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Abstract. This paper presents some explicit formulas for global Lipschitz solutions of the Cauchy
problem for first-order, nonlinear partial differential equations. The method used here is based on
the technique of multivalued functions.

1. Introduction

The aim of this work is to present some formulas for explicit global Lipschitz solutions
of the Cauchy problem for Hamilton—Jacobi equations of the form

du u 2 n
§+f(t’a)_0 in {t >0, x e R"}, (1.1)

u(0,x) =¢() on {r=0, x € R"}. (1.2)

Itis well-known that the Cauchy problem (1.1)—(1.2) has a locally unique C 2_solution
if the Hamiltonian f = f(¢, p) and initial function ¢ = ¢ (x) are of class C2. However,
there is generally no possibility of finding a global classical solution. One therefore needs
to introduce a notion of generalized solutions and to develop theory and methods for
constructing these solutions. During the past five decades, many mathematicians have
obtained various global results by relaxing the smoothness conditions on the solutions.
In particular, the global existence and uniqueness of (generalized) solutions for convex
Hamilton—Jacobi equations were well studied by several approaches.

* This work was supported in part by the National Basic Research Program in Natural Science,
Vietnam.
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If the Hamiltonian f = f(p) is continuous and the initial function ¢ = ¢(x) is
global Lipschitz continuous and convex with the Fenchel conjugate ¢* = ¢*(p), Hopf
[7] proved in 1965 that the formula

u(t, x) = Irjré%gg{(p,x) —¢*(p) —tf(p)} (1.3)

determines a (generalized) solution of the Cauchy problem (1.1)—(1.2) in the sense that
this solution satisfies (1.1) at every point where it is differentiable. Since the solution is
locally Lipschitz continuous, the well-known Rademacher theorem [11, Theorem 1.18]
shows that (1.1) is then satisfied almost everywhere.

If the Hamiltonian f = f(p) is strictly convex with lim,| . 10 f(p)/|p| = +o00 and
the initial function ¢ = ¢ (x) is globally Lipschitz continuous, Hopf [7] also established

u(t,x) = min {9 +1 (Z2)} (1.4)
yeR" t

These formulas are often associated with the name of Hopf, although (1.4) was actually
first discovered for n = 1 by Lax [9] in 1957.

Step by step, certain more general cases of Hopf’s formula (1.3) will thoroughly be
dealt with in this paper under a standing hypothesis like (but somewhat stricter than)
Carathéodory’s condition on the Hamiltonian f = f(¢, p). Section 2 concerns the case
of convex (but not necessarily global Lipschitz continuous) initial data. In Sec. 3, we
consider the Cauchy problem with non-convex initial data: First, for the case where
¢ = ¢(x) can be represented as minimum of a family of convex functions, and second,
for the case where ¢ = ¢ (x) is a d.c. function (i.e., it can be represented as the difference
of two convex functions). Finally, Sec. 4 discusses Hopf’s formula (1.4)in case ¢ = ¢ (x)
is just continuous.

Most of the results presented here were originally published in [15-17]. Some of them
have been revised and updated. Some materials are presented here for the first time. (For
other results in the field, see, for example, [3-6, 10,13, 14].) Our method is based on
some techniques of multifunctions and convex functions.

Throughout, we use D to indicate the set {0 < ¢ < +00, x € IR"}. Moreover, for any

G C R, put Dg & ((0, +00) \ G) x R" = {(t,x) € D : t ¢ G}. The notation 3/x
will denote the gradient (3/dx1, ..., 8/9x,). Let | - | and (., .) be the Euclidean norm

and scalar product in IR", respectively. Further, we define Lip(ﬁ) gef Lip(D) N cD),
where Lip(D) is the set of all locally Lipschitz continuous functions # = u(¢, x) defined
onD.

Definition 1.1. A function u = u(t, x) in Lip(D) is called a global Lipschitz solution
of the Cauchy problem (1.1)—(1.2) if it satisfies (1.1) almost everywhere in Qr !

((t,x),0 <t <T,x € R} and if u(0, x) = ¢(x) for all x ¢ R".
2. The Cauchy Problem with Convex Initial Data

In this section, we consider the Cauchy problem (1.1)—(1.2), with ¢ = ¢(x) a finite
convex function on R*. Denote by ¢* = ¢*(p) the Fenchel conjugate function
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of ¢ = ¢ (x),
¢*(p) & sup ((p, x) — p(x)} for p e R",

x€R”

and by E the effective domain of ¢* = ¢*(p),

E d_i.fdom¢* ={p eR": ¢*(p) < +o0}.

We assume the following two hypotheses:

(E.I) The Hamiltonian f = f (¢, p) is continuousin {(z, p) : ¢t € (0, +00)\ G, p € R"}
for some closed set G C R of Lebesgue measure 0. Moreover, to each positive number
N, there corresponds a function gy = gy (?) in Li’;’c(]R) such that

sup |f(z, p)| < gn(t) for almost all # € (0, +00).
|pl=N

(E.IT) For every bounded subset V of D, there exists a positive number N (V) so that

t !
(P,x)—¢*(p)—/0 f(z, p)dr < max {(q,x)—tb*(q)—/(; f.gdr} 2.1)

lg|=N(V)

whenever (¢, x) € V, |p| > N(V).

Hypothesis (E.I) implies the f-measurability and p-continuity of f = f(z, p) on
{t > 0, p € R"}. Moreover, since ¢ = ¢(x) is finite on R”, th_ig hypothesis allows us to
define an upper semicontinuous function ¢ = ¢(z, x, p) from D x R”" into [—00, +00)
by

Man>@an>—¢vpy—A.ﬂupwn 2.2)

which, for each p € E, is actually finite and continuous in (¢, x) on D.
The next theorem will be fundamental in this section.

Theorem 2.1. Let ¢ = ¢(x) be a finite convex function on R". Assume (E.I)—(E.II)
hold. Then a global Lipschitz solution u = u(t, x) of the Cauchy problem (1.1)—(1.2) is
given by

u(t, x) gef sup ¢(t, x, p)
peR”

t
= s [P0~ ") = [ f ) for meD. @

peR”

Remark 2.1. The requirement (E.II) could be in a sense regarded as a compatible
condition between Hamiltonian and initial data for the existence of global Lipschitz
solutions of the Cauchy problem (1.1)—(1.2). To see this, we first rewrite (E.II) in an
alternative form that is essentially equivalent (by a standard compactness argument) but
seemingly more amenable to verification:
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(E.IIY For every (:°, x%) € D, there exist positive numbers 7 (¢°, x) and N(z°, x°) so
that

o, x,p) < max ¢@(t,x,q) whenever (t,x) € V(to,xo), ip| > N(to, xo),
lgI<N (°,x%)
2.1)

where V (20, x) ¥ (2, x) € D |t — 1% + |x — x9] < r(t, x0)}.

