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Abstract. We investigate modules M with the property that, for each submodule N in some given
class X of modules and submodule N, with N1 N Np = 0, there exist submodules M, M2 of M
suchthat M = Mi @ My and N; € M; (i = 1,2).

1. Introduction

Throughout this paper, all rings are associative with identity and all modules are unital
right modules. Let R be aring and M an R-module. Let E (M) denote the injective hull
of any module M. The module M is called quasi-continuous if 6(M) S M for every
idempotent endomorphism 6 of E(M). Quasi-continuous modules form an important
class of modules which have been extensively studied in recent years (see, for example,
[3-12]). In particular, in [3, 2.10] or [6, Theorem 2.8], we find the following result:

Proposition 1.1. The following statements are equivalent for a module M:

(1) M is quasi-continuous,
(ii) for all submodules N1, N, with N1 N\ N = O there exist submodules My, M such
that M = M ® My and N; € M; (i =1,2);
(iii) (a) for any submodule N of M, there exists a direct summand K of M such that N
is essential in K; and
(b) for all direct summands K, L of M with K N L = 0, the submodule K @ L is
also a direct summand of M.

In this paper we investigate modules M which satisfy condition (ii) in Proposition
1.1, where N; is chosen to belong to a given class of R-modules. One motivation
is the following simple observation. Let R be a ring which is not right Noetherian.
Then there exist an infinite index set I and injective R-modules M; (i € I) such that the
module M = @;<;M; is not quasi-continuous (see [6, Proposition 2.10]). Let Nj, N>

*This paper is part of the author’s Ph.D thesis for the University of Glasgow, Scotland.
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be submodules of M such that N; is finitely generated and N; N N, = 0. There exists a
finite subset J of I such that N1 € @;¢ s M;. Since @;¢ 7 M; is an injective R-module, it
follows that there exists an injective submodule U of @;¢ ; M; such that N; is essential
in U. Because N1 NN, = 0, we have U N N> = 0, and it is rather easy to prove that there
exists a submodule U’ of M such that M = U @ U’ and N, C U’. Thus, M satisfies
condition (ii) of Proposition 1.1 in case N is finitely generated.

A second motivation is that, in [1], we studied modules M which satisfy condition
(iii)(a) of Proposition 1.1 in case N belongs to a given class of R-modules. It turns
out that, in this case, there are two generalizations of condition (iii)(a) for M, and it
is interesting to see how the restricted version of condition (ii) behaves in relation to
the restricted version of condition (iii)(a). The relationship between these concepts is
established in Theorem 2.10 below.

We investigate modules, which are quasi-continuous relative to a class X of R-
modules, in two different ways, corresponding to conditions (ii) and (iii) in Proposition
1.1, and give some of their general properties. We also consider what happens when the
class of modules in question is a specific class, for example, the class of Goldie torsion
modules.

Relative quasi-continuous modules have been considered by other authors. For
example, Page [11] considers quasi-continuous modules relative to a torsion theory
7. Oshiro [9] also considers relative quasi-continuous modules but his approach differs
from that of Page. In fact, although Oshiro’s stand point is rather different from ours, his
definition in terms of condition (iii) in Proposition 1.1 is essentially the same as ours.

2. Modules with Property Q(X)

Consider any ring R and R-module M. A submodule K of M is closed (in M) if K has
no proper essential extension in M. By Zorn’s Lemma, it can easily be shown that every
submodule N of M is essential in a closed submodule K of M, and in this case, we call
K a closure of N (in M). Moreover, for any submodule N of M, another easy Zorn’s
Lemma argument shows that the collection S of submodules L of M suchthat NNL =0
contains a maximal member. Any maximal member of S is called a complement of N
(in M). A submodule K of M is called a complement if there exists a submodule N of
M such that X is a complement of N in M. It can easily be verified that a submodule K
of M is closed if and only if K is a complement. The module M is called an extending
module if every closed submodule is a direct summand of M, i.e., M satisfies condition
(iii)(a) of Proposition 1.1.
Now, recall the following result:

Lemma 2.1. See, e.g., [4, Lemma 5]. Given R-modules U, V, the module U is
V-injective if and only if, for any submodule X of the R-module W = U @& V with
X NU =0, there exists a submodule U’ of W suchthat W =U @ U’ and X C U'.

