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Abstract. A normal set is a subset of the non-negative orthant Rf such that, whenever it contains
a point x, it contains all x' e R\ such that x' < x. We investigate properties of normal sets
and elementary normal sets called polyblocks. These properties furnish the foundation for a new
approach to the numerical study of systems of monotonic inequalities and optimization problems
involving differences of monotone increasing functions (d.i. functions).

L. Introduction

The role of convexity in modern optimizalion theory is well known. Since any inequality
g(x) < 0, where g : R" -+ R is an arbitrary continuous function, can be converted into
an equivalent inequallty u(x) - u(x) < 0, with two convex functions u(x), u(x) (see,
e.g.,l23l), it is natural that the difference convex (d.c.) structure underlies a wide variety
of non-convex problems. In fact, convex analysis which was primarily developed for the
needs of convex optimization has become in recent years an essential tool in non-convex
optimization as well.

Aside from convexity, monotonicity is another very useful concept when dealing
with mathematical models of systems in economics, engineering, an6 other fields.
The simplest monotonicity property for a function /(x) is that of being increasing
(decreasing, resp.) on Rf , i.e., suchthat f (x) < f (x') (f (x) > f (x'),resp.) whenever
0 <x lxt.Theanalysisofmonotonicityforthepurposeof applicationstoengineering
design problems was explored by Wilde et al. ll, 14,15,291, and subsequently, Hansen et
al. t5l. Dealing with constrained optimization problems involving partial monotonicity,
these authors focused on finding which constraints must be tight at the optimum in order
to lower the dimension of the problem and reduce it to a form more amenable to an
effective solution. A concept closely related to monotonicity is that of normal sel which
isdef inedasanysetG c Risuchthatx e GwheneverO 1x 1x' ,andx'  eG.Normal
sets were first introduced in mathematical economics (see, e.9., [11, 13]) mostly from a
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conceptual point of view, in connection with the analysis of production activities within
an economic system. Just as convex sets are essentially lower level sets of quasiconvex
functions, normal sets are essentially lower level sets of increasing functions.

From the point of view of numerical optimization, the most basic property of an
increasing function is that when seeking a minimizer of it over a constraint set D; once
a solution xo e D is known, then all the solutions in the orthant xo + RLcan be omitted
because no better solution than x0 can be found among the latter. Such information is
very useful and may sometimes help simplify the problem drastically by limiting the
search process to a restricted area. Likewise, if the constraint set is a normal set, then
any infeasible solution z0 can be strictly separated from the constraint set by an orthant
r0 + Rf , where x0 < z0 is some suitable feasible solution. It is well known that the
classical separation property of convex sets is fundamental for many solution strategies in
convex and non-convex optimization. This suggests that the specific separation property
of normal sets should play an equally important role in the analysis and solution of
monotonic optimization problems.

The aim of this paper is to present a systematic study of normal sets with a view
of application to the theory of monotonic inequalities and monotonic optimization. We
shall show that any closed normal set is the intersection of a decreasing sequence of
elementary normal sets called polyblocks. This outer approximation of normal sets
by polyblocks is similar to the outer approximation of convex sets by polyhedrons.
It can be used to establish a charactenzation of the structure of the solution set of a
monotonic system in such a way as to allow efficient numerical analysis of monotonic
inequalities and monotonic optimization problems. More importantly, the polyblock
approximation method leads to a general approach for solving optimization problems
involving differences of increasing functions. The fact that any polynomial of several
variables is a difference of two increasing functions on the non-negative orthant implies
that the range of applicability of this approach includes polynomial programming,
in particular, non-convex quadratic programming, whose importance in global and
combinatorial optimizationhas very much increased in recent years.

This paper consists of six sections. After Sec. 1, we shall review in Sec. 2, the basic
properties of normal sets and reverse normal sets. Aside from known properties [11, 19],
we shall establish a number of new ones which seem to play a major role in monotonic
optimization. Polyblocks and reverse polyblocks are introduced and studied in Sec. 3.
Section 4 is devoted to systems of monotonic inequalities. Here, we shall introduce the
concepts of upper and lower basic solutions and shall prove that any of these solutions
can be characterizedby a sequence of natural numbers between 1 and n. Based on this
characterization of the solution set structure of a monotonic system, algorithms will be
proposed in Sec. 5 for maximizing or minimizing an increasing function under monotonic
constraints. Finally, in Sec. 6, the approach will be extended to d.i. optimization, i.e.,
optimization of differences of increasing functions.

2. Normal Sets

We begin by introducing some notations and concepts. For any two vectors xt , x e Rn,
we write x'
write r/
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L e t R [ _  { x  €  R " l x  Z  0 } a n d R f * _  { x  €  R " l x

1(x) - {il xi - 0} and denote

K x - { * ' e n i l r i  >  x ; Y i  f  I ( x ) \ ,  c l K * - { r ' e R \ l x ' = x } .

For a < b, the box (hyper-rectangle) la, bl is defined to be the set of all x such that

a  1  x  <  b .We a lso  wr i te  (a ,b l  : -  {x l  a  <  x  <  b } , la ,b )  : -  {x l  a  <  x  <  b } -Asusua l

e is the vector of all ones and e' the i th unit vector of R".

A set G C R\ is called normal if, for any two points x, x' € Rf such that xt I x,

if x € G, then x' € G, too. The empty set, the singleton {0}, and R\ ate special

normal sets which we will refer to as trivial subsets of R\.If G is a normal set, then

G U {x  e  R i l  x r  :0 fo rsome i  -  |
For any set D C R\, the orthant R[ is a normal set containing D. The intersection

of all normal sets containing D, i.e., the smallest normal set containing D, is called the

normal hull of D.

Proposition 1. The normat hull of a set D C R+ is the set NlDl:- (D - Ri) n Ri.

If D is compact, then so ts N[D].

Proof. The set NtDl is obviously normal and any normal set containing D obviously

contains it. Therefore, N[D] is the normal hull of D. Let D be compact and let

x k  €  N [ D ] ,  x k  +  x 0 a s k *  + o o . T h e n  x k : y k  - z k , w r t h y k  e  D , z k  €  R i .

Since D is compact, we can assume, by passing to _a sub_sequence if necessary, that

yk + y0 e D. Hence, zk : yk - xk - z0 : y0 - x0 > 0, i.e., -r0 : yo - z0

with y0 e D, zo e R\, which implies that x0 e NtDl. Therefore, N[D] is closed. If

D c [0, b], then NtDl C [0,b], so NtDl is bounded, and hence, compact. r

Proposition 2. The intersection and the union of a family of normal sets are normal

sets.

Proof. Immediate. I

Proposition 3. Every normal set is connected. A normal set G has a non-empty interior

if and only if it contains a point u e R\*.

Proof. The first assertion is triviat because, for any two points x, x' in a normal set G,

both segments joining 0tox and 0to x'belong to G. If thereis z e G fl R[*, then

since [0, z] C G and 10, ulhas interior points, it follows that intG * A.The converse is

obvious because an interior point of a subset of Rf must have positive coordinates. r

A point y e R\ is called an upper boundary point of anormal set G if y e clG (hence,

[0, y] c clG) while Ky C ni t G. The set of upper boundary points of G is called the

upper boundary of G and is denoted by 0+G. If G is closed, then obviously 0+G C G.