We proceed now to consider, for example, the Cauchy problem

ou 1 ,/0u\2 !
E_z(a_) =0in {r >0, x € R},
2

u(O,x):%on{t:O, x €R}.

Then the method of characteristics gives the unique classical solution

x2
20— 1)

= (g Q.4

in {0 < ¢ < 1, x € R}. This solution cannot be extended continuously beyond the time
¢t = 1. We should note that in this case the set of all (t°, x%) € D such that (2.1) holds
for some (%, x) > 0 and N(¢°, x%) > 0 is precisely the domain {0 < ¢ < 1, x € R}.
Moreover, if we try to apply Hopf’s formula (1.3), ignoring the fact that the initial
function here, ¢ = x?/2, is not globally Lipschitz continuous, then we also obtain the
same solution as 2.4)in {0 <t < 1, x € R}.

Remark 2.2. Let ¢ = ¢(x) be a finite convex function on R”. Assume (E.I). Then (E.II)
is satisfied if (¢, x, p) tends to (—oo) locally uniformly in (¢, x) € D as |p| tends to
(+00), i.e., if the following holds:

(E.II)” For any A € R and any bounded subset V of D, there exists positive number
N(x, V) sothat ¢(z, x, p) < A whenever (¢,x) € V, |p| > N(A, V).

Indeed,_ﬁx an arbitrary qO e FE & dom ¢* # (@ [12, Theorem 12.2]. Since, the finite
function D > (¢, x) — @(t, x, qo) is continuous, it follows that

Ay & inf go(t,x,qo) > —00
t,x)eV

for any bounded subset V of D. Under hypothesis (E.II)”, we find a finite number
Ny > |q0| (for each such V) so that

o(t,x, p) <Ay < o(t, x,¢°) < max (r.x.q)
qiI=n

as (t,x) € V and | p] > Ny, thus obtaining the validity of (E.II).
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Remark 2.3. The condition “gy = gy (¢) € L." in the hypothesis (E.I) could not be

loc
replaced by “gn = gy (¢) € Lll0 .- To see this, consider the following Cauchy problem:

ou it du/ox
ar |t —1|Y/2
u(@,x) =x on {t=0, x € R}.

=0in {t>0, x e R},

Here,ndéfl,
dof P def
fa,p) = T 17 and ¢(x) < x

forx e R, peR,and ¢ > 0. Then

+oo ifp #£1,
* =
¢(P)—[O P

hence, (E.IT) holds when N (V) > 1. All the assumptions of Theorem 2.1 with LllOc in
place of Lp> for hypothesis (E.I) are therefore satisfied here. However, in this case, (2.3)
gives the function

w=ut,x) = x—2-2t—1/"2sign(t — 1),

which is not Lipschitz continuous in any neighborhood of a point (1, x").

For the proof of Theorem 2.1, we need some preparations. We first recall that a
directional derivative is defined as follows: Let ¢ = (&) be a finite-valued function &
near a point £0 € R™ and let 0 # e € IR”. Denote

0 — (0
apvp (Ot b gl Sadnde) S V6.)
840 S

and

0 1 0
8, ¥ (&%) défn%nf 44 +3f;> VE")

If +o00 > ajw(go) = 3;¢($0) > —oo for all non-zero e € R™, then ¥ = (&) is

said to be directionally differentiable at £°, and 3,y (£%) ¥ 37y (£%) = a7y (£©) will

be called its derivative at £° in the direction e.

Lemma 2.2. Let O be an open subset of R™ and w = w(§, p) an upper semicontinuous
Sunction from O x R" to [—00, +00) with the following two properties:
(i) there exists a non-empty set E C R”" such that o = w(&, p) is finite on O x E and

that (&, p)l, pyeoxEc = —00 where E€ &l e \ E. Moreover, to each bounded
subset V of O, there corresponds a positive number N(V) so that

wé&, p) < l maxv)a)(f,q) whenever £ € V, |p| > N(V);
q

[=N(
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(ii) Forevery fixed p € E, the function = w(§, p) is differentiable in & € O. Besides
that, the gradient dw /9§ = dw (&, p) /0§ is continuous on O x E.

Then

@ v =vy(&) el sup{w (&, p) : p € R"}is alocally Lipschitz continuous function
in the domain O,

(b) ¥ = (&) is directionally differentiable in O with

Y (&) = pglgé)(&a)%p—z, e> Ec0, 0£ecR™),

where .

LE) E (peR": 0 p)=vE) CE. 2.5)

We shall also need the following:

Lemma 2.3. Letproperty (i) in Lemma 2.2 hold for a given function o = w (€, p) which
we assume to be continuous in & € O (whenever p € E) and upper semicontinuous
with respect to the whole (&, p) on O x R". Then (2.5) determines a non-empty-valued,
closed, and locally bounded multifunction L = L(§) of & € O.

Remark 2.4. Lemma 2.3 implies that L = L(£) is a compact-valued and upper
semicontinuous multifunction. In this lemma, the set O C R™ is not necessarily open.

Proof of Lemma 2.3. For any bounded subset V of O, denote Ny Lo N(V) (see (1)),
then L(§) C B(0, Ny) as & € V. This means that L = L(§) is locally bounded.
Moreover, with @ = w (&, p) being upper semicontinuous, we can deduce (also from (1))
that the supremum v (§) = sup{w (&, p) : p € R"} should always be finite and attained.
Consequently, L = L(¢) C E is a non-empty-valued multifunction of £ € O.