By a class X of R-modules, we mean a collection of R-modules which contains a
zero module and is closed under isomorphisms. Any module in a class X’ will be called
an X-module. By an X'-submodule N of an R-module M, we mean a submodule N of
M such that N is an X'-module.
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Given a class X of R-modules, we say that an R-module M satisfies property Q(X)
(“Q” for quasi-continuous ) if, for each X-submodule N and submodule L of M with
NN L = 0, there exist submodules N’, L’ such that M = N'®L',N C N'and L C L.
Two extremes are given in the next result.

Proposition 2.2. Let R be any ring and let M and T denote the classes of all R-modules
and of all injective R-modules, respectively.

() An R-module M is quasi-continuous if and only if M satisfies Q(M). In this case
M satisfies Q(X) for any class X of R-modules.
(ii) Every R-module satisfies Q(Z).

Proof. (i) By [3, 2.10].

(i) Let M be any R-module. Let N be an injective submodule and L a submodule of
M such that NN L = 0. Then M = N @ N’ for some submodule N’ of M. Because N
is N’-injective, Lemma 2.1 applies to give a submodule L’ of M such that M = N @ L’
and L € L'. Thus, M satisfies Q(Z). ]

Now, we make three elementary introductory observations. The first is the following.

Lemma 2.3. Let X be any class of R-modules and M an R-module which satisfies
Q(X). Then any direct summand of M satisfies Q(X).

Proof. Suppose M and M> are submodules of M suchthat M = M@ M,.Let N be an
X-submodule and L a submodule of M; such that N N L = 0. Consider the submodules
N and L @ M, of M. By hypothesis, there exist submodules N' and L’ of M such that
M = N@&L',N € N,and L&M, C L'.Hence,L' = L'N(M®M>) = Ma®(L'NM)),
M=N®&L =N &(L'N"M;)® M,,and My = (L' M) & [(N'+ M) N\ Mi]. Note
that N S N'NM; € (N + My) N My and L € L' N M. Thus, M; satisfies Q(X). ®

Our second elementary observation is the following:

Lemma 2.4. Let X be any class of R-modules, U an X-module, and M any R-module
such that the R-module U @& M satisfies Q(X). Then U is M-injective.

Proof. Let L be any submodule of the module X = U @ M such that U N L = 0. There
exist submodules N’ and L’ of X suchthat X = N'@ L, U € N’ and L € L’. Clearly,
N=Ud(N'NM)andX =U®U’,whereU' = (N'NM) @ L. Note that L C U".
By Lemma 2.1, U is M-injective. [ ]

Our third observation is as follows:

Lemma 2.5. Let X be any class of R-modules and M an R-module which satisfies
Q(X). Let N be any X-submodule of M and L any complement of N in M. Then
M = N’ @ L for some closure N' of N in M.

Proof. Since NN L = 0, it follows that M = N’ @ L' for some submodules N ", L' such
that N C N and L € L'.But L’ N = 0 gives L = L'. Moreover, N @ L, essential in
M (see, for example, [3, 1.10]), gives N = (N & L) N N’, essential in N'. Clearly, N’
is closed in M, so that N’ is a closure of N in M.
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Given any class X’ of R-modules, we denote by X the class of R-modules with an
essential X'-submodule. We shall say that the class X is essentiaily closedif X = X¢. For
example, the class Z of injective modules and the class I/ of modules with finite uniform
dimension are both essentially closed. Note that X is an essentially closed class for any
class X'. For an essentially closed class X', we have the following immediate corollary
of Lemma 2.5:

Corollary 2.6. Let X be any essentially closed class of R-modules and M an R-module
which satisfies Q(X). Let N be an X -submodule of M. Then M = N'® L’ for any closure
N' of N and complement L' of N in M.

