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Abstract. In this paper we consider a complexity characteristic of languages and some properties of
classes of languages characterized by it. Using this characteristic, a necessary condition for labeled
Petri net languages is established. It is a sharpening and a generalizing of necessary conditions for
free-labeled Petri net languages in [1].

1. Introduction

The Petri net has been developed as a mathematical model of parallel and distributed
processing systems. In the past few years, the theory of Petri nets, in particular, the
languages acceptable by them (Petri net languages) were investigated extensively by
many authors (see, for example [1-3, 8, 10-12]).

The Petri net languages have become popular in describing the sequential behavior
of the above systems. Up to now, although we have had some examples of non-Petri net
languages, we do not have a criterion for recognizing whether a given language is Petri
net language or not. In [1] a necessary condition for the class of free-labeled Petri net
languages (FP-languages) was given. In this paper we are concerned with the class of
labeled Petri net languages (LP-languages). Thus, the present paper could be seen as a
continuation of work [1].

The notions and definitions of labeled Petri net (LP-net) and of LP-languages are
recalled in Sec. 2. In Sec. 3, a complexity characteristic of languages and its properties
are considered. Implementing it, a necessary condition for the class of LP-languages is
given in Sec. 4. In Sec. 5, some properties of classes of languages characterized by it are
examined. Finally, we close the paper with some open problems.

2. Notations and Definitions

2.1. For a finite alphabet X, we denote * (resp. X7, £.=") the set of all words (resp. the
set of all words of length r, of length at most r) on the alphabet ¥, and A denotes the
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empty word. For any word @ € £*, [(w) denotes the length of w. Every subset L C £*
is called a language over the alphabet . Let N be the set of all non-negative integers
and Nt = N\{0}.

Definition 1. A labeled Petri net N is given by a list:
N= (P, T; [, 0707 M0, Mf)7

where

P = {p1, ..., pn} is a finite set of places;,

T ={t1, ..., tn} is a finite set of transitions, PNT = @;

I: P xT — N is an input function ;

O : T x P — N is an output function ;

o : T — X is a labeled function, where X is a finite output alphabet ;
o : P — N is an initial marking ;

Mg = {uy,, ..., iy} is a finite set of final markings.

We can extend the labeled function o for a sequence as follows:

if t=tt...t,, then o(t) = o (t1)o(t2)---o(ty)-

Definition 2. A marking u (global configuration) of a Petri net N is a function from
the set of places P to N:
nw:P—>N.

The marking w can also be defined as an n-vector . = (1, ..., n) With p; = u(p;)
and |P| = n.

Definition 3. A transitiont € T is said to be firable at the marking p if and only if
Vpe P:u(p)=I1(p,1).

Let ¢ be firable at u, and if ¢ fires, then the Petri net N shall change its state from
marking 4 to a new marking u’ which is defined as follows:

Vpe P:u(p)=nulp) —I(p, )+ 0@, p).

We set 8(u, t) = w1 and the function § is said to be function of changing state of the net.

A firing sequence can be defined as a sequence of transitions such that the firing of
each of its prefix will be led to a marking at which the next transition will be firable. By
F, we denote the set of all firing sequences of the net V.

We now extend the function 8 for a firing sequence by induction as follows:

Letr € T*,t; € T, u be a marking at which #7; is a firing sequence. Then

{5(#«,1\) = W,
S(u.tty) = 8(5(1, 1), 1))
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Definition 4. The language acceptable by labeled Petri net N\ is the set:
LN)={xeXZ*FeT":(x =0()) At € Fx) A (8(no, t) € Myp)}.
The set of all labeled Petri net languages is denoted by L.

2.2. The class of LP-languages can be classified by various restrictions made on the
labeled function o. For example, if o is an isomorphism, then it may be omitted
completely by choosing ¥ = T and N is said to be a free-labeled Petri net (FP-net).
The language acceptable by a FP-net is called an FP-language.

The set of all FP-languages is denoted by £7. The class £/ has been examined in
[1,12].

It is obvious that £/ € £. We now show that £ C L.

Let ¥ = {a}, and L; = {a*}, k= const., k € N.