To complete the proof, one need only check the closedness of L = L(£). For this
purpose, let {(¢%, p©)}" be a sequence convergent to a point (£°, p°) in O x R” such
that p* € L(g%) as k = 1, 2,3, ... . By the definitions of ¥ = ¥ (¢) and L = L(£), we
have

w(E*, p*) > w(E, p) forall p, k. (2.6)

Since w = w (€, p) is upper semicontinuous in (&, p) and continuous in £, (2.6) shows
that

&, p%) > limsupw (£, p¥) > lim wE*, p) = w(€°, p) forall p.
k——+oo

k—+o00

Thus, p® € L(£%), and the multifunction L = L(§) is therefore closed. [ ]

Proof of Lemma 2.2. (a) Let V be an arbitrary compact convex subset of @ and let

N ¥ N). For any two points &1, £2 € V, pick up an element p' in the non-empty set

L(EY ¢ ENB(, N) (cf. Lemma 2.3). Then

vED —vED) <wE', ph) —wE?, ph),
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hence, the mean-value theorem gives

w(s*’ 1
&

vEH -yEH) < |3 e - g <At - €Yy,

where £* € [£1,£2] C V and A is a (finite) upper bound of 0w (&, p)/0&| over
(€, p) € V x B(0, N). Analogously, ¥ (%) — ¢¥(¢1) < A|&! — &£2|. The function
¥ = ¥ (&) is thus locally Lipschitz continuous in O.

(b) For any £0 € QO and 0 # ¢ € R™, we find two sequences {ak}k s {ﬂk}fc’;"l’ of
positive numbers convergent to zero such that

0 =1 0
e = i LE e~ VED

— 400 (847

and

i Y+ Bre) ~ v ")
im 1

—-+oo B

Let us take an arbitrary p € L(£° c E and apply the mean-value theorem to obtain
ary

P (E° + are) — P (EY) 4 w(E" + ope, p) — w(EY, p) 4 ('iw &% +@re, p) 0)
= DE TS

3y =

where oy € (0, o). A passage to the limit as k — +o00 shows that

0
8 Y(E") > <aw (53‘;’ g e>
for any p € L(£°). Hence
0
7Y(ED = sup <aw“E + P) ) @7
peL(&%) Ll3

Now choose an element pk eL (EO + Bre) foreachk = 1, 2, ... . Since the multifunction

= L(§) is closed and locally bounded (Lemma 2.3), by taking a subsequence if

necessary, we can assume that pk (k—+> ) p0 e L& 0). Therefore, a passage to the limit
——+00

(similar to the above) in the inequality
VE Ao V(D) w0+ B p) —w@ Y _ [ € +Bie r)
Bk - Br € ’
(where B;, € (0, Br)) gives
(G ) ¢° p)
3y (E° < 0=, >_ <a : > 2.8
V() < TR <p€szlgo) T (2.8)

Finally, combining (2.7)—(2.8) yields

_ a+ . (so,P) >
oY ED) = 7Y ") = r%)(aw e

forany £0 € 0,0 # e € IR™. This implies the directional differentiability of ¥ = (&)
and completes the proof. [

We are now in a position to prove Theorem 2.1.
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Proof of Theorem 2.1. Tt can be verified that the function & = (¢, p) % ¢, x, p)
(see (2.2)) satisfies all the assumptions of Lemma 2.3 where E & dom¢* # 0 [12,

Theorem 12.2] and m & +1,§ i (¢, x). Here, we put o D and conclude that the

definition
L, x) {p € E:p(t,x, p) =u(t, x)} (2.8a)

determines ‘anon-empty-valued, locally bounded (and closed) multifunction L = L (¢, x)
of (¢, x) € D. -
Our proof starts with the claim that u = u(t, x)isinLip(D). To thjs end, arbitrarily take

anr € (0, +oo)anddenoteV = {(t x) €D :t+lx| <r}, Nr = N(V)(cf (E.ID). Let
&N, = &N, (t) be as in hypothe51s (E.I). Then for any two points (t xh), (12, x%) e V.
we may choose an element p! of the non- empty set L(¢', x') ¢ B(0, N,) and obtain

u@', xh) —u(@?, x%) < (!, 1, pH — 0, %2, pY)

tZ
ey e 0.2, +/ A
t[

< N, ! = 22| +5, 111 =12,

where s, & ess SUP;c 0. 8N, (£). Analogously, u(t?, x%) — u(t!, x) < N, |x! — x?| +
sy |t1 — #2|. Thus, u = u(t, x) belongs to Lip(D).
Next, let ¢® £ (1,0,0,...,0), & € 0,1,0,...,0),..., e & (0,0,0,...,0,1)

e R"*!, 1t follows from Lemma 2.2 (we now replace O e D¢, the set G be1ng as in
(E.D) that u = u(z, x) is directionally differentiable in Dg with

deou(t, x) = max{—f(t, P) ‘PE L(t»x)}a

2.9)
O_pou(t,x) =max{f(¢t,p): p € L(t,x))}

and (for1 <i <n)

3,u(t,x) =max {p; : p € L(t,x)}, 2.10)
O_gu(t,x) =max{—p; : p € L(, x)). '
On the other hand, according to Rademacher’s Theorem [11, Theorem 1.18], there exists
aset @ C D of ((n + 1)-dimensional) Lebesgue measure O such that u = u(z, x) is
(totally) differentiable with

@.11)
t’
aua(x.X) = aeiu(t» x) o _a_eiu(t’ x)
14

atany point (¢, x) € D\ Q. Hence, (2.10)—~(2.11) show that the equalities (for 1 <i < n)

du(t, x)
8x,-

=max{p; : p € L(t,x)} = min{p; : p € L(¢, x)}
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hold outside the null set P 4t (G xR") U @, ie., L(t,x) is precisely the singleton
{9u(z, x)/9x} except on P. Consequently, (2.9), together with (2.11), implies that (1.1)
must be satisfied almost everywhere in D.

Further, by a well-known property of Frenchel conjugate functions [12, Theorem
12.2], (9.7) gives

u(0, x) = max{(p, x} — " (P} =¢™(x) = ¢(x) forall x € R".
PER?

From what has already been proved, we conclude that u = u(z, x) is a global Lipschitz

solution of (1.1)—(1.2). [ |

Theorem 2.4. The function u(t, x) defined by (2.3) is continuously differentiable in an
opensetV C Dg ifand only if the multifunction L(t, x) defined by (2.8a) is single-valued
inV.