Recall that a module M is extending if every closed submodule (equivalently,
complement) is a direct summand of M. Let X be a class of R-modules. In [1], a
module M is defined to be type 1 X-extending if, for every X'-submodule N of M, every
complement of N in M is a direct summand of M. On the other hand, a module M is
type 2 X-extending if, for every X-submodule N of M, every closure of N in M is a
direct summand of M. Now, we define the module M to be X-quasi-continuous if M
satisfies the following two properties:

(C1)x For any X-submodule N of M, there exists a direct summand K of M such that
N is essential in K, and
(C3)x For any X'-submodule K which is a direct summand of M and direct summand
L of M such that K N L = 0, the submodule K @ L is also a direct summand
of M.
The concept of X'-quasi-continuous modules is due to Oshiro [9] although his approach
is somewhat different. In fact, if X is an essentially closed class of R-modules and B
is the collection of X-submodules of an X’ -quasi-continuous R-module M, then M is
B-quasi-continuous in the sense of [9]. Conversely, if B is a collection of submodules
of an R-module M such that M is B-quasi-continuous in Oshiro’s sense, then M is
X -quasi-continuous, where X is the essentially closed class of R-modules which are
either zero or isomorphic to a member of B.

Lemma 2.7. Given a class X of R-modules, an R-module M satisfies (C3)~ if and
only if, for all summands P, Q of M such that P€ X and P N Q = 0, there exists a
submodule P’ of M such that M = P & P’ and Q C P'.

Proof. Necessity. Let P and Q be direct summands of M such that Pe X with ONP =
0. Then, by hypothesis, O @ P is a direct summand of M. Hence, M = P & Q & Q"
for some submodule Q" of M. Thus, P’ = Q @ Q" has the requisite properties.
Conversely, let K and L be direct summands of M such that K€ X and K N L = 0.
There exists a submodule K" of M suchthat M = K®K'andL C K'.ButM = L L’
for some submodule L’. Hence, K’ = L& (K'NL'). Thus, M = K ® L & (K' N L).
Then M satisfies (C3) y. [ |

Lemma 2.8. Let X be a class of R-modules and M an R-module which satisfies Q(X).
Then M is type 1 X-extending and M satisfies (C1) x.

Proof. Let K be any X'-submodule of M and L a complement of K in M. By hypothesis,
there exist submodules M;, M, of M with M = M; @ Mp, K € My, and L C M,.
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Since K N M, = 0, it follows that L = M. Thus, M is type 1 X-extending. Moreover,
K @ L is an essential submodule of M, and

KeL)NM=K+(LNM)SK+MNM)=K <M,
so that K is essential in M. Thus, M satisfies (C1) ». [ |

Corollary 2.9. Let X be a class of R-modules and M an R-module which satisfies
Q(X). Then M is X -quasi-continuous.

Proof. By Lemmas 2.7 and 2.8. [

Theorem 2.10. Let R be any ring and X any essentially closed class of R-modules.
The following statements are equivalent for an R-module M.

(i) M satisfies Q(X);
(i) M is X-quasi-continuous and type 1 X-extending,
(iii) M is type 1 and type 2 X -extending and M satisfies (C3)x.

Proof. (1) = (ii). By Lemma 2.8 and Corollary 2.9.

(ii) = (iii). Let N be any A’-submodule of M and let K be any closure of N. By
hypothesis, K€ X, and because M satisfies (Cl)y, K is a direct summand of M. It
follows that M is type 2 A’-extending and (iii) follows immediately.

(iii) = (i). Let A, B be submodules of M such that Ae X and AN B = 0. Let K be
a complement of A in M with B C K. Since M is type 1 X-extending, it follows that
K is a direct summand of M. Because M is type 2 X-extending, there exists a direct
summand L of M such that A is essential in L. Because X is essentially closed, Le X.
Also, we have L N K = 0. Since M has (C3)x, L @ K is a direct summand of M.
Then M = L @ K @ P for some submodule P and A C L, B € K @ P. Thus, M has

Q(X). =

3. Classes of Modules

Let R be any ring. The basic question we wish to consider in this section is, if X’ and
are classes of R-modules which are related in some way and M is an R-module which
satisfies Q(X'), does M also satisfy Q())? The first result is clear.

Lemma 3.1. Let X C ) be classes of R-modules. Then every R-module which satisfies
Q) also satisfies Q(X).

Lemma 3.2. Let X be any class of R-modules. Then a non-singular R-module M
satisfies Q(X) if and only if M satisfies Q(X°).

