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Abstract.In this paper we consider a complexity characteristic of languages and some properties of
classes of languages characterizedby it. Using this characteristic, a necessary condition for labeled
Petri net languages is established. It is a sharpening and a generalizing of necessary conditions for
free-labeled Petri net languages in [1].

1. Introduction

The Petri net has been developed as a mathematical model of parallel and distributed
processing systems. In the past few yea.rs, the theory of Petri nets, in particular, the
languages acceptable by them (Petri net languages) were investigated extensively by
many authors (see, for example [1-3,8, 10-12]).

The Petri net languages have become popular in describing the sequential behavior
of the above systems. Up to now, although we have had some examples of non-Petri net
languages, we do not have a criterion for recognizing whether a given language is Petri
net language or not. In [1] a necessary condition for the class of free-labeled Petri net
languages (FP-languages) was given. In this paper we are concerned with the class of
labeled Petri net languages (LP-languages). Thus, the present paper could be seen as a
continuation of work [1].

The notions and definitions of labeled Petri net (LP-net) and of LP-languages are
recalled in Sec. 2. In Sec. 3, a complexity characteristic of languages and its properties
are considered. Implementing it, a necessary condition for the class of LP-languages is
given in Sec. 4. In Sec. 5, some properties of classes of languages characteizedby it are
examined. Finally, we close the paper with some open problems.

2, Notations and Definitions

2.1. For afinite alphabet X, we denote E* (resp. E', Xs'; the setof all words (resp. the
set of all words of length r, of length at most r) on the alphabet X, and A denotes the
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empty word. For any word al € t* , l(at) denotes the length of ar. Every subset Z c >*
is called a language over the alphabet E. Let N be the set of all non-negative integers
and N+ - N\{0}.

Definition l. A labeled Petri net N is given by a list:

N  -  ( P , T , I ,  o , 6 ,  & 0 ,  M r ) ,

where

P - {pr, ..., pnl is afinite set of places;
T -  { t t , . . . , t*}  is  af in i te set  of  t ransi t ions,  P AT -  A;
I : P x Z + N is an inputfunction;
O:T  x  P  +  N isanoutpu t func t ion ;
o : T -+ E is a labeledfunction. where E is a finite output alphabet;

l.ro : P + N is an initial marking ;
Mf : {ltfr, ..., lrfol is afinite set of final markings.

We can extend the labeled function o for a sequence as follows:

r f  t  - t 1 t 2 . . . t n ,  t h e n  o ( t )  - o ( t ) o ( t ) " ' o ( t " ) .

Definition 2. A marking l" (gtobal configuration) of a Petri net N is a function from
the set of places P to N:

t L : P + N .

The marking p can also be defined as an n-vector p - (l.tr, ..., &n) with pti - tr(pi)
and lPl : n.

Definition 3. A transition t e T is said to be firable at the marking p, if and only if

Y p e P : p t ( p ) > I ( p , t ) .

Let t be firable &t Lt, and if / fires, then the Petri net "A/ shall change its state from
marking p. to anew marking p' which is defined as follows:

Yp e  P :  p ' (p )  -  p (p)  -  I (p , t )  +  O( t ,  p ) .

Weset 8(tt,t) - p'andthefunctiondissaidtobefunctionof changingstateof thenet.
A firing sequence can be defined as a sequence of transitions such that the firing of

each of its prefix will be led to a marking at which the next transition will be firable. By
FN, we denote the set of all firing sequences of the net "A/.

We now extend the function 6 for a firing sequence by induction as follows:
Lett e T*,tj e T, p be amarkingatwhich tti LSafiring sequence. Then

I  60r, n) - &,
I  Aqt . , t t )  -  6(6(F,  t ) , t ) .
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Definition 4. The language acceptable by labeled Petri net N is the set:
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L(N) -  {x e E*l3r € T* :  (x --  o( t ) )^ ( /  € Fx) n(6(pro,  t )  e Mr) | .

