o 1 ( x ) - { j ,
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Proof. Since oz : oz(x) is a finite convex function on IR, with limlry_a se o2@) llxl :

*oo, soisitsFenchelconjugatefunctionof : d;\il:inparticular, Ez 
dS 

domoi : R.n
(cf. Remarks 4.1 and 4.2).

weshallcontinueusingthenotation uoQ,x) introducedintheproof of Theorem3.4.
Le t r  e  (0 , *oo ) ,  V ,  EJ  ! t , x )  eD  :  t  * l x l  <  r j ,  & ,  

a$  
sup r t< r l d1 ( r )1 ,  and

r, g 
6 k?)ldr. Since l im]p1- **oj(n)/lnl : *oo, to any M e (0, *m), there

corresponds a fimte number Nr.u > 1 so that

109

" ;#  
> r *s '  l l ' t ' *M  as  l a l>  N , ,M  (3 ' 8 )

By (3.3) , i t fo l lows that , i f  ( t ,  x)  e V, , thengoQ, x,  p-ot )  > (p,  x)  -of  (p)- r la l_o, .
Therefore, (3.7) and (3.8) imply

uoQ, x) > ol tul  + qf; f  t (p,  x) -  o{(p)} -  r la l  -  s,

:  o|(a) *  or@) _ r lal  _ s,
t  ( r  +  s ,  *  &r  +  M) . la l  -  p ,  -  r lo4  -  s ,  >  M,

provided (t, x) e V, andlal > N,.u. This means that

l im ua\ t .  x) :  *oo local ly  uni formly in  ( t ,  I  e  D.
l o l+*oo

Hence (cf. Remark 2.2), we may find a positive number N, for each r € (0, *oo) such
that

inf 
"uo(t, 

-x) : , n-riL uo(t, x) whenever (t, x) e V, .
r€ lR'  lo l .N,

(It should be noted that uoQ ,.r) is lower semicontinuous in the whole IRn.)
Moreover, the analysis similar to that in the proof of rheorem 3.4 shows that the

solutions ud : ua(t, x) satisfy a Lipschitz condition on v, with constants depending on
r but independent of o for lcvl < Nr, and that they satisfy (1.1) except the common set
of Lebesgue measure 0. The proof is thus complete in view of Theorem 3.1. r

4. Equation with Convex Hamiltonian f : f(p)

We now consider the Cauchy problem

in D:  { /  > 0,  r  €  R.n} , (4.r)

(4.2)

f : f(p) is

! * r(ff):o
u(0,  x)  :  Q@) on { r  -  0 ,  x  e IR' }

under the following two hypotheses.

(F.I) The initial function Q : d(x) is of class C0 and the Hamiltonian
strictly convex on IRn with limlpl-+oo f @)/lpl: +oo.
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(F.II) For every bounded subset V of D, there exists a positive number N(V) so that

r , rgJlur  {ot ' l * ' '  f - (*  7 ' ) }  " t "  
+ t '  f * (?)

whenever (t, x) € v,lyl > N(v). Here, f* : f*(z) denotes the Frenchel conjugate

func t ionof f :7111.

In the sequel, we use the notation

l ( t ,  x,  y)  ot j  
Ofyl  +,  f .  (7) , (4.3)

where (/, x) e D, y € R', and shall prove the following theorem.

Theorem 4.1. Assume (EI)-(r'tX). Then the formula

u( t . x \d$  l n r  ( ( t . x ,  v ) :  i n r  {d0 )+ t  '  7 * (= ) l  7o ,  1 t , x )  eD  (4 '4 )v ' \ ' , r \ /  - y € i n , > \ - , " ' J ,  
y Z n ,  l , " '  "  \  t  / J "

determines a global Lipschitz solution of the Cauchy problem (4'1)-(4'2)'

The next auxiliary lemma is known 11; l2,Theorems 23.5, 25.5, and 26.31, but what

we would like to insist here is its simple proof by the use of Lemmas 2.2 and2.3.

Lemma 4.2. Let f : f (p) be strictly convex onw withlimlpl-+* f (p) /lpl: +oo'
Then f * : f * (z) is everywhere continuously dffirentiable; moreover

(4.s)

Proof. The strict convexity on R' of the function f : /(p) says that this function is

everywhere finite and that

f  (xpt + (r - L)pz) . f  (pt)+ (1 - L) f (p2)

for any pl , p2 € IR', I € [0, 1]; the sign of equality holds if and only 1f p\ : pz ot

). e {0, 1}. Accordingly, f : f(p) is continuous.

It is a simple matter to check that a = (z,p) 
dg 

k,D - /@) satisfies all

the conditions of Lemmas2.2 and2.3 whete we put E 
di 

Rn, * Ei n,4 9j ,,

Ogj W : lR', and shall deal with the function

th : !r(z) 
di 

sup{rr.,(2, P) : P e IR'} : /*(z).