Proof. Inthe proof of Theorem 2.1, we have seen that if u (¢, x) is differentiable at (z, x),
then L(z, x) is single-valued. Conversely, suppose now that L(z, x) is a single-valued
function for all (z, x) in an open set V C Dg. By virtue of Lemma 2.3, we see that
V > (t,x) = L{t, x) is continuous. Note that, for each fixed x, 3,,u(z, x) (resp.
O¢,u(t, x)) is the right-hand partial derivative of u(z, x) with respect to ¢ (resp. x;).
Using Maximum Theorem [2, p.38] together with the formulas (2.9)—(2.11), we have
that u, (¢, x) and u, (¢, x) exist and are continuous in V. Theorem 2.4 is then proved. m

Corollary 2.5. Let ¢ = ¢(x) be a finite convex function on R". Under hypothesis
(E.I), suppose that inf,ern f(¢, p)/(1 + |pl) is locally essentially bounded from below
int € [0,%°). Then (2.3) determines a global Lipschitz solution of the Cauchy problem
(1.1)—(1.2).

Proof. Only (E.II) needs verifying. Given any r € (0, +00), denote V, L {(t,x) e D:
t+ |x| <r}ands, &f essinfye(0,-) infpere f(, p)/(1 + |pl). Then

D R e ) /0 )

<rlpl—¢*(p) —tsy(1 + |p|)
<r(1+2|s.|) max{1, [p|} — ¢*(p) (2.12)

for all (t,x) € V,,p € R". On the other hand, it being known (cf. Remark 4.2)
that limp—, 400 ¢*(p)/|p] = +o00, there exists a finite number N, > 1 such that
o*(p)/Ipl = r(1 + 2|s,|) + 1 whenever |p| = N,. Thus, (2.12) implies

o(t,x, p) < —|pl, provided (z,x) € V,, |p| = N;.

Finally, since r € (0, +00) is arbitrarily chosen, (E.IT)’ holds, and hence, so does
(E.ID). n

Corollary 2.6. Let f = f(t, p) be continuous on D and let ¢ = ¢(x) be convex and
globally Lipschitz continuous on R". Then (2.3) determines a Lipschitz solution of the
Cauchy problem (1.1)—(1.2).
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Proof. Since ¢ = ¢ (x) is convex and globally Lipschitz continuous, E_déf dom ¢*
should be bounded [12, 13.3] (and non-empty). Independent of (¢, x) € D, it follows
that

t
o(t,x, p) = (p,x) —¢"(P) —/0 f(z, p)dr = —

whenever |p| is large enough. Hypothesis (E.II) therefore holds while (E.I) is trivially
satisfied. H

Remark 2.5. As we have mentioned in the introduction, Corollary 2.6 was proved by
Hopf [7] in a different way for the case where f = f(p) depends only on p.

Examplé 2.1. Investigate the smoothness of the global Lipschitz solution defined by
(2.3) of the following problem:

ou ou
5+H<£)—07 (tvx)e(oa-'_w)X]Rv
i
u(©,x) = =,
where
0, g=0,
H@) =14, 0<g=<1,
1, g=>1.

Note that u(0, x) = x2/2 is not globally Lipschitz continuous and we cannot use Hopf’s
formula (1.3). But by Theorem 2.1 and formula (2.3), a global Lipschitz solution of this
problem is

t,x)e D ¥t >0 x<0)

raf,

(t,x) € D € {1 > max{x, 5}, x > 0}

=

u(t, x) =

—t (t,x) € Ds & (¢,0,x € R}(D; U D, U D3}

raf,

+5—xt, (t,x) €Dy max{0,2(x — 1)} <¢ <x,0<x <2}

rafH,

The singularities of this solution is the curve

X2
C: ?—t=0,t>2. 2.13)

This fact can be foreseen by applying Theorem 2.4. Indeed, L(z,x) = {0, x} if
t =x%/2,x > 2, and L(t,x) = {x —t,x}ift = 2(x = 1),1 < x < 2, while
L(z, x) is a singleton if (z, x) ¢ (C). Direct computation shows that L(z, x) = {x} for
(¢, x) € D1, L, x) = {0} for (¢, x) € Do\(C), L(t, x) = {x —t} for (¢, x) € D3\(C),
and L(t,x) = {x} for (¢, x) = D4\(C). Thus, Theorem 2.4 provides a method for
investigating the smoothness of the global Lipschitz solutions.
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3. The Case of Non-Convex Initial Data

In this section we consider the Cauchy problem (1.1)—(1.2) under the more general
assumptions that f = f(z, p) is still #-measurable and p-continuous as in Sec. 2, while
¢ = ¢(x) is now a non-convex function: First for the case where ¢ = ¢(x) can be
represented as the minimum of a family of convex functions, and second, for the case
where ¢ = ¢ (x) is a d.c. function, i.e., the difference of two finite convex functions on
IR". The class DC(R™) of d.c. functions plays an important role in the theory of global
optimization. This class is rather large; it contains all the semiconcave functions. We
emphasize that it also contains all functions of class C? (of the whole R") with second
derivatives bounded either from below or above. The reader is referred to [1] and [8] for
a sufficiently complete study of d.c. functions.
We first prove the following result.

Theorem 3.1. Let I be an arbitrary non-empty set anduy, = uq(t, x) a global Lipschitz
solution of the Cauchy problem for the same Hamilton—Jacobi equation

du du . n
E—l_f(t’g;)_om {t >0, x e R"} (1.1)

with the initial condition
ou(0, x) = ¢pu(x) on {t =0, x € R"} (1.2a)

for each o € 1. Suppose that, to each bounded subset V of D, there correspond a
set W(V) C V of Lebesgue measure 0, a non-negative number M(V), and a subset
J(V) of I such that all the functions uy, = ug(t, x) for « € J(V) are Lipschitz
continuous in V with a common Lipschitz constant M (V) and satisfy (1.1) at every
point of V.\ W(V) and that inf 1 uq (t, X) = mingej(v) Ue(t, x) for (¢,x) € V. Then
the function u = u(t, x) def infyer ueo (¢, x) is a global Lipschitz solution of the Cauchy
problem (1.1)~(1.2) where ¢ = ¢(x) g infger o (x).

Proof. By assumption, u(t, x) = mingej(v) 4o (f, x) on each bounded subset V of D.
Moreover, |ug (t!, x1) — uq (t%, x2)| < M(V) (|t! — 12| + |x! — x2|) forany « € J(V)
and any fixed (¢!, x1), (2, x?) € V. Assume u(t!, x!) > u(t?, x%) = uqo (12, x?) for
some a’ € J(V). Then

0 < u(eh, xb) —u(, x?) < upo(t!, x') — ugo (12, x%)

< MV) (|t' = 2] + 1x' — x?).