The set of all labeled Petri net languages is denoted by L.

2.2. The class of LP-languages can be classified by various restrictions made on the
labeled function o. For example, if o is an isomorphism, then it may be omitted
completely by choosing E : T and "A/ is said to be a free-labeled Petri net (FP-net).
The language acceptable by a FP-net is called an FP-language.

The set of all FP-languages is denoted by Lf . The class Lf has been examined in
u,tzl.

It is obvious that Lf c ^C. We now show that Lf c L.
L e t E  - { a } , a n d L p - { a k l ,  k - c o n s t . ,  k e  N .
We consider L - E*\Zr. It is clear that L is regular. It is well known that every

regular language is an LP-language (see [9]), so Z e L. But in lI2l, Starke has proved
that over one-letter alphabet, L e Lr if and only if L is finite or L : E*, therefore,
L 4 Lf .We obtain Lf c L.

3. A Complexity Characteristic of Languages

3.1. Let L c Ex. We define two equivalence relations E=r(mod L) in lsr (and
Er(modL) in E') as follows:

Yx1, x2 € >=' (and Vxr , x2 e Er):

x1E.rx2(mod,L) <+ Var € t" i x(D e L <+ x2o € L.

(xrErxz(modZ) +> Va,l € t" i x1{D € L <+ x2a e L).

It iseasytoshowthattherelationsE., (mod L),E, (mod L)arereflexive,symmetric,
and transitive. Therefore, they are equivalence relations.

We define

G r(r) : Rank E.' (mod Z),

Hr(r) - Rank E, (mod L).

Remark that the functions Gr(r), Hr(r), in general, are not given by algorithms.
Nevertheless, we here call them to be functions. They are considered to be complexity
characteristics of the language L over Est and over E'. In the sequel, we shall use them
for formulating a necessary condition for LP-languages.

First, we give some of their simple properties:

(1) E=, (mod L), E, (mod L) are right-invariant equivalence relations.
( 2 )  V r  e  N :

| < Hr(r) < Gr(r) < Exp(r),

where Exp(r) denotes some exponential function of r.
(3) G r(r) is a non-decreasing function.
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(4)
G7(r)  -  G r(r) .

H7(r) - Hr?).

(s)
GLrur r ( r )  <  G r r ( r ) '  Gr r ( r ) .

Gr . rn r r ( r )  <  G r r ( r ) '  Gr r@) .

HLruLr ( r )  <  Hr r ( r ) '  Hr r ( r ) .

HL,nLr(r)  < Hu(r) '  Hrr(r) .

3.2. Now, we estimate the functions Gz. (r), Hr(r) for some languages Z:

Example 1. Let Lr: E*. We have

( V r  e  l f + ; f i ; 1  , x 2 €  > l ' ) ( V r €  > * )  : x 1 r o € L 1  a n d  x 2 o € L 1 .

It follows that 11 E.rxz (mod L1). Therefore, Grr(r) - HLr(r) - 1.

Denote Lr : E*\Lr - A.We obtain G7,@) : Hir(r) - 1.

Example 2. Let E : {a, bl and

L z :  [ o * b "  I  m , n  €  N + ] .
t l

Denote:
W r : { " ^ l r < m s ' } '

w z - f o * u o l m t k < r i  t z r | ;
{  - -  _ _ _ l

W t -  t r . > s ' l o t f  W t u * r l .

We have E5' : Wt U WzU W3 and Wr I Wz i Wz - A.

It is easy to prove that all words in every Wi , i : L, 2, 3, are equivalent by the relation
E=,. (mod L).Therefore, Gpr(r) - 3.

Example 3. Let E : {a,bl and

L 3 : l o " b " l n e l f + } .
t t

D e n o t e  W  -  { o , o 2 , . . . , a ' } . W e  h a v e W  C  t s t ,  l W l :  r , a n d a t E . r a t  ( m o d Z : )

with i I j .Therefore, Grr(r) >- lWl - r.