Proof. Because X C X, the sufficiency follows by Lemma 3.1. Conversely, suppose
M satisfies Q(X), let N be an A*-submodule of M and L a submodule of M with
NN L = 0. There exists an X'-submodule K of M such that K is essential in N. Clearly,
K NL = 0andhence, M = M, & M, for some submodules M1, M, such that K € M,
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and L C M,. Since N/K is singular, it follows that N/(N N M) = (N + M1)/M,
is singular. However, M /M = M, which is non-singular. Thus, N = N N My € M;.
Hence, M satisfies Q(X). ]

Given a positive integer n and classes X; (1 <i <n) of R-modules, X1 @ --- D &,
denote the class of R-modules of the form M; @ - - - & M,,, where M; is an A;-module
foralll <i <n.

Proposition 3.3. Let n be a positive integer and let X; (1 <i <n) be classes of
R-modules. Then an R-module M satisfies Q(X1 @ --- @ &) if and only if M satisfies
QX)) foralll <i <n.

Proof. The necessity follows by Lemma 3.1. ]

Conversely, suppose M satisfies Q(X;) foralll1 <i <n.Let Nbeany (X1 ®--- &
X,)-submodule of M and L a submodule of M such that NN L = 0. Then N =
N1 & ... @& N, for some X;-submodule N; (1 <i <n) of M. Now, N1 N (N2 &
- @® N, ®L) = 0sothat M = M; & M, for some submodules M;, M, such
that Ny € Mjand N, @ --- ® N, & L € M,. By Lemma 2.3, M; satisfies Q(X;)
for all 2 < i < n. By induction on n, there exist submodules M3, My of M, such that
My=M3® My, N --- DN, € M3z and L C My. Hence, M = (M1 & M3) ® My,
Ni®---®N, € M & M; and L C Mjy. It follows that M satisfies Q(X1 S --- &
X)) [ ]

For any class X of R-modules, let X¥® denote the class of all R-modules which are
finite direct sums of X-modules. Proposition 3.3 has the following immediate corollary:

Corollary 3.4. Let X be any class of R-modules. Then an R-module M satisfies Q(X)
if and only if M satisfies Q(X®).

Before we proceed, we mention a basic fact about closed submodules. Its proof can
be found in [3, 1.10].

Lemma 3.5. Let K be a closed submodule of a module M and L a closed submodule
of K. Then L is a closed submodule of M.

The next result is an analog of Proposition 3.3. Note that, if a module M satisfies
Q(Xf) (1 <i < n), then M satisfies Q(X{ @ - - - @ A7) by Proposition 3.3. In fact we
can say more.

Theorem 3.6. Let n be a positive integer, let X; (1 <i < n) be classes of R-modules,
andlet X = X1 @ -+ ® X,. Then an R-module M satisfies Q(X€) if and only if M
satisfies Q(Xf) forall 1 <i <n.

Proof. Since X; € X and hence XY € A for all 1 <i < n, the necessity follows by
Lemma 3.1.

Conversely, suppose M satisfies Q(Xf) forall 1 <i < n.Let N be an X“-submodule
and L a submodule of M such that N N L = 0. There exists a closed submodule N’
of M such that N is essential in N’. Note that N’ N L = 0. There exist X;-submodules
N; (1 <i <n) of N such that N1 @ --- @ N, is essential in N. There exists a closed
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submodule Nj of N’ such that N; is essential in N7. By Lemma 3.5, N1 is closed in
M. By Zorn’s Lemma, there exists a complement L’ of Ny (or Ni) in M such that
N,@®---®N,®L C L'.By Corollary 2.6, M = N{ @ L', because M satisfies Q (7).

Now,N’—N1®(N’ﬂL)md(N1® @Nn)ﬂ(N’ﬂL)—Nzea - @ N, is
essential in N’ N L’. Thus, N’ N L'e Y¢, where Y = X, @ - - - ® X,,. But L’ satisfies
Q(Xf) forall2 <i < n, by Lemma 2.3. By induction on n, L’ satisfies Q()¢). There
exist submodules P, Q of L' suchthat L’ = P® @, N'NL' € P,and L C Q. Finally,
notethat M = NJ@ PO Q,N C N CN{@®P,and L C Q.Itfollows that M satisfies
Q(X°). u

We now apply some of the results in this section to specific classes of modules. Let
R be any ring. Let U denote the class of R-modules with finite uniform dimension,
U, the class of R-modules which are uniform or zero, G the class of finitely generated
R-modules, and G the class of cyclic R-modules.