We consider L = X*\Lg. It is clear that L is regular. It is well known that every
regular language is an LP-language (see [9]), so L € L. But in [12], Starke has proved
that over one-letter alphabet, L € £/ if and only if L is finite or L = X*, therefore,
L ¢ £/ We obtain £/ C L. m

3. A Complexity Characteristic of Languages

3.1. Let L C X*. We define two equivalence relations E<,(modL) in £=" (and
E,(modL) in ¥") as follows:
Vx1,xp € =" (and Vx1, x2 € X7):

x1E<;x2(modL) & Vo € T* 1 xiw € L <> xow € L.
(x1E;x2(modL) & Yo € X" : xjw € L < xpw € L).

Itis easy to show that the relations E<, (mod L), E, (mod L) are reflexive, symmetric,
and transitive. Therefore, they are equivalence relations.
We define

Gr(r) =Rank E<, (mod L),
H;(r) = Rank E, (mod L).

Remark that the functions G (r), Hr(r), in general, are not given by algorithms.
Nevertheless, we here call them to be functions. They are considered to be complexity
characteristics of the language L over £=" and over X" . In the sequel, we shall use them
for formulating a necessary condition for LP-languages.

First, we give some of their simple properties:

(1) E<, (mod L), E, (mod L) are right-invariant equivalence relations.
(2) Vre N :
1 < Hp(r) < Gr(r) < Exp(r),

where Exp(r) denotes some exponential function of .
(3) Gr(r) is a non-decreasing function.
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@)
G7(r) = GL().

Hz(r) = HL(r).

(&)
Grur,(r) <Gr,(r)-Gr,(r).

Gr,nL,(r) £ G, (r)-Gpr,(r).
Hyp,ur,(r) < Hp (r)- Hp,(r).
Hy,np,(r) < Hp (r)- Hp,(r).

3.2. Now, we estimate the functions G,(r), Hr (r) for some languages L:

Example 1. Let L} = X*. We have
(Vr € NH(Vx1,x € Z)(Yw € T¥) : xiw € L1 and xw € L.

It follows that x; E<,x (mod L;). Therefore, G, (r) = Hy, (r) = 1.
Denote L; = £*\L; = @. We obtain G, (r) = Hf (r) = L.

Example 2. Let ¥ = {a, b} and
Ly= {a”‘b” |m.ne N+].

Denote:
W1=[a’" |15m5r];

W2={ambk|m+k5r; kzl};
W3={w625'|a>¢W1UW2}.

We have Z=" = Wi U Wo U W3 and Wy N W, N W3 = 0.

Itis easy to prove that all wordsinevery W;, i = 1, 2, 3, are equivalent by the relation
E~, (mod L;). Therefore, Gr,(r) = 3.

Example 3. Let ¥ = {a, b} and
Ly = {a"b" |ne N+}.

Denote W = {a,a?,...,d"). We have W C =, |W| = r, and a'E ,a’ (mod L3)
with i # j. Therefore, Gr,(r) > |[W|=r.

Example 4. Let |[Z| =k > 2 and
Ly = [xxR | x € E*],
where x® is the inverse image of x.

It is easy to show that, if x1, x2 € X7, x1 # x2, then x1E,x (mod Ly4). We obtain
Hp,(r)y=|2|=k".
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Example 5. Let |X| =k >2,c ¢ X and
Ls = {xcx | x € E+}.

It can verify that, if x;,x2 € Z<',x; # xp, then x;E<,x (mod Ls). Therefore,
GL,(r) = |2¥| = k(" = 1D/ = 1).

4. A Necessary Condition for LP-Languages

4.1. In [1], we have formulated some necessary conditions for FP-languages. In this
part, by using the functions Gy (r), Hr (r), we will establish a necessary condition for
LP-languages. The obtained result is a sharpening and a generalizing of one result in [1].

Theorem 1. Let L be accepted by an LP-net with m transitions and n places. Denote
k = min{m, n}. There exists a polynomial Py of degree k such that, for any integerr > 1,

Hp(r) < Pi(r),
Gr(r) < P(r).

Proof. First, we prove the theorem for the case where \V is an FP-net, and then generalize
the result for the case where A is an LP-net.

Let N = (P, T, 1, O, po, My) be an FP-net with |T| = m, |P| = n. We denote by
S<, the set of all reachable markings of AV by firing at most r transitions. We now prove
that if L = L(N\), then

Yre Nt :GL(r) < |S<|.

To prove this, we assume the contrary, ie., GL(r) > |S<|. Therefore, there are
x1,x2 € T=" such that x1E <;x2 (mod L), and (1o, x1) = (1o, x2). It follows that

VYo € T* : 8(8(1o, X1), @) = 8(8(1o, X2), w).