Example 4. Let lEl : k > 2 and

L 4 : [ * r o l x e E * ] ,
t  I '

where xR is the inverse image of x.
It is easy to show that, if xr, xz € Et, xt * x2, then x1Erx2(modZ+). We obtain

Hr^ ( r )  -  l> ' l  :  k '  .
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E x a m p l e 5 .  L e t l D l : k 2 2 , c  f  E a n d

Ls : [*r*I

It can verify that, if xr, xz € Ea' , xr
G r , ( r )  -  l E s r l : k ( k ' - D l &  -  1 ) .

t " . > * 1 .

+ x2, then x1E<rx2 (modZ5). Therefore,
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4. A Necessary Condition for LP-Languages

4.1. In [1], we have formulated some necessary conditions for FP-languages. In this
part, by using the functions G; (r), Hr(r), we will establish a necessary condition for
LP-languages. The obtained result is a sharpening and a generalizingof one result in [1].

Theorem l. Let L be accepted by an LP-net with m transitions and n places. Denote
k - min{m, n}. There exists a polynomial Pp of degree k such that, for any integer r } l,

Hr(r)  < Pr(r) ,

Gr(r)  < Pr(r) .

Proof. First, we prove the theorem for the case where,A/ is an FP-net, and then generalize
the result for the case where,A/ is an LP-net.

LetN -  (P,T,I ,  O, Lto,  Mf)  be an FP-net wi th lTl  :  m, lPl  :  n.  We denote by
55, the set of all reachable markings of "A/ by firing at most r transitions. We now prove
that if L - L(N), then

V r e N t : G r ( r ) < l S s r l .

To prove this, we assume the contrary, i.e., G;(r)
xr, x2 € T=' such that x1E <rx2 (mod L), and 6(po, xr) : 6(po, x).lt follows that

Yut € T* :6(6(1t '0,  r1) ,  o)  :  d(6(po, xz),r ' t ) .

It means
Y o t € T * : x 1 a € L < + x 2 a e L .

Weobtain x1E<rx2 (modL).Thisconflictswithhypothesis x1E<yx2(modZ).Therefore,
G r ( r )  <  l S = , l .

We now estimate lS< rl. There are two ways to do this.
First, we prove lS5,I < P"(r) with I Pl : n.

Denote
l ly -  (at ,  . . . ,  an) i  a :  maxai ,  I  < i  < n.

/  - l l l ax lO( t i ,  p i )  -  I (p i , t i ) | ,  |  <  i  <  n ;  L  <  j  I  7n .

Let t : tjrtj., . . -tjo, p = r, be any firing sequence of ,A/. The equation of state change
by firing t canbe determined as follows: 6(lto,tjr) - trt' wrthYp; e P:

t t ' (p )  -  po(p i )  +  Q( t j , ,  p )  -  I (p i , t j , ) ) ,

p ' ( p ) < a + 1 .
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t "@@):  p@-r )@)  +  (o ( t i , ,p )  -  I (p i , t1 ) ) ,

t , , ( P ) ( p )  <  a  *  p . I  <  a * 1 .  r .

Therefore, Vr € Nr :

lSs, l  < (a l l r )"  :  P,(r) .

Second, we show lS5, | 5 P*(r) with lTl : m.We define the matrices 1-, O* , D as
follows:

I- l j ,  i l  -  ( I  (p i ,  t i ) )*^n ,

O*l j ,  i l  -  (O(t i ,  pt))^"n ,

D : O - - I - ,

and set
e U l :  ( 0 , . . . , 0 , .  1  , , 0 , . . . , 0 ) t ^ ^ .

jth

Let t : tjrtj, . tjo, p 1 r, be any firing sequence of ,A/. Firing t, the equation of state
change is also determined by another way as follows:

6(pro, tjr) : l.L' : lto * eUiD.

8( t - to ,  t j , ' ' ' t j )  :  *@)  -  *@-r )  - f  e l io lD .