Proposition 4. Let G C [0, bl be o compact normal set with non-empty interior. For

every u e G and v e R+\{01 the halfline l(u, u) ;- {u * au I a Z 0} meets the upper

boundary of G at a unique point oc(u, u) defined by

o c ( u , u ) : u l l . t u ,  p r - s u p { c v l u * a u € G } .  ( 1 )
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Proof. Obviously, u e l(u, u) i G, and whenever .r e l(u, u) o G, then the whole
segment joining u and x belongs tol(u, u) n G. Hence, l(u,u) o G is a segment.
Let u and y be the endpoints of this segment. Clearly, ! : oc(u, u) and y e G.If
there were .r € G n Kr, then ly, xl C G, and since ! : u I l.tu, we would have
W * l . r . u i  <  x i , Y i  f  I ( y ) ,  w h i l e W J - L t u t  -  x i  -  0 ,  V i  €  I ( y ) ,  h e n c e t h e r e
wouldexistcv > g.  such thatui  *  l tu i  < ui  *otui  <-xi ,  Vi  (  I (y) ,  i .e. ,  suchthat
u*au €  [y ,x ]  c  G,  cont rad ic t ing(1) .There fore ,  K ,  C R? \G,andsoy  €  A+G.
For any y' e O+Gl.) f(rz, u), we have y' e l(u,u) \ Ky, hence, y' : u I au with
ot 1 &,i.e., y' < y. On the otherhand, since y' e 0+6, itfollows that Ky, n G - A,
i.e., ! e l(u,u) \ Ky,, ffid hence, y = y'.Therefore, !' : y, completing the proof of
Proposition 4.

Corollary l. A compact normal set G is equal to the normal hull of its upper boundary
a+ G.

Proof. For any x e G \ {0}, we have x < y :: oG(O, x) € a+G, i.e., x € [0, y] c
N[a+G]. Therefore, G c NtA+Gl. The converse is obvious. r

LetD beacompactsubsetof Rf .Apoint u e D iscalled anupperextremepointof
D 1f x e G, x Z u + x :'u.Clearly, every upper extreme point u of a compact normal
set G c Ri satisfies K, C Ri \ C, and hence is an upperboundary point of G. In other
words, If v - v (G) denotes the set of upper extreme points of G, then V c a+G.

Proposition 5. A compact normal set G C R+ is equal to the normal hutl of the set V
of its upper extreme points.

Proof. In view of Corollary 1, N[y] C N[A+G] - G, so it suffices to show that
A+G c Ntyl. Let y € A+G. Define xl € argmax{x1l x € G, x
x i  €  a rgmax{x ; l  x  €  G,  x  >-  x i - t }  fo r  i  -  2 , . . . ,n .Then u  t :  xn  €  G and
u ) x for all x e G satisfying x > y.Therefore, x €. G, x > u ) x - u. This means
that y < u € V, hence y € N[y], as was to be proved. r

Proposition 6. The set of upper extreme points of the normal hull of a compact set
D C R\ is contained in the set of upper extreme points of D.

Proof.  I f  u e Dbutuisnotanupperextremepoint , thenthereexistsapoint  x e D
satisfying x 2 v,x # u. Since D c NlDl, this implies thatu isnotanupperextreme
point of N[D]. I

Remark 1. For normal sets, upper extreme points play a role analogous to that of extreme
points for convex sets. In fact, Propositions 5 and 6 arc analogous to well-known
propositions in convex analysis, namely that a compact convex set is equal to the convex
hull of the set of its extreme points, and any extreme point of the convex hull of a compact
set is an extreme point of this set.

A function f : R' + R is said to be increasing on Rf it f (x) < f (x') whenever
0 1 1 1 x , ; i t i s s a i d t o b e i n c r e a s i n g o n a b o x | a , b ] C R \ i t f ( x ) <
whenever a < x < x' < b. Functions increasing in this sense abound in economics,
engineering, and many other fields. Outstanding examples are production functions
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(e.g.,the Cobb-Douglas function f (x) - ilixf" ,oti.2 
0)' cost functions' and utility

functions in Mathematical Economics, posynomials (in particular quadratic functions)

with non-negative coefficients, posynomials Ei=fiil'l:r(x)au (c1 >- 
.0, 

ari Z 0) in

engineering design problems, etc. other non-triuiut exampres are functions of the form

f ( x ) _ s u p { 8 ( u ) | u € D ( x ) } , w h e r e g . R i - - + R i s a c o n t i n u o u s f u n c t i o n a n d"D' 
:'R\ -- )i{+ i, u .o-pact-valued multimapping such that D(xt) ) D(x) for x' > x '

Proposition 7.
(l) If fi, fz are increasingfunctions, thenfor any non-negative numbers i'1, )"2' the

function \fi * )'zfz is increasing'

(il) Thepointwise rrpiiir*of aboundedabovefamill (f)oa,of increasingfunctions

and the pointwise infimum of a bounded below family (f)oe,q, of increasing

functions are incre asin g'

Proof.Immediate. 
I

It is well known that the maximum of a quasiconvex function over a compact set ls

equal to its maximum over the convex hull of this set and is attained at one extreme point'

Analogously:

Proposition 8. The maximum of an increasing function f (x) over a compact set D is

equal to its maximum over the normal hun of D and is attained at at least one upper

extreme Point.

proof. Let ibe a maxi mizerof /(x) on G - N[D]. Since, by Proposition 5, G is equal

to the convex hull of the set V of its upper extreme points, there exists u e V such

that i S u. Then f (u) >- f (r), hence, u is also a maximizer of /(x) on G' But' by

Proposition 6, u is also an upper extreme point of D, hence' it is also a maximizer of

f ( x ) o n D .  
r

Just as convex sets are essentially lower level sets of quasiconvex functions, normal sets

are essentia[y rower rever sets of increasing functions, as shown by the next proposition.

Proposition 9. For any increasing function g(x) on R\, the level set G : {x €

R[l S(x) < l] is anormal set, riotrdif S(x) is lower semi-continuous' Conversely'

for any compact normal set G c R\ with non-empty interior there exists a lower

semicontinuous increasingfunction g i R\ -+ R+ suchthat G - {x € Ril s(x) < 1}'

Proof. we need only prove the second assertion. Let G be a compact normal set with

non-empty interior. For every x e R\, defin9 g9) : inf{), > 0l x e'IG}' From the

assumption intG I A, there rs u > d such that [0, ul c G (Proposition 3)' Then' for

any x2 ^i, the halfline {uxl a > 0} intersects [0, uf C G, hence, 0 < g(x) < +oo'

S i n c e f o r e v e r y , l ,  >  0 t h e s e t l , G i s n o r m a l , i f  x  <  x ' e ) ' G ,  t h e n ' r  e ) " G '  t o o ' s o

g(x') >- g(x), i.e., g(x) is increasing' We show that G : txl S(x) : 1)'In fact' i f

x e G, then obviouslY g(x)

there exists a < | such that ax e G, r.e., x f (lla)G. Hence, since G is normal,

x ( )'G for all ), > |fa, which in turn implies that g(x)

G _ {x € Ril g(x) < 1}. It remainsto prove the lower semicontinuity of g(x). Let

t"*f C Ri b; J"qo"*. such that g(xk) < aYk.Then, for any given ott 2 d, we have
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xk e atGYk, hence xo e a'G in view of the closedness of the setatG.This implies
thatg(xO) l atandsince or'carrbetakenarbitrarilyneartocu, wemusthaveg(x0) S a.
Therefore, the set {x e R" + | g(r) < a} is closed, as was to be proved. I

Note that if G - {xl S(x) 5 U; where g(x) is a continuous increasing function, then
obviously a+G c {y e Ril S0) 

- 1}, but the converse may not be true.
A set H c R\is said to be reverse normalTf x' > x e H implies x' e H.Itis said

tobe reversenormal inabox l0,bllf b > x'> x e FI impliesx' e H or equivalently,
if x' f. FI whenever 0 < x' < x # H. Clearly, a set Il is reverse normal if and only if
the set Hb - Ri t I/ is normal. For any set D C R\, the set D + R+ is obviously the
smallest reverse normal set containing D. We call it the reverse normal hull of E and
denote it by rNlDl.

It follows from Proposition 9 that, for any increasing function h(x) on Rl, the set
H - {x e Rf I h(x) > 1} is reverse nonnal and this set is closed It h(x) is upper
semicontinuous.

Let H be a reverse normal set. A point y e Ri is said to be a lower boundary point of
H If y e clH (hence, y + Ri C clH)while x 4 H Vx < y. The set of lowerboundary
points of H is called the lower boundary of H and is denoted by 0- H .lf I/ is closed,
t h e n 0 - H  c H .