It means
YoeT*":xqjwe L < xwelL.

We obtain x| E<,x; (mod L). This conflicts with hypothesis x; E <,x2(modL). Therefore,
GL(r) < |S<|.
We now estimate |S< r|. There are two ways to do this.
First, we prove |S<,| < P,(r) with |P| = n.
Denote
Mo = (ai,...,an); a=maxa;, 1=<i<n.
I =max |0, p) — I(pist)l, 1<isnm 1<j<m

Lett =ttj,---t;,, p < r, be any firing sequence of \V. The equation of state change
by firing ¢ can be determined as follows: 8(uo, t;,) = u’ with Vp; € P:

W (pi) = po(pi) + (0, pi) — L(pi, 1)),
Wpi)<a+l.
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(o, tj, - 1,) = u'? with Vp; € P:

w P (p) = uPV(p) + (0@, pi) — 1(pi 1;,)),
[L(p)(Pi)Sa'l"p'l <a+l-r
Therefore, Vr € N1 :
IS</] < (a+1r)" = Py(r).

Second, we show |S<,| < P, (r) with |T| = m. We define the matrices I, 0%, D as

follows: -
I—[.]7 l] = (I(ph t]))mxn ’

071j, i1 = (0, Pi)mxn »
Doy @byt o
and set
e[j]=(0v"-70y 1 905---70)1Xm-
jth
Lett = t;tj,---t;,, p < r, be any firing sequence of N . Firing ¢, the equation of state
change is also determined by another way as follows:

8(uo, 4j,) = 1’ = po +elj11D.
8o tj, - +-1j,) = uP = u®™0 + el jp1D.
‘We obtain
8(uo, tjy -+ tj,) = o + e[ j1]D + - - +e[jp]D.

We sete[j1D =vj, j =1,...,m, and f; is the number of occurrences of transition ¢
in ¢. We can now express the equation of state change in the following form:

{ u'® M0+Z;n=1 fivi,

pIL T Attt ¢

It follows that |S<,| equals at most the number of non-negative integer solutions of
inequality Z}"zl fi < r.In [1], we have proved that this number equals C;,,, =
(m +r)!/r'm! < (m + r)™. Therefore, Vr € N*:

|S</| < (m + )" = Pp(r).
Combining both results of estimating |S<,|, we obtain
GL(r) < |S</| < Pi(r), with k = min{m, n}.

We now generalize the above result to LP-nets. The essential observation is that the
methods of estimating |S<,| depend only on the length of firing sequence #, not on
which components #; occur in sequence . At the same time, the labeled function o is a
non-erasing mapping, i.e., if x = o (¢), then I(x) = I(¢). So all arguments of estimating
|S<,| for FP-nets still hold for LP-nets.

Finally, from the property Vr € N: Hp (r) < G (), it follows that Hy (r) < Pi(r). ®

4.2. Using Theorem 1, we can show a series of rather simple languages not being
acceptable by any LP-nets.
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Example 6. Let |X| =k > 2 and ¢ ¢ X. We consider the following languages:
Ly = {xxR |x € Z*},
Ls = {xcx | x € T*},

where x% is the inverse image of x.

We have proved in Examples 4 and 5 that Hz,(r) = k" and G, (r) =k(k" —1)/(k—1).
According to Theorem 1, we have the languages L4 ¢ £ and Ls ¢ L.

Example 7. Let ¥ = {0, 1, a} and
L7 = {wd" | 0 € {0, 1}*, k = B(w)},

where B(w) is the integer represented by w as a binary number.
By an argument analogous to that used in Example 6, it is easy to show that
Hp. (r) = 2". Therefore, by Theorem 1, the language L7 ¢ L.

Example 8. Let |X| =k > 2 and
Ly={tinp---tyo | Vi:1; € *, I(tj) =I=const.: 3Ty = 70}
For every subset W = {Py, P2, ..., P;} C )3’, W is associated with a word a(W) =
P\Py-- Py Py---Pye X, withr =1- k.
[ —

k!—q times
It is easy to verify that
ac(Wwelsgo>weW.

Therefore, ' ,
H,(r) = 2% > 2F =",

with C = 2V/1, According to Theorem 1, the language Lg ¢ L.

Example 9. Let |Z| =k >2and ¢ ¢ X. We define
Ly = {t1ctac- - - cTyeto | Vit 1; € %, 1(7;) <1 = const.; Ar; = 19).