This means that u = u(t, x) is in Lip(D).

Now, denote Vi & ((t,x) € D : ¢t + x| <k}, Tk = (o), Wi & w(Wp) for each
k=1,2,...and let Wy C D be a set of Lebesgue measure 0 such that u = u(z, x) is
differentiable at every point of D \ Wy (Rademacher’s theorem). It will be shown that
u = u(t, x) satisfies (1.1) except on the null set Q ) U,’:;’g We.

Indeed, given any (1, x%) € D\ Q, we choose a positive integer k > 1° + |x°| and
some index o® € Ji so that u (¢, x°) = uy0 (2%, x0). Obviously,

u(t, x) — u(t®, x%) < upo(t, x) — ugo (°, x% 3.1
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for all (¢, x) close enough to (¢°, x°). Since u = u(z, x) and Ugo = Ugo(t, x) are both
differentiable at (0, x%), (3.1) implies

an(®, x%  Quao(t, x°)
a Bt

and
du(t°, x0) . Ao (12, x0)
Do sting el i

But u,0 = ugo(t, x) satisfies (1.1) at (9, x%), and so does u = u(t, x).
On the other hand, it is clear from the hypotheses that

u(0, x) = inf uy (0, x) = inf ¢, (x) = ¢(x) forall x € R".
ael ael

The function u = u(z, x) is thus a global Lipschitz solution of (1.1)—~(1.2). [ |
Now, suppose that ¢ = ¢ (x) is given in the form

o) inf ¢, (x) for x € R", (3.2)

with ¢y = ¢ (x) a finite convex function for every @ € I. Combining Theorems 2.1
and 3.1, we obtain the following first results for the representation of a global Lipschitz
solution in the case of non-convex initial data.

Corollary 3.2. Assume (E.I)—(E.Il) hold for each problem (1.1)«(1.2a), with ¢, =
®a(x) a finite convex function, a € I. Furthermore, assume that all the hypotheses of
Theorem 3.1 hold for the solutions

t
e = ua(t, %) & max {(p, ) — 42(p) - / f(z, pydr)
PER 0

of those problems. Then u = u(t, x) gef infyes ua (2, x) is a global Lipschitz solution of
the Cauchy problem (1.1)~(1.2) where ¢ = ¢(x) is defined by (3.2).

Corollary 3.3. Let ¢ = ¢(x) = minieqio, i) ¢i(x), with o1 = d1(x), ¢ =
$2(x), ..., ¢ = ¢r(x), be some convex and globally Lipschitz continuous functions.
If f = f(, p) is continuous on D, then a global Lipschitz solution u = u(t, x) of the
Cauchy problem (1.1)—(1.2) can be found in the form

ut,x)  min  max {(p,x) — $7(p) — fo £ pydz)

n
ie{l,2,....,k} pcR"
for (t,x) € D.

Proof. Since [ ] {1,2,...,k} is a finite set, the conclusion is straightforward from
Corollary 2.6 and Theorem 3.1. [
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Example 3.1. Consider the Cauchy problem

u\?
— ) -1
+ <8x>

u(0, x) = exp(—|x|) = min{exp(x), exp(—x)} on {t =0, x € R}.

ou

o =0 in {0 <t <400, x € R},

By Corollary 3.3, a global Lipschitz solution of the problem is

w=u(t,x) ¥ min max{px — hi(p) — t|p* — 1]},
i=1,2 peR

where .
plnp —p if p >0,
mpEqo if p=0,
400 if p <0,
and i
400 if p >0,
def .
ha(p) =1 0 if p=0,

—pln(—p)+p if p<O.

The solution can also be rewritten as
u(t, x) = min{max{px—plnp + p~t|p*~1|}, max{px + pln(-p)—p—|p*-1|}
p=0 p=<0

= max{-p|x| — plnp + p —t|p* — 1|},
p=0

in which we adopt the convention that plnp = 0if p = 0.

Example 3.2. Let h = h(x) be a finite-valued continuous function of « on a given
compact set K C R". We put

P Y min{h(@) + la| - [x]) for x € R".
ac

If f = f(t, p) belongs to C(D), depends only on ¢ and | p|, and is decreasing with respect
to | p|, then it follows from Corollary 3.2 that a global Lipschitz solution u = u(z, x) of
the Cauchy problem (1.1)—(1.2) can be found by the formula

t
) mip (@ + max (tp.0) = [ £z, pra)]

t
= min [h(a)—l—loel-lxl—/ f(r,oz)dt} for (¢, x) € D.
aek 0

We now consider the Cauchy problem (1.1)—(1.2) in the main case of this section
where ¢ = ¢ (x) belongs to the class DC(IR"), i.e., it has a representation of the form

¢(x) = 01(x) —02(x) on R" (3.2a)
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for some finite convex functions o1 = o1(x) and 0 = o»(x). We call (3.2a) a d.c

representation of ¢ = ¢(x). (Of course, there are always an infinite number of such

representations for each d.c. function ¢ = ¢(x).) The notations o = of(p) and

oy = o5 (p) will signify the Frenchel conjugate functions of 61 = oy (x) and 5, = o (x).

The effective domains of the theses conjugates are denoted by E; and E;, respectively.
Besides hypothesis (E.I), we shall also assume the following ones.

(EII) To any bounded sets V C D and E C R”, there corresponds a positive number
N(V, E) so that

0u(t,x,p) < max ¢, x,q) as (t,x) €V, a € E, |p| > N(V, E).
lg{<N(V,E)

Here, .
valt, %, 0) 2 (5, 2) — o (p+ @) = /0 G s (3.3)

(E.IV) All the multifunctions Ly = Lo(t, x) of (t, x) € D defined by
def n
LOt(ta-x) = {PG]R 5§0a(t,x,p)=;ré]3%¢a(t7xyfﬁ} (3'4)

are actually single-valued in D\ Q where Q is a certain closed set of ((n+-1)-dimensional)
Lebesgue measure 0 and is independent of « € R".

Remark 3.1. Let 01 = 01(x) be a finite convex function on IR*, and f = f@, p)a
p-convex function on {r > 0, p € R"}. Assume (E.I) and (E.IIT) hold. Then it can be

proved that (E.IV) is satisfied with @ &' G x R”, the set G being as in (E.I), if one of
the following two conditions holds:

(BIVY f = f(t, p) is strictly p-convex, i.e., it is strictly convex with respect to p on
R" for almost every fixed t € (0, +00).