Proposi t ion 10. Let H beareversenormalset.Foreveryu e H andu € Ri \ {0},
the halfline {u - aul a > 0} meets A- H at a unique point an(u, u) defined by

an(u,u)  :  u  -  Lu,  ) ,  -  suP{cYlu -  au € Hl .

Proof. Similar to the proof of Proposition 4. r

Corollary 2. A closed reverse normal set H is equal to the reverse normal hutl of its
lower boundarv A- H.

Proof. Since the fact is obvious when 0 e H (i.e., H - R\), we may assume that
0  e  H.For  any  x  e  H,wehave x  >  y  : :  aH(x ,x )  e  A-H,  r .e . ,  x ,  e  rNI } -H l .
Therefore, H C rN[0-Il]. The converse is obvious. r

Apoint u of acompactsetD C R? iscalled alowerextremepoint if .r e D,x <
u + x : u. Analogously to Propositions 5 and 8, we can prove that a closed reverse
normal set is equal to the reverse normal hull of the set of its lower extreme points; the
minimum of an increasing function over a compact set D C Ri is attained at a lower
extreme point.

Let G C [0, b]be a normal set and Gb - ni t G. It is easily verified that

@- Gb) n Ri*  c a+G c a- Gb, (3)

bu t ingenera l  (Gna-Gb) \  a+G + 0 .Anormalse tG such tha tGn(a-Gb)  c  a+G is
said to be regular. A set G is said tobe robusl if any point of G is the limit of a sequence
of interior points of G.

Proposition 11. A normal set G is regular if and only if it is robust.

(2)
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Proof. Let H - Gb.Suppose G is robust and let y e G n a-Il. Then y + R+,C clH
(because y eA-n.f i2 e GtKy, then,since z eG, wehave z - l imt--+nzK, zK €

G,zk > 0,  and,since z € Ky, i .e. ,z i  > l iYi  f  I (y) ,  wemusthave,forfr largeenough,

z f  , l iY i  f  I (y ) , r .a . ,zE € .y+Rf ,  wh i le  zk  4  
" IH ,  

acont rad ic t ion .There fore ,
KrtG -  A,  andhence,y e A+G. Conversely,  supposeforsome y e G thereisno

in te r io rpo in to fG insomene ighborhoodofy .Then, fo re : . l . yw i th0<1.<1and, i "
close enough to 1, onehas z e clH, andx e GYx < z, henca, z e A- H. Onthe other
hand, z 4 3+G because y e GtKr.  Therefore,  G l l  A-H\A+G +4. r

3. Polyblocks

The simplestnon-empty normal setis abox [0, y] C Ri, determinedby apoint y e R\.

By PropositionZ, the union of a family of boxes is a normal set. Conversely, it is obvious

that

Proposition 12, For any normal set G, we have

G : UyeG[O, y].

This suggests that a compact normal set could be approximated by a finite union of
boxes. An "elementary" normal set which is the union of finitely many boxes (i.e., the
normal hull of a finite set in R[) is called a polyblock. More precisely, a set P is called

apo lyb lock in la ,b l l t  P  :  l ) zer la ,z l ,  whereT c  la ,b l  ( l f l  <  *oo) .The se t  Z

is called the vertex set of the polyblock. A vertex z € T is said to be improper if it is

dominated by some other zt e T, i.e., if there is e' e f \ {z} such that [0, zJ c [0, z'].
Of course a polyblock is fully determined by its proper vertices.

Proposition L3. Any polyblock is normal and compact. The union or intersection of

finitely many polyblocks is a polyblock.

Proof. The first assertion follows from the fact that any box [4, z] C R+ is a normal

compact set while the union of a finite family of normal compact sets is a normal

compact set. The union of finitely many polyblocks is obviously a polyblock. To see that

the intersection of finitely many polyblocks is a polyblock, it suffices to observe that
( U ; A ; )  n  ( U ;  B )  - U i , i ( A i n t t )  a n d l a ,  p l i l a , q f  - l a ,  z l  w i t h  u i  - n i n { p i , q i l . .

The concept of polyblock is analogous to that of polytope in convex analysis. In fact,
justasapolytopeistheconvexhulloffinitelymanypointsinR", apolyblockisthenormal
hull of finitely many points in Rf . We next show that, just as any convex compact set is

the intersection of a nested family of polytopes and can be approximated, as closely as

desired, by a polytope enclosing it, any normal compact set is the intersection of a nested

family of polyblocks and can be approximated, as closely as desired, by a polyblock

containing it.

Proposition 14. Let G C [0, bl be a normal closed set. For any z € [0, b] \ G, there

exists y € A+G such that the set K, separates z strictly from G (i.e., contains z but is

disjointfrom G).

283

T
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Proof.  Recal l  thatKr:-  {x e Ri ly i  < x;v i  i  I (y)1,  where I (y)  -  { i ly i :0} .  Let
y be the last point of G on the ray from 0 through e (i.e., y : oc(O, z) as defined by
(1)). Clearly, z € K, and y e 0+ G by Proposition 4, hence, K, is disjoint from G. r

Proposition 15. If 0. i < Z < b, then P : [0,2] \ K; is apolyblockinl\,blwith
vertex set v - {zil i f I(t)} c RL*, where

z '  :2  -  (2 i  -  I )e '  .

Proof. LetK; - {x e R\lh < xi}. Since K1 - |rrilG)K;, wehave P - [0, Z]\K; :
Urer@) ([0, Z] \ K;). But

t 0 , Z l  \  K i  : { r l  0  <  x r  <  I r ,  0  <  x 1  a l Y j  + i }  - 1 0 , 2 ' 1 ,

wherez l  denotes thevec torsuchtha t  z j :Z iV  j  + i ,  z l r :  I i , i .e . ,z i  -Z - (Z i - I )e i .

To prove thatv C Rt+, consider any z' with i f I (i). Then for every j + i, we have,
zi :2i > 0, while z! - f; > 0.

Proposition 1.6. Let G be a compact set contained in a box 10, bl C
followin g as s ertions are equivalent :
(i) G is normal;

(ii) For any point z € 10, bl \ G, there exists a polyblock in 10, bl separating z from G
(i.e., containing G but not z).

(iii) G is the intersection of afamily of polyblocks in 10, b).

Proof. (D+(ii) lf z e l0,bl \ G, then by Proposition 14, there exists y e E+G such
thatz € Ky but K, f l G - A,r.e.,l0,bl \ K, (whichis apolyblockbyProposition 15)
separates z from G.

(ii)=+(iii) Let E be the intersection of all polyblocks containing G. Clearly, G c E.
If (ii) holds, then, for any z e E \ G, there is a polyblock containing G but not Z, so
E c G .

(iii)+(i) Obvious by Proposition 3 because any polyblock is closed and normal. r

A s e t  Q  c l a , b l  c  R i ,  w h i c h i s t h e u n i o n o f  b o x e s  l y , b l , y  €  T  C l a , b l , l T l  <
*oo, is called areverse polyblockrnfa, bl with vertex set T.A vertex y e T is improper
i f  thereexists y '  e T \  {y}  such thatyt  < y, i .e. , ly ,b l  Cly ' ,b l .Otcourseareverse
polyblock is fully determine dby its proper vertices. The next propositions are analogous
to Propositions 15 and 16.

Propos i t ion lT .  I f  0  <  t  <  i  <b , thenQ: ly ,b l \ [ t ,  I ) i sareversepo lyb lockwi th
vertices

y t  :  y  *  ( I i  -  y ) e '  i  -  7 , . . . , n .

If i € A- H, where H is a reverse normal set and Q _ lr,bl \ [t,t), then
H n Q : H f ) l r , b l .

Proof. Let Li _ {ul yi

[ t , b ]  \  [ t , t )  - n ' ! : r ( r , b ] \ Z ; )  : U \ : r { u l I i  1 u i  1 b i ,  y j  < u j  S b i Y j  *  i } :
u'!:rl!i, bl. The second assertion is immediate because [t, t) is disjoint from 11 when
I  e | - H .  I

T

R\. Then the
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Proposition L8. Let H be a compact subset of fa, bl. Then the following assertions are

equivalent:
(i) H is reverse normal in 10, bl;

(11) for any y e la, bl \ H, there exists a reverse polyblock separating y from H;

(iii) H is the intersection of a family of reverse polyblocks in la, bl.