We obtain
6 ( t t o , t j , . . .  t j )  :  t t o  *  e l i i D  + ' ' '  t  e l i o l D .

We set elj lD : vj, j  : I
in r. We can now express the equation of state change in the following form:

I pot _ &o * \4 fivi ,
I
I Y:, fi

It follows that lS=rl equals at most the number of non-negative integer solutions of
inequatity fi^ fi
(m t r)l/r lmt. < (m * r)^.Therefore, Vr e N+:

l s s r l  <  ( m * r ) * :  P * ( r ) .

Combining both results of estimating l55' l, we obtain

Gr?) < lSs,' l  < h(r), with k : min{m,n}.

We now generahze the above result to LP-nets. The essential observation is that the
methods of estimating lS.rl depend only on the length of firing sequence /, not on
which components 4 occur in sequence t. At the same time, the labeled function o is a
non-erasing mapping, i.e., if x : o(t), then /(.r) - l(t). So all arguments of estimating

lSs' I for FP-nets still hold for LP-nets.
Finally, fromthe propertyVre N:Hy(r)<Gr(r), itfollows that Hy (r)< Pr(r). I

4.2. Using Theorem 1, we can show a series of rather simple languages not being
acceptable by any LP-nets.



Capacity of l-abeled Petri Net Languages 237

Example 6. Let lE | : k > 2 and c e E. We consider the following languages:

L q : l * * ^ l x e E * ) ,

L s : l x c x l x e E * ) ,

where xR is the inverse image of x.
We have proved in Examples 4 and 5 that Hro(r) : k' and G r,(r) = k(k' - D I (k - I).

According to Theorem 1, we have the languages L+ # L and L5 (. L.

Example 7. Let E : {0, I, al and

L j  :  { roo  I  a ;  e  {0 ,  1 } *  ,k :  B(@)} ,

where B(a) is the integer representedby ro as a binary number.
By an argument analogous to that used in Example 6, it is easy to show that

Hrr(r) :2' . Therefore, by Theorem 1, the language L7 f L.

Example 8. Let lXl : k > 2 and

L t : { t f i 2 . ' . r n r o l Y i : t i  €  E * ,  l ( r i )  -  /  =  c o n s t . :  k i  -  z o } .

For every subset W - {Pt, Pz, ... , Pq} F >', W is associated with a word a(W) -

h P z . . . P q l n  
_  

P n  €  E ' , w i t h r  - l . k ' .

k'-q times
It is easy to verify that

a ( W ) a € Z s < + @ e W .

Therefore,
HrrQ) , l2E'l ,- 2o' - C' ,

with C - 2L/t. According to Theorem 1, the language Ls f L.

Example 9. Let lEl : k > 2 and c ( E. We define

Ls :  { t1c r2c . . .c rncrs  lY i  :  r i  €  E* ,  l ( r i )  <  /  :  cons t . i l r i  :7s1 .

Similarly as in Example 8, each subsetW : {Pt, P2,... , Pq} c >sl is associated
with a word:

p(W)  -  PrcPzc .  .  .  cPuc  €  E5 ' ,

wherer:  ( lEsr l )0 + 1) -  (<n(n'  -  D) l& -  1)X/ + 1),  wi thf t  -  lEl .
It is easy to see that

f l ( W ) a e L e < + a e W .

Therefore,
Grn?) > 2lD'l -- C''

with C - 2r/(I+\. According to Theorem 1, the language Ls f L.

5. Some Properties of Classes of Languages Characterized by GrQ)

5.1. It is well known that the class of regular languages is the simplest in Chomsky's
hierarchy. We now show that it is also the simplest class by the complexity characteristic
G r ( r ) .



238 Pham Tra An and Pham Van Thao

Theorem 2. A language L is regular if and only if there exists a constant C, such that,

f o r a n y r  e N + ,

G r @ )  <  C .