(BIV)' af = o (p) is strictly convex on its effective domain E; &f dom oy
Theorem 3.4. Let ¢ = ¢(x) be in the class DC(R") with a d.c. representation (3.2a)

such that o = o02(x) is globally Lipschitz continuous on R". Under hypotheses (E.I),
(E.Ill), and (E.IV), the formula

def . —
- — * o ty ) D5 N
u(t, x) = min {02(0[)"'112%’5(0 (t.x,p)} on 3.5)

inwhich E, &f dom o, determines a global Lipschitz solution u = u(t, x) of the Cauchy
problem (1.1)—(1.2).

Proof. Let ¢y (x) & 01(x) — (o, x) + 0 (@) as x € R”, & € R”. Then ¢ = b (x) are
obviously convex functions. For each @ € Ej, consider the Cauchy problem (1.1)—(1.2).
By (E.I) and (E.III), it follows from Theorem 2.1 that the formula

u(t, x) el o5 () + m%{x @u(t,x, p) on D (3.6)
PER"
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determines a global Lipschitz solution u, = uq(t, x) of this problem. Moreover, we
may assume Q@ D G x IR", the sets Q and G are as in (E.I) and (E.IV), and then see that
all the solutions u, = uq (z, x) satisfy (1.1) at every point of D\ Q. (For the smoothness
of such uy = uy (¢, x), see Theorem 2.4.)

Now, since 0, = 03(x) is globally Lipschitz continuous on R”, the (non-empty)
set E; = domo, should be bounded [12, 13.3]. Given any r € (0, +00), denote

Vi € {¢,x) € D : t+ x| < r}and N, € N(V,, E5) (cf. (EID). For any

@', xh), (2, x2) in V,, we can then choose p* € Lo(t, x1) c B(0, N;) and deduce
from (3.3)~(3.4), (3.6) that

ua(t!, x) — ua (1%, x%) < @ (t1, X1, p%) — 0o (2, X2, p®)
{¢

= (p%, x' — 2% +/ f(z, p*)dr
0

<N Ixt = X2 45, 21 =11,

where 5, % esssupre(o.), g, (t) (cf. (E.I)). The solutions ug = ug(t, x) therefore
satisfy a Lipschitz condition on V, with constants N, and s,, which are independent of
o € Ej.

Next, rewrite (3.6) as

Uy (t, x) = oy (@) + max @, (t, x, p — o) 3.7

peR”
and fix temporarily (¢, x) € D. By (3.3) and hypothesis (E.I), go(t, x, p — o) is
continuous in o € IR”. Hence, by [12], the right side of (3.7), being the supremum of
a family of continuous functions, actually determines a lower semicontinuous function

from the whole R" into (—0c0, +00) whose effective domain is precisely the non-empty
bounded set E, C IR”. It follows that

4+ 00 > inf uy(z, x)
ackE,

= inf {of (@) + max ¢a(t, x, p — )}

a€E,
= min {0y () + max g, (¢, x, p — )
aefz{ 2 PER” p s }

= min {0 (&) + max ¢, (t, x, p —
OtEEz{ 2( )+p€]R”(pa( p )}

= min uy{t, x) (> —00).
ack,

Finally, since o7(x) = mz}Ex{(x, a) — o5 (a)} (see [7, p.964]), one has
Sy )
3611512 $a(x) = 01(x) + ;IeliEI;{—(a, x) — 05 (a0)}
= 01(x) — max{(x, &) — 0y ()}
a€E,
=01(x) — 02(x) = ¢(x) forall x € IR".

As a consequence of Theorem 3.1, u = u(t, x) e Mingef, Uy (2, x) is therefore a
global Lipschitz solution of the Cauchy problem (1.1)—(1.2). |
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Corollary 3.5. Let f = f(t, p) be of class C% on D and let ¢ = ¢(x) have a d.c.
representation (3.2a) such that o1 = o1(x) and 02 = 02(x) are globally Lipschitz
continuous on R". Assume (E.IV) holds. Then the function u = u(t, x) given by (3.5} is
a global Lipschitz solution of problem (1.1)—(1.2).

Proof. Since the non-empty set Ey ! dom oy is bounded {12, 13.3], hypothesis (E.III)
must hold while (E.I) is trivially satisfied. Hence, the conclusion is immediate from
Theorem 3.4. =

Example 3.3. Consider the Cauchy problem

9 9
() =0in {0<t<+o00, x R},
ot 9x

1w(©0,x) =¢(x) on {r=0, x € R},

with £(p) & (1 + |p»)'/3 (for p € R) and
x3 o

af [ 5 if x e [—1,1],

p(n) = { ) I

X — §signx if x ¢ [—1,1].
We first note that neither the formula (1.3) of Hopf nor the formula (2.3) of Theorem
2.1 works in this case since the initial function here is not convex. Although the present
Hamiltonian f = f(p) is in fact convex, we should also mention that Hopf’s formula

(1.4) could not be applied directly to the problem because
f(p)

im —= =1z +4o00.
lpl=>+o0 |p|

In this case, however, it is easy to check the validity of d.c. representation (3.2a) where

0 if x <0,
def x3 .
o =o1(x) = 7T if x €[0, 1],
5% —% if x >1,

and oo = o03(x) = o1(—x) are globally Lipschitz continuous on IR. Further, we may
invoke either (E.IV)” or (E.IV) to deduce that (E.IV) holds. Therefore, by Corollary 3.5,
a global Lipschitz solution # = u(¢, x) of the problem can be found in the form

dof . 2. an 3/2 3y1/3
t,x) = ax —a) — = — o —t(1 —« .
u(t,x) = min - max {x(p— ) 3(Ipl la*?) —t(1 +|p — a)'/?}

As we have seen, Theorem 3.4 and its Corollary 3.5 concern the Cauchy problem
(1.1)~(1.2) in the case where initial function ¢ = ¢(x) has a d.c. representation
$(x) = 01(x) — 02(x) such that domoy is bounded in IR". The following will be
devoted to the case where dom o = R”".