Proof. Similar to the proof of Proposition 16.

4. Systems of Monotonic Inequalities

By the system of monotonic inequalities (or monotonic system, for short), we mean a

couple of inequalities of the form

I  s(x) < t '

I  h(x)  > I ,

(4)

(s)

(6)

(7)
< b .

where g@),h(x) are increasing functions on Rf. Often 8@) - r1&x;-t,...,*r&(x),

h(x) -miri:arar,...,mh1@),where gi(x), h1@) are increasing functions on R[, so a

monotonic system may actually consist of finitely many inequalities:

S i @ ) <  1  ( t  -  1 , .  . . , m t ) ;  \ ( x ) Z  I  ( , r  -  m r + 1 , .  . . , m ) '

Setting
G  - { x  e  R \ l  g ( x )  <  1 } ,  H  - { x  e  R \ l h ( x )  >  1 } ,

we can rewrite the svstem as
x e G n H .

where G is a normal set, and F/ a reverse normal set. We will make the following blanket

assumption for this section:

G and H arc closed subsets of Rf ;

t f t G l A ,  G  c  [ 0 , c ] ,  H b : -  n i t  H  c l a , b l ,  w h e r e 0 < a  < c

Conditions (7) can always be made to hold, provided G n H is compact, say G n H C

la, cl.Indeed,itsufficestoreplace G, Hby G' :- G[l[O, cl, H' :- H|r{x e [0, b]l-t >

a), respectively, where b > c is selected so that G' n H' - G l'l H. Clearly, the new sets

Gt, Ht will satisfy (7).
To provide insight into the structure of the solution set of a monotonic system (4)-(5),

we shall focus on characteizingparticular solutions called upper basic and lower basic

solutions. These concepts are motivated by the application to optimization problems

under monotonic constraints.

4.1. Upper Basic Solutions

A point x e G O F/ is called an upper basic solution (ubs for short) of the system (4)-(5)

if x < x' e G fr I/ implies x : x' . Clearly, any ubs x must belong to 0+G (upper

boundary of G) because, lt x f. A+ G, then there is y e K* | G, and since fI is reverse

normal andx € F/, onemusthavey e H,r.e.,y e GIFl, but y * x (because ! € K*),

conflicting with x being a ubs.
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A ubs of (4) and (5) is nothing but an upper extreme point of the set G n H.
Therefore, as we saw in the proof of Proposition 5, for any y € G n H, there is
a u b s x
z i  e a r g m a * { z i l z  €  G n  H ,  z >  z i - t } f o r i  - 2 , . . . , n .

To describe a characteization of ubs's we will assume, additionally, o , 0 in (7), so
that

G n H  C f a , b l C ( 0 , b \ .

As usual, define Gb :: Ri \ G. Condition (8) implies that

(8)

(e)K * l ( G n H ) : A  Y x e A - G D .

I n d b e d , f o r a n y x  €  A - G b , w e h a v e i n t K ,  C  G b , h e n c e  K r l G  C  c l K " \ i n t K *
C {t I min; /r : 0}, and therefore, in view of (8), K' n (G n H) - A.

Also, setting Ha - {x e Hl x > al, we have from (8):

G n H C H o .  ( 1 0 )

Now, let us fix a vector u € R1*, and for arry z € [0, b] \ G, define

n ( z )  - z - L u ,  . 1 ,  -  s u p { c v l z - ) , u  €  [ 0 , b ] \ G ] , ( 1 1 )

i .e. ,n(z) :  o)Gb(z,u) ( lastpointofc lGoonthehal f l ine {z-aula > 0};  seeProposi t ion
7 and formula (2)). Clearly, z(z) < z e 10, bl because ).u > 0.

Proposition 19. Every upper basic solution of the system (4)-(5) is the limit of a
sequence {zk} c Ho such that zo, zr, zz > . . . and

zo : b, zk*t : zk - {zfo - *!;rio;

,k  :  n (zk) ,  i1 ,  f .  I (xk ) ,  k  -  o ,  1 ,  . . .  
(12)

For the proof, we need some auxiliary propositions.

L e m m a  l .  E v e r y s e q u e n c e z 0 : b ,  z L , 2 2  r . . . > 0  h a s a t i m i t .

Proof. By compactness, the sequence zk hasat least an accumulation point i. This point
satisfies zk > i,, V/< becaus" z0 , zr , ... . Now, 7f x : limq--+m zkn is an arbitrary
accumulation point, then zkn , ft, Yq, hence, x > ft. By interchanging the roles of x
andft ,  one alsohasi  )  x,henca,x:  i .  Therefote, i : l imp--ra*7k.  I

Lemma 2. The sequences {zkl, {*k} in (12) satisfy zk - *k -+ 0 as k * +oo.

Proof. By (12), ,f:t - xf , while by Lemma 1, lim7.--+- llzft+l - zkll: 0. Therefore,

zfr  - ' !o :  zfr  -  r f : '  = l lzk -zk+l ;1 - t  0 (k +*oo).

But by constructiofl, Zk - xk : zk - nTk\ : Lku, to zfo - *!o - ).kuir,, hence,

Lk : kfr- *!;/r,0. Since u;o > min;:t,...,nui > 0, it follows that)"1, + 0, and

consequently, zk - xk + 0. I



Lemma 3. If zk, xk satisfy (12), then I e (0+ G) a H, where i is the comrnon limit of

zk and xk o, k + *oo.

proof. Since xk e A- Gb Vk, one must have i - limr-r-. * xk e A- Gb. On the other

tt*d, since zk e HoVlc, one must have i - 1im6-1* zk € Ho.The latter implies that

i  >  g ,ands ince  i  e0-Gb, i t fo l lowsf rom(3) tha t  i  e0+G.Thus,  i  e  (0+G)nI / ' r
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Proposition 19.

4.2. Lower Basic Solutions

A point x e G O F/ is called alower basic solution (lbs for short) of the system (4)-(5)

1f^x Z x,  € G AI/ impl iesx :  xt .  c lear ly,  anylbsx mustbelongto0-F1 ( lower

boundary of 11) because, If x ( A- H, then, since x e H, there must exist x' e FI such

thatxt  < x and, s ince Gisnormal,xt  e G, i .e. ,x '  € Gn H andxt l  x,Conf l ic t ing

with x being a lower basic solution.

An lbs can also be defined as a minimal element of the set G n 11 with respect to

the ordering / z x, + xi Z x! Vi. By Zom's Lemma, for any feasible solution of the

system (4)-(5), there exists a lower basic solution dominated by it, namely a minimal

element of the set of all x e G n H that are dominated by this solution.