Similarly as in Example 8, each subset W = {P, P, ..., P} C > =! is associated

with a word:
B(W) = PicPyc---cPyc € T,

where r = (|Z5/)( + 1) = ((k(k* — 1))/(k — D) + 1), withk = |Z|.

It is easy to see that

BW)we Lo > weW.
Therefore, .
GrL,(r) = 2% =,

with C = 21/¢+D_According to Theorem 1, the language Lo ¢ L.

5. Some Properties of Classes of Languages Characterized by G (r)

5.1. It is well known that the class of regular languages is the simplest in Chomsky’s
hierarchy. We now show that it is also the simplest class by the complexity characteristic
Gr(r).
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Theorem 2. A language L is regular if and only if there exists a constant C, such that,
foranyr € N,

Gr(r) <C.

Proof. (a) “Only if” part. Let L € X* and L be regular. We recall the Myhill-Nerode
equivalence relation E(mod L) defined as follows: Vxi, x, € Z* :

x1Ex; (modL) & Vo € 2% : xjw€ L < xpw € L.

Denote I;, = Rank E (mod L).

Myhill-Nerode have proved that L is regular if and only if there exists a constant C,
such that I;, < C (see, e.g., [7]). If x; Exo(mod L), then x1 E<,x> (mod L). Therefore,
Gr(r) <I..Weobtain Gr(r) < C forallr € N*.

(b) “If” part. We assume that there is a constant C such that Vr € N, G (r) < C.
Because G (r) is non-decreasing and bounded, there exists lim G (r) =g, g = const.
when r — o0. Since the values of G (r) are integer, so there is a constant rg, such that
VYr>ryg: Gr(r) =gq.

To prove L is regular, we assume the contrary that L is not regular. By Myhill-Nerode’s

theorem, I; = +oo. Therefore, there is an infinite sequence xi, X2, ..., Xk, ...
xi € T* x; # x; and x; Ex; (mod L). From this sequence, we pick up the finite
sequence xi, X2, ... , Xq, Xq+1 and set k = max{l(x1), ... ,l(xg+1)}. We now choose

r = max({k, ro}. We obtain x; E <,x; (mod L) for i # j. It follows that G.(r) > g + 1.
Thus, there is r, r > rg but G.(r) # g. This contradicts the property that Vr >
ro, Gr(r) = g.It follows that L is regular. n

Example 10. We consider the following languages:

Ly ={a"b" |m,n > 1},
Ly ={a"b" |n>1}.

In Examples 2 and 3, we have shown that G1,(r) = 3 and G,(r) > r. By Theorem 2,
it follows that L, is regular, but L3 is not regular.

5.2. In [9] Peterson has shown that all LP-languages are context-sensitive. We now have
the following theorem:

Theorem 3.
(a) There is a context-free language L (i.e., it is rather simple in Chomsky's hierarchy)
but G (r) is very large.

(b) Conversely, there is a context-sensitive but not context-free language L (i.e., it is
rather complicated in Chomsky’s hierarchy) but G (r) is rather small.

Thus, the function G (r) gives a complexity of L, but, in general, it does not
characterize a computational complexity of L.
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Proof. (a) We examine
Ly = {(xx®|x € £*stdi}, [T|=k>2.

It is easy to see that L4 is a context-free langnage because it is acceptable by a
push-down automaton. But in Example 4, we have shown that Gr,(r) > Hr,(r) = k";
it means the degree of G, (r) gets maximum.

(b) We consider Lj; = {a"b"c"/n > 1}. One can prove that L, is a context-sensitive
but not context-free language (see, e.g., [7]). We now estimate G, (r). Let W denote
the set of all words in ©=" having one of the following forms:

(1) a,with 1<k <r;

) abvbk, with ki +kp <r; kp < ki;

(3) ahbkcks, with ki +ky + k3 < r, ki = ko, k3 < ky;
@) b.

Itis easy to prove that every word x € =" is equivalent by the relation E<, (mod L1;)
to some word in W. Therefore, G, (r) < |W|. By estimating the number of elements

in W, we obtain
32
GLy () 2 IWl = g7+ 5 +r+1.

It means the degree of G, (r) is rather small.

5.3. We close the paper with some open problems.

(i) Isthe necessary condition in Theorem 1 also sufficient? There are reasons to believe
that the answer could be negative.

(ii) Remark that the necessary condition in Theorem 1 is not trivial only when the output
alphabet X consists of & > 2 letters. So it is interesting to give another necessary
condition with £ = 1.
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