Theorem 3.6. Let ¢ = ¢(x) be in the class DC(R") with a d.c. representation
(3.2a) such that lim|x|_ 400 02(x)/|x| = +400. Under hypotheses (E.I), (E.Ill), and
(E.IV), suppose there exists a function g = g() in LIIOC(R) with the property that
sup{f(t, p) : p € R"} < g(t) for almost all t € (0, +00). Then (3.5} determines a
global Lipschitz solution of the Cauchy problem (1.1)—(1.2).
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Proof. Since o3 = 0,(x) is a finite convex function on IR” with lim x4 00 02(x)/]x| =

+00, soisits Fenchel conjugate function o) = o5 (p);inparticular, E, e domo; =R"
(cf. Remarks 4.1 and 4.2).
We shall continue using the notation u, (¢, x) introduced in the proof of Theorem 3.4.

Letr € 0,4%), V; € {(t,x) € D : 1+ x| < r}, i, < supy, ., o7 (x)], and

Sy = fot lg(T)ldz. Since lim s 100 05 (p)/|pl = +00, to any M € (0, +00), there
corresponds a finite number N, 5, > 1 so that

az*%zr—l—sr—i—,ur-kM as |a| > Ny . (3.8)

By (3.3), it follows that, if (¢, x) € V,, then ¢, (¢, x, p —r) > (p,x)—of(p)—rla|—oa,.
Therefore, (3.7) and (3.8) imply

ug(t, x) > o5 (@) i) = of (p)} = rla| — s,

=05 (@) + o1(x) —rla| —s,
Z(r+5r+,ur+M)'Ial_llvr—rlod_sr>M,

provided (¢, x) € V, and |&| > N, p;. This means that

lim  uy(t, x) = +oo locally uniformly in (¢, x) € D.
|| —+o00

Hence (cf. Remark 2.2), we may find a positive number N, for each r € (0, +-00) such
that
inf u,(z,x) = min uq (¢, x) whenever (t,x) € V, .
x€R" ler| =V,
(It should be noted that u, (2, x) is lower semicontinuous in the whole R”.)

Moreover, the analysis similar to that in the proof of Theorem 3.4 shows that the
solutions 1, = uy (¢, x) satisfy a Lipschitz condition on V, with constants depending on
r but independent of « for |¢| < N,, and that they satisfy (1.1) except the common set
of Lebesgue measure 0. The proof is thus complete in view of Theorem 3.1. |

4. Equation with Convex Hamiltonian f = f(p)

We now consider the Cauchy problem

ou ou " n
5Jrjf(a)zomD:{t>0,xe1R}, @.1)
1(0,x) = ¢(x) on {f =0, x € R"} 4.2)

under the following two hypotheses.

(EI) The initial function ¢ = ¢(x) is of class C° and the Hamiltonian f = f(p)is
strictly convex on R" with limp|— 100 f(p)/|p| = +00.
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(FII) For every bounded subset V of D, there exists a positive number N (V) so that

n o+ ()} <om e (57)

|w|<N(V)

whenever (¢, x) € V, |y| > N(V). Here, f* = f*(z) denotes the Frenchel conjugate
function of f = f(p).

In the sequel, we use the notation

cx.) o)+ (), *3)

where (¢, x) € D, y € R", and shall prove the following theorem.
Theorem 4.1. Assume (EI)—(F.I1). Then the formula
u(t, x) % inf ¢, x,y) = inf [¢(y)+t 7* ( )] for (t,x) €D (44)
yeR" yeR”

determines a global Lipschitz solution of the Cauchy problem (4.1)~(4.2).

The next auxiliary lemma is known [7; 12, Theorems 23.5, 25.5, and 26.3], but what
we would like to insist here is its simple proof by the use of Lemmas 2.2 and 2.3.

Lemma 4.2. Let f = f(p) be strictly convex on R" withlim, p| o0 f(P)/|P| =
Then f* = f*(z) is everywhere continuously differentiable; moreover,

@) = <z, a—fgz(i)) - f(%z@) forall 7 € R". (4.5)

Proof. The strict convexity on R” of the function f = f(p) says that this function is
everywhere finite and that

FOp + (1 =P < FOH+A =D FPD)

for any p!, p?> € R", A € [0, 1]; the sign of equality holds if and only if p' = p? or
A € {0, 1}. Accordingly, f = f(p) is continuous.

It is a simple matter to check that @ = = (=, p) (z p) — f (p) satisfies all

dcf def def

the conditions of Lemmas 2.2 and 2.3 where we put E R”, = n, & =

R= ©f g = R", and shall deal with the function

v =y E L sup{w(z, p) : p € R") = f*(2).

Indeed, since lim|p(— 100 f(P)/|P| = +00, condition (i) in Lemma 2.2 holds while the
others are almost ready.

As f = f(p) is strictly convex, it can be verified that the multifunction L = L(z)
defined by

L {peR": 0 p)= )

is actually single-valued on the whole R". Therefore, by Lemma 2.2(b), all the partial
derivatives 3f*(z)/dz; exist, and L(z) = {9f*(z)/0z}. Property (4.5) thus comes from
the definitions of f* = f*(z) and L = L(z). Further, Lemma 2.3 and Remark 2.4 imply
the continuity of af*/dz = 3f*(z)/9z. [
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Remark 4.1. Consider a convex and lower semicontinuous function f = f(p) on R".
Assume dom f # @ and im f C (—00, +-00] (the function f = f(p) is then called
proper). It will be shown that

()
lpl>+o0 |p|
In fact, if lim | 400 f(p)/|p| = 400, then for each z € IR", the supremum

f* (@) = sup {{(z, p) — f(p)}

PER”

= +oo if and only if dom f* = R".

is essentially taken over all elements p of just a compact set K, C IR", and is hence
finite. Conversely, let there exist an M € R and non-zero points p!, p?, ... in R” such

that Ff(P*) < M|p*| fork = 1,2, ... and that |p¥| — +o00 as k — +o0. Since IR” is

locally compact, we may suppose p*/|p*| — z° € R™. Putting z oS (M + 1)2°, we

thus obtain
0 Pk

£*(@) = supl(z. p) = F(#)) = supllp*| - [ + (", L
k k |p*

)~ a1}

> lim |p*| = +oo0.
k—>—+o0

Remark 4.2. Consider a finite convex function ¢ = ¢ (x) on IR" with the Frenchel
conjugate ¢* = ¢*(p). Let ¢** = ¢**(x) be the Frenchel conjugate of ¢* = ¢*(p).
Then it is known [7] that ¢* = ¢*(p) is proper, convex, and lower semicontinuous on IR”
and that ** = ¢. Accordingly, dom ¢™* = dom¢ = R”, hence, Remark 4.1 implies
limp|, 400 @* (p)/ 1P| = +00.