To describ e a characterization of lbs's, it is convenient to assume c - b in (7)' so that

i f iG * a,  G c l1,bl ,  Hb : :n i  t  H c l0,bf ,  G n H c la,bl '

F ixavec tor  u  e  R\* ,e .g . ,u  -b -a ,andforevery  ze  Hb,  de f ine

P k ) - z l t r t ' u ,  & - s u p { a l z * a u € l a ' b l \ H } '  ( 1 3 )

i.e., p(z) : oHb(2, u1(first point of H on the halfline {z I uul a >- 0}; see Proposition

4 andformula (1)).
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Proposition 20. Any_lower basic solution of the system (4)-(5) is the timit of a sequence
{zk}  c  G suchtha t  z0  t :  a  1zr  <  z2  <  . . .  and

zo : a, zk+r - ,o + @!r - ,f)r'o

* k  :  p ( z k ) ,  k  - 0 , 1 ,  . . .

that i : x.

we have thus proved the following characterization of the basic

Proof. Let x be an lbs. We construct a nested sequence of boxes lzo, b1 ) lzr , bl )
" '  I  lx ,b l  suchthat zk e G andzk sat isf ies (14).  s incea e G, i f  a € H, thena is
the only lbs, hence I x : a andthe sequenr" zk - a Yk satisfies the desired conditions.
Now, let a f. H and suppose we have already defined Zo, zr z' satisfying (14) and
z k ' e  G  f o r k : 0 ,  1 , .  . .  , h . l f  z h  e  H , t h e n , s i n c e  z h  e  G  a n d z h  (  x ,  w e m u s t h a v e
zh.: x (blthedefinitionof anlbs), so thatzk - x (Yk > h+1) satisfies (14). Otherwise,
xh : p(zh) u ,h,andbyPropositionlT,thereversepolyblock Qn+r - fzh, bl\ lzh, xh)
still contains x. Let Wn+t be the set of proper vertices of Qn+t that belon gto G.Since G is
normal, it y 4 G, then ly, blnG : A,hence,Wh+t : 0 wouldimply that Qy11f)G : A,
conflicting,with x e Qn+t Therefore, Wh+r I A and there exists zh+L e 1fi211 such
that x e l7h+t, bl. From Proposition 17, we know that zh+r - zh + @! - z!)ei for some
i - it. Since zh+r e G, the sequence zo, zr zft*l satisfies (la). Thus, a sequence
{zk} satisfying (1a) has been constructed.

It remains to show that such constructed sequences ({zk}, {rk}) tend to a corlmon
limit which is exactly*. First, by Lemma 1 (with the order < replacing.>), the sequence
z o :  a

zk+r - zk - 0 (/< + *oo).Therefore,

- z fo : r f : t  - r f r= l l zk * r  - zk l l - , 0  ( k - ->  *oo ) .

But by construction, xk - zk - p(zk) - zk : &ku, so ,!o - zfr : &kuit, hence,

Fk : @!r - r!;/r,n Since u;o > mini:r,...,nr)i > 0, it follows that p.1, --+ 0, and
consequent ly,xk -zk -  0, i .e. , i  - l im zk - l imxft .Since zk eGyk, i t fo l lowsthat
i ,  eG.A lso ,  xk  - -  p (zk)  eA+Hb c  A-H,vk ,hence,  i  e0-H,andso f t  e  Gn@-H) .
F ina l l y , the fac t  z0 .z r  .  z2 . . . . imp l ies tha t  f i  l x ,ands incex isan lbs , i t fo l lows

*:

(r4)

T

solutions of a
monotonic system:
(i) Every upper basic solution x of a monotonic system (4)-(5) is characteizedby a

s e q u e n c e  { i o , i t  i t , . . . } ,  w h e r e  h  <  { 1 , 2 , . . . , n } ,  s u c h  t h a t x  i s t h e l i m i t o f
the sequen"" z0 , zr , z2 , .. . defined by (12).

(ii) Every lower basic solution x of a monotonic system (4)-(5) is characteized,by a
s e q u e n c e  { i o , i t  i k , . . . }  w h e r e  i p  e  { 1 , 2 , . . . , n } ,  s u c h  t h a t x  i s t h e l i m i t o f
the sequence z0 . zr . z2 . ... definedby (1a).

Let us agree to call the sequence Us, ir, . . . , ik, . .. ) that determines an upper (or
lower) basic solution x tts characteristic sequence and ip its ftth characteristic number.
F o r a n y  z  e  R \ a n d  i  €  { 1 ,  2 ,  . . . ,  n } ,  d e f i n e

z l i l  :  z  -  (z i  -  n ik )e i ,  z [ i l  -  z  *  (p ik )  -  z i )e i , (1s)
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where ri(z), piQ) arethe ithcoordinateof n(z) and pk), respectively.Also, write Z1oii
for (zuot)ri,1 and analogously, Tlioir) for (atrol;tt'1. Then for any upper basic solution .t
with characteristic sequence {io, it, . . . }, we have

b1ioir . . . i f l  e H, Yk, 
"  

:  
oIT,o 

byoi , . . . ro1,

while for a lower basic solution x.

(A) max{ f  (x) l  x e G. H},

( B )  m i n { / ( x ) l x  e G n H ) ,

(16)

ol io i r" ' i lJ  q 6,  Vk,  r  :  
o l f*  

o l io i t " ' i i l .  (17)

From the proofs of Propositions 19 and 20, it is easily seen that [0, x] _

n/5 10, bporr...roll for an upper basic solution and [x, b] - nil: fqlioir"'id , bffor a lower

basic solution.

Remark 2. Proposition 19 remains valid when we replace n(z)by an arbitrary mapping
n ; H n Rl- --> 0+G suchthat

n ( z )  -  z - L z u ,  w h e r e  l .  )  0 ,  q  >  T  > 0 .

For example, under assumption (8), one can take n(z) - z - \.rz,wrth), - suP{crl (1 -

a)z e Gj.
Also, Proposition 20 remains valid when we replace p(z) by an arbitrary mapping

p I G a RL --> A+ Hb such that

p ( z ) - z l 1 t ' r u ,  w h e r e  F z >  0 ,  u : b - z  € R i * .

For example, underthe assumption z < bYz € G, one can take Pk) - z I ltz(b - z)
wi th p. ,  -  sup{cul  z*a(b -  z)  e H'} .

5. Optimization Under Monotonic Constraints

Given a monotonic system (6) and an increasing function f (x), consider the following
problems which are encountered in many important applications:

(18)

(1e)

where  G: -  {x  e  Rf  lS(x )  <  1 }and H - {x  e  R+ lh(x )  >  1 } ,  w i thg( " r ) ,h (x )  be ing
increasing functions on [0, b\ c R\, such that (7) is satisfied.

The next proposition, together with Propositions 19 and20, provide a theoretical basis
for a solution approach to these problems.

Proposition 21. An increasingfunction f (x) achieves its maximum over the set G a H
at an upper basic solution of the system (4)-(5), and its minimum at a lower basic
solution.
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Proof. Letx € Gn Hbe afeasiblesolutionof Problem(A)and I - n(x).Then x 1x,
and since F1 is reverse normal, x still belongs to H, hence, i is a feasible solution which
is at least as good as x. Clearly, i is an upper basic solution because I < x' e C n H
implies xt : i. Consequently, for any optimal solution of (A), there exists an optimal
solution which is an upper basic solution. Analogously, the same holds for Problem (B).

T

Thus, a global maximizer of f (x) must be sought among the upper basic solutions
of the system (4)-(5), while a global minimizer must be sought among the lower basic
solutions.

5.1. Maximization Problem

It was shown in the preceding section that, under assumption (7) where O < a < b,
every ubs of (6) is the limit of a sequence bpoir...rol, k : 0, 1 Therefore, solving
Problem (A) amounts to finding a suitable sequence {lo, it, . . ., it, . . .1.

Let us introduce some definitions. Denote by Q the set of all vectors of the form
b [ i o i r . . . i o ] , f o t k  -  0 ,  1 , . . . .  G i v e n  a v e c t o r  z  -  b y o i r . . . i r l , w e  s a y  t h a t a  u b s x  i s
covered by z if x € lO, bpoi,...,oll (i.e., if its first k * 1 characteristic numbers are
exactly io,ir,..., i t). Any vector z € Q determines a set of ubs's, namely the set
E(z) of all ubs's covered by z. By Proposition 15, E(z) - u{E(zti)l i f I(n(z))\,
soreplacingaz e Qby {zUl l i  f  l ( t t (z))}  amountstopart i t ioningE(z) intosubsets
E(zU), i  e I (n(d).  Avector z e T C Qrs saidtobeanimpropermemberof Z i f
z < zt (hence, E(z) c E(z')) for some zt e T \ tz).

Now, we can outline the branch and bound procedure for maximizing / (x ) over G a H .