First, note that the classes I and ; are both essentially closed and any Z/-module is an
essential extension of a finite direct sum of ¢;-modules. Thus, Theorem 3.6 immediately
gives:

Corollary 3.7. An R-module M satisfies Q(U) if and only if M satisfies Q(Us).

In view of Corollary 3.7 it is natural to ask whether any module with Q(G1) also
satisfies @(G). We do not know the answer to this question.

Note that f € G°. By Lemmas 3.1 and 3.2, any non-singular R-module, which
satisfies Q(G), also satisfies Q(U). The converse is false in general. Let R be a domain
which is not right Ore. Then the right R-module R is non-singular and satisfies Q)
vacuously since it has no uniform submodules, but R does not satisfy Q(G). For
commutative domains, the conditions Q(f) and Q(G) are equivalent for torsion-free
modules, as the next result shows.

Proposition 3.8. Let R be a commutative domain. Then the following statements are
equivalent for a torsion-free R-module M.

(i) M satisfies Q(G);
(il) M satisfies QU);
(iii) M is quasi-continuous.

Proof. (i) = (ii). By Lemmas 3.1 and 3.2.

(ii) = (iii). By Lemma 2.8, M is type 1 U-extending. Now, M is extending by
Theorem 4.8 in [1]. It follows that M = M @& M, for some injective submodule M; and
U-submodule M; by Theorem 5 in [5]. By Lemma 2.3, M; satisfies Q ({/) and hence, M>
is quasi-continuous. Next, M1 = ®;c 1 M1, where M;; is indecomposable injective for
allie 1. By Lemma 2.3, for each i€ I, My; ® M, satisfies Q (/) and hence, M1; @ M, is
quasi-continuous and M, is M;-injective (see, for example, [6, Proposition 2.10]). Thus,
M is M;-injective by Proposition 1.5 in [6] and M is quasi-continuous by Corollary
2.14 in [6].

(iii) = (i). By Proposition 2.2. [}

Let R be a right Noetherian ring. Then G € U. Hence, any right R-module with Q)
also satisfies Q(G). In fact, any R-module with Q(If) is quasi-continuous as we show
next.
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Proposition 3.9. Let R be a right Noetherian ring. Then a right R-module M is
quasi-continuous if and only if M satisfies Q(U).

Proof. The necessity is clear by Proposition 2.2. Conversely, suppose M satisfies Q (Uf).
By Lemma 2.8, M is type 1 U-extending. Now, M = @;c;M; for some uniform
submodules M; (icI) of M by Lemma 4.5 in [1]. Fix iel. For each je I\{i},
the U{-module M; @ M; satisfies Q(U) (Lemma 2.3) and hence is quasi-continuous.
Thus, M; is Mj-injective for each je I'\{i} by Proposition 2.10 in [6], and M; is
(®je 1\iyMj)-injective by Proposition 1.5 in [6]. By Theorem 2.13 in [6], M is
quasi-continuous. a

‘We do not know, for aright Noetherian ring R, whether all right R-modules with Q (G)
are quasi-continuous. Next, we confirm a remark made in the introduction.

Proposition 3.10 Let M; (i€ I) be injective R-modules. Then the R-module M =
®;c 1 M; satisfies Q(G).

Proof. Let N be any finitely generated submodule of M and let L be any submodule of
M such that N N L = 0. There exists a finite subset J of I such that N C ®;c s M;.
Because @®;c 7 M; is injective, there exists an injective submodule M " of M such that N
is essential in M’. Now, M = M’ & M" for some submodule M” of M and M'NL = 0.
Because M’ is M"-injective, there exists a submodule L’ of M suchthat M = M’ & L’
and L € L' (Lemma 2.1). It follows that M satisfies Q(G). [

If M; (i€ 1) are injective R-modules for some ring R, then the R-module @;¢;M;
does not satisfy Q(Uf) in general. To demonstrate this fact, we first prove the following
result.

Proposition 3.11. Let R be any ring and let M; (i€ I) be any collection of indecom-
posable injective R-modules. Then M = ®;c 1 M; satisfies QU) if and only if M is
quasi-injective.

Proof. Suppose M satisfies Q(Uf). Since U is essentially closed, it follows that M is
type 2 U-extending by Theorem 2.10. Thus, M is quasi-injective by Corollary 3.6 in [2].
The converse is clear. u

Example. Let R be a ring which has finite right uniform dimension but is not right
Noetherian. Then there exist injective right R-modules M, (n€ N) such that &, NM,
does not satisfy Q(Uf).