Proof. (a) "Only if" part. Let L c t* and L be regular. We recall the Myhill-Nerode
equivalence relation E(modZ) defined as follows:Yx1, x2 € E* :

x1Ex2 (mod L) +Yot € E* : xlro e L <+ x2a € L.

Denote Iy - Rank E (modL).

Myhill-Nerode have proved that Z is regular if and only if there exists a constant C,
such that I7 < C (see, e.9., [7]). lf uExz(modZ), then x1 E<rx2 (modZ). Therefore,
GrU) < Iy.We obtain Gr?) < C for all r e N+.

(b) "If" part. We assume that there is a constant C such that Vr € N+ , Gr(r) < C.
Because G r(r) is non-decreasing and bounded, there exists lim G r(r) = q, 4 - const.
when r -> oo. Since the values of Gt(r) are integer, so there is a constant rg, such that
Y r  >  r s :  G y ( r )  -  q .

To prove Z is regular, we assume the contrary that Z is notregular. By Myhill-Nerode's
theorem, [  _ *oo. Therefore,  there is an inf in i te sequence x1,x2,. . . ,xk, . . .
xi € E*, xi * xi and xrExl (modZ). From this sequence, we pick up the finite
sequence xt ,  xz,  . .  . ,  xq,  xq*t  and set f t  -  max{ l (x) ,  .  .  . , l (xq+r)} .  We now choose

r - mux{k,ro}. We obtain x;E<,xi (modZ) for i + j. It follows that Gr(r) > q + I.
T h u s , t h e r e i s r , r z r 0 b u t G r ( r ) # q . T h i s c o n t r a d i c t s t h e p r o p e r t y t h a t V r >
ro, Gr(r) - q.Itfollows that L is regular. r

Example 10. We consider the following languages:

L z : l o * b "  l m , n  Z  1 1 ,
L 3 : l o " b "  l " > l l .

In Examples 2 and 3, we have shown that Grr(r) - 3 and Grr(r) > r.By Theorem 2,
it follows that L2 is regular, but L3 is not regular.

5.2. In [9] Peterson has shown that all LP-languages are context-sensitive. We now have
the following theorem:

Theorem 3.
(a) There is a context-free language L (i.e., it is rather simple in Chomslgt's hierarchy)

but G7 (r) ls very large.

(b) Conversely, there is a context-sensitive but not context-free language L (i.e., it is
rather complicated in Chomsky's hierarchy) but G;(r) is rather small.

Thus, the function G7 (r) gives a complexity of Z, but, in general, it does not
characterize a computational complexity of L.
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Proof. (a) We examine
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L +  :  { * r ^ l x  e E " s t d i } ,  l D l  :  k  >  2 .

It is easy to see that L+ is a context-free language because it is acceptable by a
push-down automaton. But in Example 4, we have shown that Gro/) ,_ Hrq?) - k';
it means the degree of Gyo(r) gets maximum.

(b) We consider Ln : {anbn c' f n > 1}. One can prove that Ly is a context-sensitive
but not context-free language (see, e.9., [7]).We now estimate Gh,(r).LetW denote
the set of all words in Es' having one of the following forms:

(L) ak', with | < ky < r;
(2) ak'bkr, with kt * kz < r; kz < kt;
(3) okr6kzrtu, with h I kz * kz < r, kr - kz,kz < kz;
(4) b.

Itiseasytoprovethateveryword x e Esr isequivalentbytherelationE., (modLrr)
to some word rnW. Therefore, GLrr(r) < lWl. By estimating the number of elements
tnW, we obtain

?r -
G r , , ? ) s l w l  < - +

3 !
r2

2 l
* r * 1 .

It means the degree of G 7rr(r) is rather small.

5.3. We close the paper with some open problems.

(i) Is the necessary condition in Theorem 1 also sufficient? There are reasons to believe
that the answer could be negative.

(ii) Remark that the necessary condition in Theorem 1 is not trivial only when the output
alphabet E consists of k > 2 letters. So it is interesting to give another necessary
condi t ionwithk- 1.
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