Start from Ts - {b},i.e., from the set E(b) of all ubs's. Since b e Ho :- {x e Hl x >
a\, rf b e G, then it is obviously an optimal solution. Otherwise, proceed to iteration
k - l. At iteration ft > 1, we already have a set Tp C Q which defines a collection of
sets {E(z) | z e f1,1 C E(b) such that Uzerr,E(z) contains at least one optimal solution,
if there is one. In the collection T1r, wa can delete the improper members, the members
z € Tp \ I/, (because E(z) - A when z f H" in view of the reverse normality of H")
and alsodelete allz e 4 such that f (z) < f (I), wherei is thebestfeasible solution
known up to this stage (indeed, no ubs covered by such z can be better than i). Let Zp
be the set of remaining members of T1r.If Zt - A, then i is an optimal solution (if
no i exists, the problem is infeasible). If 4 # 0, select zk withmaximal f (zk),r.e.,
zk e atgmax{f (z)lz e Zp}. Since zk e Ho, rf zk e G, then zk ,, unoptimal solution.
Otherwise, compute xk : n (zk) and replac e zk by the set {2fi,1i # t (rk)} (i.e., further

partition nk\ into EQf,),i 4 t(*k)).Let Tpal be the resulting set. Go to iteration
k + | with Zr11 in place of 71,.

It turns out that, whenever infinite, this branch and bound procedure generates a
sequence b7ir1, bpoirl, . . . , converging to an optimal solution.

We can thus state the following algorithm for solving Problem (A).

Algorithm 1. (For Problem (A), under assumption (7) wrth a > 0.) Select a vector
u e R\* for the mapping n : R\* \ G + A- Gb (see (11) and also Remark 1). Select
atolerancee > 0.
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Initialization. If a 4 G, terminate (the problem is infeasible because G n H - A).
Otherwise ,let Ts - {b}.Let i be the best feasible solution available, C BV - f (r). lf
no feasible solution is available, set C BV : -oo. Set k : 0.

Step 1.lnTr delete all improper members, all z € 7l. \ I/r, and delete all e such that
f (z) = C BV * e. Let Zpbe the set of remaining members of Zp.

Step 2. lf Zp : A, then terminate: it C B V > -oo, the current best feasible solution i
is accepted as an e-optimal solution of (A); if C B V : -oo, the problem is infeasible.

S tep3.  I f  Zp f  A ,se lec tzk  eargmax{ / (z ) lzeZd. l f  zk  e  G, thenterminate(zk
is an optimal solution). Otherwise, compute xk : n(zk). Update the current best value
C BV and the current best feasible solution i.

step 4. LetTp,rl: (Zr \ {2ft}) u {zk - kf - *!)t i l i  f I("r)}.

Step 5. Set k + k I 1 and return to Step 1.

Proposition 22. Assume f (x) is upper semicontinuous on H.If Algorithm I is infinite,
it generates at least one infinite sequence b7;o1, bpo41 buotr...itl, . . . converging to
an optimal solution.

Proof. Let us agree that zt is a successor of z 7f zt e {zfrt zfni; a descendant of
z rf zt : zl1l for some 6 : (60, Et, . . ., €t), where k is a non-negative integer and
6;  e  {1 , . . .  ,n l ,  i :0 ,  1  f t .  I f  theA lgor i thmis in f in i te ,a t leas tonesuccessoro f
b, say y0 : b1;01, has infinitely many descendants. Then at least one successor of y0,
say yl : )P,,t - bporl, has infinitely many descendants, and so on. Continuing, we find
a n i n f i n i t e s e q u e n c e y 0 :  b 1 r r 1 , ! r  - b l i o r r l , . . . ,  y k : b u o . . . i r l , . . .  s u c h  t h a t y k  e  H ,
Vk. By Proposition 19, bliorr...iol --> 2 e G n H. From the selection of zk in Step 3, we
have f (bprtr..;ol) > f (z),Yz e G o,F1. Hence, by upper semicontinuity of f (x) on fI,
f (Z) > f (x), Vx € G n H, as was to be proved. r

Remark 3. To alleviate storage problems which may arise in connection with the growth
of 77' as the Algorithm proceeds, Step 5 of the Algorithm can be modified as follows.
Let L be the maximum size allowed for lZ7. l.

Step 5. lf lTpall < L, then set k + k * 1 andreturnto Step 1. Otherwise, go to Step 6.

S t e p 6 .  R e d e f i n e  T t + r : { b - ( b i - * ! ) r i ,  i : 1 , . . .  , n } ,  s e t  k  + k *  l  a n d r e t u r n t o
Step 1.

With this modification, each time Step 6 occurs, the Algorithm is restarted from the last
xft. Restarting is a device for overcoming memory space limitations at the expense of
more computational time in order to solve large scale problems.

Example 1. Consider the problem

29r

max{g(u(x))l x € D}, (20)
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where D C Rf is a non-empty compact convex set, g : RT -+ R is an increasing
function, u(x) - (a@), ... , um@)), ui : D -+ R-. being non-negative-valued con-
tinuous functions on D. By Proposition 1, this problem can be written as max{g(y)l y e
u(D)l  -  max{e(y) l  y e Nlu(D)l} ,  i .e. ,

max{p(y)ly e G},

where G: :  NIu(D) l  -  {y  e RTI*  e D,  y  < u(x)} .This isof  courseaproblem(A),
with I/ - RT and G being closed by continuity of u(x). Furthermore, without loss of
generality, we can assume

It is then easily checked that there is a y > 0 satisfying y € G, i.e., intG 10. Also, if
every ui(x), i - | m is concave or convex, then, for every z e R\\ {0}, the point
r(z) as defined by (11) can be computed easily.

Example 2. Consider the problem

rr r?xu ; (x )  >  0 ,  Y i  -  I ,  . . .  , f f i .
x e D

m a x { ( c ,  x ) l x  e  D ,  q ( u ( x ) )  <  1 } ,

where D, g and u(x) are as previously. Observe that the set

H - {y e RTI u(x) < y forsome x e Dl

is closed and reverse normal, since H - u(D) + ni - rNlu(D)1. Define

(2r)

(22)

(23)

where M > 0isanarbi t rarynumbersuchthat -M < min{(c,  x) lx e D}.  SinceDis
non-empty compact, clearly -oo < 0(y) < *oo, Yy e R!.

Proposition 23, The function 0(y) is increasing and upper semicontinuous on Ri. If
u t (x ) , . . .  ,L tm@) areconvex , then0(y)  i s  concaveontheconyexset  H -u (D)+  RT.

Proof. Ify < y' andy 4 H,then0(y) - -Mwhile 0(y') > -M - f(y').Butify < y/
and y e .F1, then A * {x e Dl u(x) < y} C {x e Dl u(x) < y/}, hence, 0(y) < 0(y').
Therefore,0(y) is increasing. We now show the upper semicontinuity of 0(y). Since
11 is closed and 0(y) - -M Yy f H, it suffices to show the upper semicontinuity of
g(y) on H.Letyk --+ y0 lwhere yk e H), andforeach k,letxk be suchthat xk e
D,, u(xk) . yk, (r, *kl - O(yk). Since D is compact and a(x) is continuous, we can
assume xk -  xo e D,u(xo) = y0.Then 0(y0) > (c,x0) :  l im7.(c,  xk): l imke(yk),
as desired. Finally, if every function ur, . . . , umis convex and 9(y1) : (c, xr\, e1y27 -
(r,*2), where xi € D, u(xi) < !i, i  : I,2, then, for any a € (0, 1), we have
x ; : a , x r + ( 1  - a ) x z  e  D a n d  u ( x )  < u u ( x t ) + ( t  - a u ( x z )  = y l  +  ( l - a ) y 2  - y .
Hence, 0(qyr + (1 - a)yz) > (c, o*r + (l - a)xz) - a7(yr) + (1 - a0(y2),proving

0 , \  _ {  
s u p { ( c ,  x ) l x  e  D ,  u ( x )  <  y } ,  1 f  y  e  H

I -M, otherwise,

the concavity of 0(y) on H : u(D) + ni.
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Proposition 24. Problem (22) is equivalent to

m a x { 0 ( y ) l p ( y )  < 1 ,  y € H J

in the sense that if x solves (24), then y - u(I) solves (24), and conversely, if y solves
(24) and e0) : k, i) for an optimal solution x of (23) (where y - ,), then I solves
(22).