Indeed, since limlo1- +* f (p)/lpl: *oo, condition (i) in Lemma 2.2holds while the

others are almost ready.
As ,f - ,f (p) is strictly convex, it can be verified that the multifunction L : L(7)

defined by

Lk)Y {p e t r  :  o(2,  P)  :  f * (z) }

is actually single-valued on the whole R". Therefore, by Lemma 2'2(b), all the partial

derivatives Df*(z)l0zi exist, and L(z) : {0f*(z)l0zl. Property (4.5) thus comes from

the definitions of /* : f * (z) and L : l, (z). Further,Lemma 2.3 and Remark 2.4 imply

f*(z):k,#l- t(ry) foratt z €rRn

the continuity of 3f* lDz: 0f*(z)/32.
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Remark 4.1. Consider a convex and lower semicontinuous function f : f (p) on IR'.
Assumedom/ lAandimf c  ( -m,*ool ( thefunct ion f  :  f (p)  is thencal led
proper).It will be shown that

lim f 
,(0,' : f oo if and only if dom /* : lftn .

t p t -+oo  l p l
In fact, if lim;p;*+oo f @) /lpl : *oo, then for each z e lR', the supremum

f-(z) : su1, {(2, p) _ f(p)}

is essentially taken over all elements p of just a compact set K. C IR', and is hence
finite. Conversely, let there exist an M e IR and non-zero points pl, p2, ... inR' such
that  f  (pK) < Mlp* l  for f t :  I ,2 , . . .  andthat  lp* l  - -> *oo asfr  *  +oo.  SinceIR' is

locally compact, we may suppose pk /lpkl --+ zo e IR'. Putting:- 
o! 

@ * 1)20, we
thus obtain

f*(z) >sup{(2, p\ - f@\} > sup{lpkl .  t@ + dr' ,  I \  - Ml}
k  k  \  l p " l /

z oIT- lPk | : +*'

Remark 4.2. Consider a finite convex function d : Q@) on IRn with the Frenchel
conjugate Q* : Q*(p).Let Q** : Q**(x) be the Frenchel conjugate of 0* - Q*@).
Then it is knownllthatf* : Q* (p) is proper, convex, and lower semicontinuous on IRn
and that Q** : @. Accordingly, dom@** - dom@ - IRn, hence, Remark 4.1 implies
l im1pl-+m Q. @) /  lp l  :  +oo.

Proof of Theorem 4.1. By (F.I)-(F.ID and Lemma 4.2, (4.3) determines a continuous
function ( : C(t, x, y) whose derivatives

0 ( ( t ,  x ,  y )  0 { ( t ,  x ,  y )  0 { ( t ,  x ,  y )

0t 
' 

0n \xn

exist and are continuous on the whole 2 x IR'; moreover, one may apply Lemma2.2

to the funct iono:  o(8,  d E:  - tQ,x,  y)  where pEi  y ,E 
d i  

Rr ,  andmY n + I ,

6 
oi (r, x), O Ei 2. Consequently, u - u(t,x) defined by @.D is locally Lipschitz

continuous and directionally differentiable in D with

O"u(t,  x)

:,#tn(t.(?) -(-, I

,  e l .
'  (4.6)

Here, IR'+l > e + 0, L(t, x)H b . R' : 6(r, x, t) : u(t, x)\ I A (Lemma2.3.)But,
aryording to Rademacher's Theorem, u : u(t, x) is (totally) differentiable at any point
outside a null set Q c D. Therefore, suitable choices of e in (4.6) give

y)/ t)(.r
o

af. (
) ,

v) /t)
7

(x

a
af. (

1u(t ,  x)
0t
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7u(t ,  x)
mln

0f.((x -  y)/ t ) 0f*((x - y)l t)
Ituu'dxi 

ieL(t,x) 1zi

p r o v i d e d  ( t , x )  e D \ Q a n d  I  e  { 1 , 2 , . . .  , n } .
Now, given ffiry (t, x) e D \ Q, we pick up some ), e L(t, x).Then it follows from

(4.5) and (4.7)-(4.8) that

l u ( t , x )  _  * ( x  
-  y \  _  / x  

- y  A f - ( x  -  y ) l t ) 1

a t _ : r  \  t  ) _ \  /  ,  a ,  I
_ _ r10f . ( (x  

-  y) / t )y  "1 \u( t ,  x)y
' \  D z  

- ) : - t \  
a r  / '

The Equation (a.1) is thus satisfied almost everywhere in D.
As the next step, we claim that

,'r,,.liTto,".r 
u(t ' x) : oQco) (4'g)

for each fixed x0 e IRn. Indeed, on the other hand, the definition (4.4) clearly forces
u(t, x) < Q@) + r . /*(0), hence,