Proof. Because R is not right Noetherian, by Theorem 4.1 in [13], there exist simple
R-modules S, (ne N) such that @, N E (S,,) is not injective. Since Ry, has finite uniform
dimension, E(Rg) = E1 @ - - - ® E for some positive integer k and indecomposable
injective R-modules E; (1 <i <k).LetE =E1® - - ®E;® (®neNE(Sn)). Then E is
not quasi-injective because @, NE (S,) isnot (E1 @ - - - @ Ey)-injective. By Proposition
3.11, E does not satisfy Q). [}
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4. Direct Sums

Let R be aring and M; (1 <i < n) a finite collection of R-modules. We say that the
modules M; (1 <i < n) are relatively injective if M; is M;-injective for all 1 <i #
J < n.lItis well known that the module M = M1 @ - - - & M, is quasi-continuous if and
only if the modules M; (1 <i < n) are quasi-continuous and relatively injective (see,
for example, [6, Corollary 2.14]). We now generalize this fact by proving;:

Theorem 4.1. Let X be an essentially closed class of R-modules such that X is closed
under submodules. Let M; (1 <i <n) be a finite collection of relatively injective
R-modules. Then the R-module M = M| & --- @ M, satisfies Q(X) if and only if
M; satisfies Q(X) forall1 <i <n.

Proof. Necessity. Follows by Lemma 2.3.

Conversely, suppose M; satisfies Q(X) forall 1 < i < n. By induction on r, to prove
that M satisfies Q(X'), we can suppose without loss of generality that n = 2. Let N be
an X -submodule and L a submodule of M = M & M, such that NN L = 0. Let N’
be a closure of N in M. Because N is essential in N, we have N'e X and N' N L = 0.
Thus, without loss of generality, we can suppose N = N’, i.e., N is closed in M.

Suppose next that N N M; = 0. Because M is My-injective, Lemma 2.1 allows us to
assume without loss of generality that N € M>. Then Corollary 2.6 gives M, = N & H
for any complement H of N in M,. By Lemma 2.4, N is H-injective. But M; being
M -injective implies N is M\-injective and hence, N is (H & Mj)-injective (see, for
example, [6, Proposition 1.5]). But M = N @ (H & M;) and NN L = 0 so that, applying
Lemma 2.1 again, there exists a direct summand M’ of M such that M = N & M’ and
LCM.

In general, N N M> is an X'-submodule of M, because X is closed under submodules,
and there exists a closed submodule K of N such that NN M, is essential in K. By Lemma
3.5, K is a closed submodule of M. Moreover, K is an X'-submodule of M, K NM; = 0,
and K N L = 0. By the above argument, M = K & K’ for some submodule K’ such
that L € K’. Note that N = K @ (N N K’), so that N N K’ is a closed submodule of
M by Lemma 3.5. Moreover, (N N K’) N M, € K N K’ = 0. By the above argument,
M = (NN K') ® K" for some submodule K” such that L C K”. Hence,

M=K&K =K®@WNNK)®K NK")=Na K NK"),

and L € K’ N K”. It follows that M satisfies Q(X). ]

For any ring R, the class U/ of R-modules with finite uniform dimension is essentially
closed and is also closed under submodules. Thus, Theorem 4.1 has the following
immediate corollary:

Corollary 4.2. Let M; (1 <i <n) be a finite collection of relatively injective R-
modules. Then the R-module M = M| & --- & M, satisfies QU) if and only if M;
satisfies QU) forall1 <i < n.

Examples of classes of modules which are both essentially closed and closed under
submodules include the class 7 of Goldie torsion modules and the class F of Goldie
torsion-free (i.e., non-singular) modules. As an application of Theorem 4.1, we next
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characterize modules which satisfy Q (7). For any module M, Z,(M) will denote the
Goldie torsion submodule of M, i.e., Zo(M)/Z(M) = Z(M/Z(M)), where Z(N)
denotes the singular submodule of any module N.

Theorem 4.3. Let T denote the class of Goldie torsion R-modules. Then R-module M
satisfies Q(T) if and only if M = Z,(M) & M’ for some submodule M’ of M such that
Z>(M) is quasi-continuous and M'-injective.