Proof.LetI  solve (22)andy -u(x).  Then q(y) =1, y e F/ .Butforevery y € RT
such that g(y)
u(x) < y and hence, p(u(x)) < 1. Therefore, 0(y) < (c, x), proving that y solves (24).

Conversely,let y solve (24) and0 (y) : (c, i) for an optimal solution I of (23). Then for
every x e D such that p(u(x)) < 1, we have for I - u(x) : q(y) < l, y e H.Hence,
on theonehand,  0 (y )  <  0 (y ) :  (c , i ) ,  on theother ,  (c ,x )  <  0 (y ) ,  so  (c ,  x )  <  (c , I ) ,

r.e., i solves (24). I

Aga in  (24) is  aProb lem(A) in  R* ,wr thG -  {y  e  RT lp0)  <  1 } .  Note tha t i f
ui(x),i - 1... ,ff i , are convex, then 9(y) is the optimal value in aconvexprogram.

Problems (20) and (22) with p(y) - fl!:1ti have been studied in [20] and [28],
where some essential ideas of monotonic optimizatton have been first put forward.
Computational experiments reported in these papers on two earlier versions of Algorithm
1 for instances of problems (20) and (22) with n < 15 convincingly demonstrate the
efficiency of the monotonic approach. Not only is this approach applicable to many
problems so far known to be notoriously difficult, it even outperforms existing methods
in several cases ofinterest.

5.2. Minimization Problem

In much the same way, we can derive the following algorithm for the minimization under
monotonic constrains.

Algorithm 2. (For Problem (B), under assumption (7).) Select a vector u e Rf* to
define the mapping p : H --> A+ Hb (see (13) and also Remark 2). Select a tolerance
e > 0 .

Initialization. LetTs - Zo : {a}.Let i be the best feasible solution available (the

current best feasible solution), C BV : f (i). If no feasible solution is available, set
C B V : * o o . S e t k - 0 .

Step 1. InT1r, delete all improper elements, all z e 2t \ G, and delete all z such that

f (d > C BV - e. Let Zp be the set of remaining elements of 27..

Step 2. If Zn: A, then terminate: 1f CBV _ *oo, the problem is infeasible; if
C BV < +oo, i is an e-optimal solution.

Step 3. Select zk e *g rn{f (x) | x e Znl.It zk e H, then zk is an optimal solution.
Otherwise, compute xk : p(zk). Update CBV and i.

Step 4.  Def ine Tr,+r:  Qn\{2f t } )  u {zk + f* !  -  zf)ei ,  i  :  l ,  . . .  ,n l .
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Step 5. Set ft <- k * 1 and return to Step 1.

Hoang Tuy

Proposition2i. Assume that f (x) is lower semicontinuous on G. If Algorithm 2 is
infinite, it generates a sequen6s alid, qlioir) o[ioir"'iil converging to an optimal
solution.

Proof. Analogous to the proof of Proposition22.

Remark4. As withAlgorithm 1, to alleviate storage problems in connection with the
growth of 17, as the algorithm proceeds, Step 5 ofAlgoritfunz can be modified as follows.
Let L be the maximum size allowed for lIpl.

Step 5. If lTpall < L, then set k + k + | and return to Step 1. Otherwise, go to Step 6.

Step 6. Redefine Tt +t : {*ft ' , i  : 1, ..., n}, set k + k* 1 andreturnto Step 1.

With this modification, each time Step 6 occurs, Algorithm 2 is restarted ftom the last
.tk. This restarting device enables us to overcome memory space limitations in solving
large scale problems.

Example 3. Consider the problem

mtn{rp(u(x)) lx e D}, (2s)

where D, g, u(x) are as previously. This problem can be written as

min{p(y) ly e u(D)1 -  min{eO) |  y e rNlu(Dl l ,

or, equivalently, as
min{p(y) ly e H}

wi th .F l  : - rN lu (D) l :  {y  e  [0 ,  b ] l x  e  D,  y  >  u (x ) ] ,so th is isaProb lem(B)where
G : [0, b]. The reverse normal set ,FI is closed by continuity. As in Example 1, without
lossof general i ty,  wecanassumethatmaxreDui(x)  > 0Vi :  1, . . .  ,m, i .e. ,  that the
normal set [0, b] \ 11 has an interior point. Also, rf ui(x), i : I m are convex, then
H is a reverse convex set, so for any z e H, it is easy to compute the point p(z) where
the halfline fromz in the direction of e : (1, . . ., 1) e Rf meets A- H.

Example 4. Consider the problem

min{ (c ,  x l l x  e  D,  g (u(x ) )  >  1 }

with D, g, h as previously. Observe that the set

G - {y e Rfl y < u(x)for some x e D}

is closed and normal, since G - R? n (u(D) - RU - Nlu(D)]. Define

(26)

(27)

where M > 0 is an arbitrary number satisfying M > max{(c, x) | x e Dl. Since D is
non-empty compact, clearly -oo < 0(y) < *oo Vy e RT and it can easily be verified
that the function 9(y) is lower semicontinuous and increasing (proof analogous to that
of Proposition23).Also, 0(y) < M + y e G.

0 ' \  : {  
m i n { ( c '  x ) l  x  e  D ,  Y  <  u ( x ) }  r f Y  e  G ,

I M, otherwise,
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Proposition 26, Problem (26) is equivalent to

m i n { P ( y ) l p ( y ) > 1 ,  y € H }

295

(28)

in the sense that if i solves (26),.then y - u(i) solves (28) and conversely, if y solves
(28) and 0(y) : (c, x) for an optimal solution I of (27) (where y - ,), then i solves
(26).

Proof. Analogous to the proof of Proposition24. r

Thus, (26) appears to be a Problem (B) in R^, with H - {y e RTI q0) > 1}. If
u i (x ) , i  - l . . . , f f i ,a reconcave, then0(y) ,  fo ry  e  G, is theopt ima lva lueof  aconvex
program.

6. Optimization of Differences of Increasing Functions

Just as convex maximrzation methods can be extended to optimization of differences
of convex functions, the above approach to monotonic optimization can be extended to
optimization of differences of increasing functions. For the sake of convenience, we call
d.i. function on [a, bl C Ri any function which can be represented as a difference of
two increasing functions on la, bl. The set of all d.i. functions on la, bl forms a linear
space, denoted by D/[0, b], which is the linear space generated by increasing functions
onla, bl. The following proposition shows that Dlla, bl includes a very large class of
functions.

Proposition 27.
(i) DI [a,b] is a lattice with respect to the operations

(f iv f ) (x)  
-  max{f i  (x) ,  fz@)},  ( f i  n f ) (x)  -  min{" f i  @),  fz@)\.

(ii) DI fa, bl is dense in the space Cla, bl of continuous functions on la, bl endowed
with the usual supnoftn.

Proof. (r) Let fi : gi - hr, where &,hi are increasing on la,bl.Noting that

. f r  -  k r  +  h )  -  ( h * h ) ,  f z  -  ( 8 2 + h )  -  ( h + h )  a n d s e t t i n g  h : h r * h z ,  P  -

i l l h z , q  -  g z l h r o n e  h a s  f i  Y  f z  -  m a x { p  - h , q  - h l :  m a x { p , q l  - h ,  w h i l e

f i  n fz -  min{p -  h,q -  h}  :  min{p,q} -  h.  Since max{p,q} and min{p,q} arc
increasing, it follows that fi v fz ffid fi A f2 are d.i. on la, bl.