: maIX
yeL( t ,x )

l imsup u(t ,x) < Q@o).
D>(t  ,x)- -+ (O,xo)

(4.8)
0zi

On the other hand, let us first take a sequence 
{tr*,"-l}ll 

c D converging to

(0, 
"0) 

suchthatl iminfo>(t,r)-(o,ro1 u(t,x) : l imr*+ *u(tk,.rt;, and second, choose
arbitrary points yft e L(tk,xk) (for k : 1,2,...).Then it wil l be shown that
yft --+1r-+oo) r0.Py contrast, suppose without loss of generality that ++oo)
)0 € IR', where y0 7 x0. (We emphasize here that the sequence {y IRn is
bounded by Lemma2.3.) Since lim.,4 * f 

* (z) llzl: +oo (cf. Remark 4.2), (4.10) and
a passage to the limit as k -+ *oo in the equality

u1tk, xk1 : OO\ + / f.(t-!)

(4.10)

(4.12)

(4 .11)

would yield

Q@0)  >  l im in f  u ( t , x ) :  .  l im  u1 tk , xk l :  Q00 )  *  ( *oo )  :  *oo ,
2r(r , r ) - (0,x0) k-*oo

a contradiction. This shows that limr-166 yk : xo. But the continuous function,
f* : f*(z), is bounded from below since again lim111-+oo f-k)llzl : *oo.
Therefore, a passage to the limit as k -+ *oo, also in (4.11), implies

l i m i n f  u ( t . x ) :  .  l i m  u 1 t k , x k 1 ,  Q @ o ) .
2 r ( / , x )+ (0 , . r 0 )  k -+m

Finally, combining (4.10) and (4.12) gives (4.9), which says that u : u(t,x) has
a (unique) continuous extension over the whole 2 satisfying (4.2). The proof is thus



Explicit Formulas for Global Lipschitz Solutions

Remark 4.3. Assume (F.I). Then (F.II) is satisfied if lim;y1-1mG,x,y) : *oo
uniformly in (t, x) on each bounded subset of 2.

In fact, let V C D be bounded, say V c (0,r) x B(O,r) for some r €
(0, *oo). Put M 

ds! 
, . 17*10)l * max1,l<,Q@) < *oo. It follows from (4.3) that

minl,l=, ( (t, x, w) < | (t, x, x) : Q @) + / . /.(0) < M whenever (t, x) € V. Hence,
if limlylraoo 1G, x, y) : *oo uniformly in (/, x) on each such V, then for a suitable
number N(Y) Z r, we have

m i n  1 ( t , x , w )  <  m i n  ( ( t , x , w )  <  M
l u  < N ( V ) '  

-  
l w . r ' '

<  4 ( t ,  x ,  y )  as  ( t ,  x )  e  V  .  l y l  >  N (Y ) ,

i.e., (F.II) is satisfied.

Corollary 4.3. Under hypothesis (EI), suppose

lt3

, .  .  , ( x )
l l m l n l @ _  > - o a .
lx l - - -+oo lx  I

(4.r3)

Then (4.4) determines a global Lipschitz solution of the Cauchy problem (4.1 )-(4.2).

Proof. By Remark 4.3, it suffices to prove that limlr;+a * ( Q, x, )) : *oo uniformly
in (r, x) on each bounded subset V of 2. To this end, let V C 2 be bounded, say
y c (0, r) x B(0, r), for some r e (0, *m) and let M e (0, *m) be arbitrarily given.
Condition (4.13) says that there exist numbers .1., N e (0, +oo) such that

Q0) . -)"lyl whenever lyl > N.

But we can certainly find a positive number with the property where

f" > 2(M * i.) as lzl > v.

Putting N(y) E max{l, N,2r,r(l * u)}, we therefore deduce from (4.3) rhat if
(t, x) e V and lyl > N(V), then

l ' ' - ' ' l  I  .  r r l
l . y l  r

f . ( (x -  y) l t
4 Q ,  x ,  y )  >

b e c a u s e  l ( x  - y ) l t l  >  [ r ( 1 *  v )  - r l l r : v , l x  - y l l l y l  >  ( l y l -  r ) l l y l >  l 1 2 .  r

If 0 : /(x) is globally Lipschitz continuous on IR', then (4.13) clearly holds. The
following result of Ul can thus be considered as a consequence of Coroll ary 4.3.

[ - ^ *

[ - ^ *

l (x  -  y ) / t l

z t u  + n . !
2 l v l .  u

)

l
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Corollary 4.4. If the initial function Q : Q@) is globally Lipschitz continuous and if
the Hamiltonian f : f (p) is strictly convex onR" with lim1pl++ool f @)/lpl: +oo,
then (4.4) determines a global Lipschitz solution of @.1)-@.2).
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