Proof. First, suppose M satisfies Q(7). Because 7T is essentially closed, Z>(M) is a
closed 7 -submodule of M and hence, M = Z,(M) @& M’ for some submodule M’ of M
by Lemma 3.5. By Lemma 2.4, Z,(M) is M'-injective and by Lemma 2.3 and Theorem
2.10, Z»(M) is quasi-continuous.

Conversely, suppose M = Zr(M) & M’', Z,(M) is quasi-continuous and Z,(M) is
M’-injective. Clearly, Hom(Z, (M), M’) = 0 and hence, M’ is Z, (M)-injective. Clearly,
M’ also satisfies Q(7). Moreover, by Proposition 2.2, Z>(M) satisfies Q(7). Finally,
Theorem 4.1 gives that M satisfies Q(7). ]

Using Theorem 4.3, we can show that, for the class 7, not every 7 -quasi-continuous
module satisfies Q(7). For example, let S be a simple Z-module and let M denote the
Z-module S @ Z. Because S is not Z-injective, Theorem 4.3 shows that M does not
satisfy Q (7). Since the only 7 -submodules of M are 0 and S, it is easy to check that M
satisfies (C1)7 and (C3)r, i.e., M is T -quasi-continuous.

Theorem 4.1 for the class 7 is as follows:

Theorem 4.4. Let M; (1 <i < n) be a finite collection of R-modules and let M =
M@ --®M,. Then M satisfies Q(T) ifand only if M; satisfies Q(T) foralll <i <n
and Z»(M;) is Mj-injective forall 1 <i # j <n.

Proof. First, suppose M satisfies Q(7). By Lemma 2.3, M; satisfies Q(7") and hence,
by Theorem 4.3, M; = Z,(M;) ® M/ for some submodule M/, forall 1 <i < n. Let
1<i # j<n Then M; ® M; = Z2(M;) ® M,.’ @ M; satisfies Q(7) and hence,
Z>(M;) @ M; satisfies Q(7) by Lemma 2.3. By Lemma 2.4, Z,(M;) is M;-injective.

Conversely, suppose M; satisfies Q(7) for all 1 <i <n and that Z>(M;) is M;-
injective for all 1 <i # j < n. To prove that M satisfies Q(7), we can suppose
without loss of generality that n = 2. By Theorem 4.3, for i = 1,2, M; contains a
submodule M such that M; = Z>(M;) & M. Then

M=M &M, =Z(M)®Z(M) & M1 & My = Z,(M)d M,

where M’ = M; & M}. By hypothesis, the modules Z>(M;) and Z>(M>) are
relatively injective and satisfy Q(7). Hence, Z>(M) satisfies Q(7), i.e., Zo(M) is
quasi-continuous (see Proposition 1.1). Moreover, Theorem 4.3 gives that Z, (M) is
M -injective and hence, Z»(M;) is M’-injective. Similarly, Z>(M>) is M'-injective.
Thus, Z»(M) is M'-injective. By Theorem 4.3, M satisfies Q(7). ]

There is an analog to Theorems 4.3 and 4.4 for the class F of non-singular R-modules.
Theorem 4.5. Let F denote the class of non-singular R-modules. Then an R-module

M satisfies Q(F) ifand only if M = Z2(M) & M’ for some quasi-continuous submodule
M’ of M such that Z>(M) is M'-injective.
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Proof. Suppose M satisfies Q(F). Let M’ be a complement of Zy(M) in M. Then
M’ is an F-submodule of M and Z;(M) is a complement of M’. By Corollary 2.6,
M = Z;(M) ® M'. The rest of the proof is straightforward being analogous to the proof
of Theorem 4.3. . [ ]

Corollary 4.6. Let M; (1 <i < n) be a finite collection of R-modules and let M =
M & --- ® M,. Then M satisfies Q(F) if and only if M; = Z>(M;) & M for some
quasi-continuous submodule M| such that Z(M;) is M}-injective for all1 < i < n and
M! is Mj-injective forall 1 <i # j <n.

Proof. Similar to the proof of Theorem 4.4. [ ]

Note in particular that Theorems 4.3 and 4.5 together give that a module M is
quasi-continuous if and only if M satisfies Q(7) and Q(F) (see [6, Corollary 2.14]).
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