(ii) A polynomial in .r e Rn with positive coefficients is obviously an increasing
function on R[. Since an arbitrary polynomial P(x) is a difference of two polynomials
with positive coefficients: P (x) - P+(x) - P-(r) where P+(P-, resp.) is the sum of all
terms of P with positive (negative, resp.) coefficients, every polynomial is a d.i. function
onanybox[a, bl C R\.ButbytheWeierstrasstheorem,thesetofpolynomials onfa,bl
is dense tn Cla, bl. Thereforc, DIla, bl is dense in Cla, bf . I

Consider now the general d.i. optimization problem:

min fi(x) - fz(x),
s . t .  g i @ )  -  h i ( x )  <  0 ,  i  :  I ,  . . .  , f f i ,

.r e [0, bl c Ri,

(DroP)
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where ft, fz, gi, hr are increasing on la, bl.

Proposition 28. Any d.i. optimization problem can be reduced to minimizing an
inc re as in g function under monotonic c onstraints.

Proof. We show that any (DIOP) can be transformed into an equivalent Problem (B).
The transformation is performed in two steps.

Step 1. Reduce the problem to minimizing an increasing function under d.i. constraints.
Lety beanyposi t ivenumbersuchthat y > fz(b),r .a. ,y -  fz@) > 0Vx e [0,b] .We
can rewrite (DIOP) as

min f i(x) + t

s . t .  g i @ )  - h i @ )  < 0  i  - I r . . . , m ,

t t  fz@) > y,

0 < t < y - f z ( O ) ,  x e l 0 , b l .

Here, the function (x, /) D fi(x) * t is increasing and the constraints are d.i. on
lO,b lx  [0 ,  y  -  fz(O)J c  n i  x  R+.

Step 2. Transform the resulting system of d.i. constraints into a monotonic system. By
changing the notations, we can assume that this system of d.i. constraints has the form

S i @ )  -  h i @ )  < O  i  -  1 , . . . ,  p ,

or, equivalently,
p

! t s ,  
-h i l ( x )<0 .

i : l

Noting thatv!-rlsi-hil@) - g(x) -h(x)where I : v!:rlsi*Ei4ihl, h -
are increasing, we can rewrite (29) as

s @ ) - h ( x ) < 0 .

In turn, this inequality is equivalent to the monotonic system:

(2e)

Ef:rh,

S @ )  + u  1  T ,  h ( x ) + u )  r l ,  0  <  u  <  n  - g ( 0 ) ,

where ry is any positive number such that n > g@) (hence, for every r € [0, bl : g@) <
Q, i.a., S(x) * Lt. 1 Tl, u > 0).

To sum up, Step 1 reduces the problem to minimizing an increasing function of (x, t)
under a system of d.i. constraints in (.x, r), then Step 2 converts the latter into a monotonic
system in (.r, t , u). The resulting problem, equivalent to the original (DIOP), is a Problem
(B) in the variables (x, t , u). r

Thus, at the expense of introducing at most two additional variables, any optimization
problem involving differences of increasing functions can be reduced to minimizing or
maximizing an increasing function under monotonic constraints. We close this paper
with some applications.
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6.t. Polynomial Programming

Denote by P(x) the set of polynomials in x e Rn with positive coefficients. As was

already noticed, by grouping separately the terms with positive and the terms with

negativecoefficients, anypolynomial f (x) canbewrittenas /(x) : fr@)- fz@)with

fi, fz e P(x). Therefore, any polynomial program can be written as a d.i. optimization
problem (DIOP), where fi, fz as well &s 8;, h; (i - 1,... ,m) all belong to P(x).

By then applying further transformations described in Step 1 above and changing the

notations, we can rewrite a polynomial program in the form

where f , &, h; eP(x), i :1, ... ,m.Finally, by applying transformations described

in Step 2 and changing the notations again, we obtain the following monotonic

optimization problem:

min f (x),

s . t .  8 i @ )  -  h i @ )  <  0  i  - -  l ,  . . .  , f f i ,

x e 10, bf,

min f (x),

s . t .  m a x { g t , . . . ,  B * }  t u  I  l ,

h ( x ) + u ) 1 ,
(x, u) e [0, b] x [0, bn+rl,

(30)

(31)

(32)

(33)

(34)

(3s)
(36)

where bn+r > S@)-SQ) and f,h, gt Em € P(x).ThelatterproblemisaProblem
(B) (see (19)) with

G  -  { ( x , z )  |  m a x { g r @ ) , . . . ,  E m ( x ) }  +  u  <  L l ,  H  :  { ( x , u ) l h ( x )  * u  >  L } .

The operator p : G n Ri+l + 0 Hb inAlgorithm 2 for this problem is defined as follows:

z : ( x , u ) +  p ( z )  -  m a x { r l h ( x + t b ) + u * t b n a 1 >  1 } .

This is an equation in /, of the form

cp(t)  : -  h(x *  tb)  + u *  tbn'r1:  1,  0 < t  < l ,

where gQ) rsa monotone increasing polynomialint. Since the derivative g' Q) is readily

available and is itself a polynomial n t with positive coefficients, i.e., an increasing

function, this equation is very easy to solve. Therefore, Algorithm 2 reduces to solving

a connected sequence of polynomial equations of one variable.
In the special case of non-convex quadratic prograrnming problems, the computation

of p(z) is even simpler because it reduces to solving a mere quadratic equation of one

variable.

6.2. A Problem of Smale

A challenging problem of global optimization which emerged from the complexity

theory and is related to the iurangements of Fekete points on a sphere (see, e.g., l2lD,
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consists of determining N points on a sphere such that the product of their mutual
distances is maximized. i.e..

max n l l x i  -  x i  11,  s . t .  l l " t l l  -  1  i  :1 ,  . . .  ,  N.
1 < l < 7 < N

By rewriting this problem as

m,rx II )i;, s.t. li j <
l < i <  j < N

- x r l l ,  1 < i < j  < N ,  l l x ' l l  - 1 ,  i - 1 , . . . , N ,

we see that it has the form of a monotonic optimization problem, namely

" ' * { v t i l v : ( v i ) . " 1  w i t h (37)

G  - { y : ( y i i ) l y i i  < l l x ' - x r l l I  < i  <  j  <  N , l l x ' l l  -  |  i  -  1 , . . . , N } .

Here, the objective function is obviously increasing for y : (yii) > 0, while G is a
normalsetbecause0 < y '  = y andy e Gimply y '  e G.Leta > 0betheproductof
mutual distances of any N chosen distinct points on the unit sphere. Since the distance
between any two points on the unit sphere is at most 2, for any y e G and any (t, j)
sat isfy ing I  <i  < j  < N, wehavea < [N(N - l ) /2- l ]2yi i ,

l t i > 4 : : N ( N - r ) - 2

Therefore, if we define H - {y : (liil yii > 4}, then the problem (37) is the same as

- u *  {  f I  v i i l v  -  ( v i ) €  G n r l } ,
t 't '=,1Lt

which is exactly a Problem (A). For solving this problem by Algorithm 1, the
computational burden comes from the determination of n(z) as defined from (11) for
each given z : (zii) # G. In fact, computing n(z) for the above set G amounts to
solving the distance geometry problem

m i n { . } ,  l x z i j  < l l x ' - x t l l  I < i  <  j  < N ,  l l x ' l l  -  I  i  -  1 , . . . , N } .  ( 3 8 )

(Given positive numbers lij Lzii, find N points xr , . . . , xN on the unit sphere, such
that the distance between any two points xt , )sl equals at least 6;;.) This is still a difficult
problem, which, however, can be solved, in principle, by currently available methods
of non-convex quadratic programming (see, e.g., 125D, or also by the above-developed
method of monotonic optimization (then each problem (38) reduces to a sequence of
quadratic equations of one real variable).

llx'

I
1 < f  < 7 < N
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7. Conclusion

299

We have presented a theory of normal sets and polyblocks and have shown how it provides

a general mathematical framework for the study of monotonic systems of inequalities

and monotonic optimization problems, including optimization problems involving d.i.

functions. We have illustrated the applicability of this approachby examples of problems

from generalized multiplicative programming, non-convex quadratic optimization, and

more generally, polynomial programming. These diffi cult problems of non-convex global

optimization have attracted considerable interest in recent years. In a companion paper

[26], devoted especially to monotonic optimization, we will discuss these and other

applications in greaater detail.
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