Proof of Theorem 4.1. By (EI)—(F.II) and Lemma 4.2, (4.3) determines a continuous
function ¢ = ¢ (¢, x, y) whose derivatives

0s(t,x,y) 084G, x,y) 9Lt x,y)
ot ¥ GBSl |l GE

exist and are continuous on the whole D x IR"; moreover, one may apply Lemma 2.2

to the function w = w(§, p) et —¢(t, x, y) where p o v, E et R", and m & + 1,

& e t,x), O ] D. Consequently, u = u(t, x) defined by (4.4) is locally Lipschitz

continuous and directionally differentiable in D with

Oeu(t, x)
= a7 - T

(4.6)

Here, R"! 5 ¢ £ 0, L(t, x) & {y € R" : £(, x, y) = u(t, x)} # @ (Lemma 2.3.) But,
acgording to Rademacher’s Theorem, u = u(z, x) is (totally) differentiable at any point
outside a null set @ C D. Therefore, suitable choices of e in (4.6) give

M (7))
e {f*(x—y)_<x—y, Bf*((x—y)/t)>} @7
11

yeL(t,x) t 0z
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du(r, x) . ofT((x=y)/t) af*((x — y)/t)
—~ = min ———~ = max —— 22 °
x; ieL(t,x) az; yeL(t,x) 9z;
provided (¢,x) e D\ Qandi € {1,2,... ,n}.
Now, given any (¢, x) € D\ Q, we pick up some y € L(¢, x). Then it follows from
(4.5) and (4.7)-(4.8) that

4.8)

au(att,x) =f*(x:Y) _<x;y, 3f*((x3; )’)/t)>
f *((x — du(t,
_ —f( f ((xaZ y)/t)) . —f( ngX))'

The Equation (4.1) is thus satisfied almost everywhere in D.
As the next step, we claim that

lim u(t, x) = p(x%) 4.9)
Da(t,x)—(0,x°%)

for each fixed x° € R”. Indeed, on the other hand, the definition (4.4) clearly forces
u(t,x) < ¢(x) +¢- £*0), hence,

limsup u(,x) < ¢x0). (4.10)
D>(¢,x)—>(0,x°)

=00
On the other hand, let us first take a sequence {(tk ? x")]k_1 C D converging to

(0, x°) such that lim inf ps s xy_» (0,x0) #(#, X) = limg— 400 u(z*, x¥), and second, choose
arbitrary points y* € L(t*,x*) (for k = 1,2,..). Then it will be shown that
y& —> (k= +00) x%. By contrast, suppose without loss of generality that y* —s ;4 o)
y? € R”, where y° # x°. (We emphasize here that the sequence {y*) 5 Cc R'is
bounded by Lemma 2.3.) Since lim,_, 1 f*(z)/|z| = +o0 (cf. Remark 4.2), (4.10) and
a passage to the limit as K — +o0 in the equality

xk _ yk
u@ ) = 00+ 11(F) @.11)
would yield

¢G% >  lHminf u(t,x)= lim u@*, x*) = o) + (+00) = +oo,
Da(t,x)—(0,x9) k——+00

a contradiction. This shows that limg_s ;oo yk = xY. But the continuous function,
f* = f*(2), is bounded from below since again lim;_, 1 f*(2)/|z] = +oo.
Therefore, a passage to the limit as k — 400, also in (4.11), implies
AN
liminf  u(z,x) = lim u@®, x*) > ¢(x0). 4.12)
D3(t,x)—>(0,x%) k—+oc0

Finally, combining (4.10) and (4.12) gives (4.9), which says that ¥ = u(z, x) has
a (unique) continuous extension over the whole D satisfying (4.2). The proof is thus
complete. Ll
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Remark 4.3. Assume (EI). Then (FII) is satisfied if limpy1o0(f, x,y) = +o00
uniformly in (¢, x) on each bounded subset of D.

In fact, let V. C D be bounded, say V C (0,r) x B(0,r) for some r €

(0, +00). Put M & 7 . | £%(0)] + maxjy<, p(x) < +o00. It follows from (4.3) that

miny <, £, x, w) < &, x,x) = ¢(x) +1- f*(0) < M whenever (¢, x) € V. Hence,
if im|y|— 400 ¢(f, X, ¥) = 400 uniformly in (¢, x) on each such V, then for a suitable
number N (V) > r, we have

min_ ¢(t,x, w) < min {(¢, x, w) < M
lw|<N (V) |w|<r

<g(t,x,y) as (t,x) € V-|y| > NV),
1.e., (EII) is satisfied.

Corollary 4.3. Under hypothesis (FI), suppose

ol ()
lim inf ¢— > —o0. (4.13)
[x|=+400 ~ |x]|

Then (4.4) determines a global Lipschitz solution of the Cauchy problem (4.1)—(4.2).

Proof. By Remark 4.3, it suffices to prove that lim,y|_, 100 (2, x, ¥) = +00 uniformly
in (¢, x) on each bounded subset V of D. To this end, let V C D be bounded, say
V C (0,7) x B0, r), for some r € (0, +00) and let M € (0, +00) be arbitrarily given.
Condition (4.13) says that there exist numbers A, N € (0, +00) such that

¢(y) > —Aly| whenever |y| > N.

But we can certainly find a positive number with the property where

@

f ]f'| > 2M+1) as |z > v.

Putting N(V) & max{1, N, 2r, 7(1 + v)}, we therefore deduce from (4.3) that if

(t,x) € V and |y| = N(V), then

A N yl] bl
I = y)/7| Iyl

1
>[-r+20e40 3] iz M

f(f,x,Y)Z |:_)\+

because [(x — y)/t| > [r(L +v) —rl/r =v, |x = y|/ly| = (y| = r)/ly| > 1/2. =

If $ = ¢(x) is globally Lipschitz continuous on IR”, then (4.13) clearly holds. The
following result of [7] can thus be considered as a consequence of Corollary 4.3.
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Corollary 4.4. If the initial function ¢ = ¢(x) is globally Lipschitz continuous and if
the Hamiltonian f = f(p) is strictly convex on R™ with lim,p|—, +o0| f(p)/|p| = +00,
then (4.4) determines a global Lipschitz solution of (4.1)—(4.2).
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