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Abstract. A normal set is a subset of the non-negative orthant R, such that, whenever it contains
a point x, it contains all x’ € R’} such that x" < x. We investigate properties of normal sets
and elementary normal sets called polyblocks. These properties furnish the foundation for a new
approach to the numerical study of systems of monotonic inequalities and optimization problems
involving differences of monotone increasing functions (d.i. functions).

1. Introduction

The role of convexity in modern optimization theory is well known. Since any inequality
g(x) <0, where g : R — R is an arbitrary continuous function, can be converted into
an equivalent inequality u(x) — v(x) < 0, with two convex functions u(x), v(x) (see,
e.g., [23]), it is natural that the difference convex (d.c.) structure underlies a wide variety
of non-convex problems. In fact, convex analysis which was primarily developed for the
needs of convex optimization has become in recent years an essential tool in non-convex
optimization as well.

Aside from convexity, monotonicity is another very useful concept when dealing
with mathematical models of systems in economics, engineering, and other fields.
The simplest monotonicity property for a function f(x) is that of being increasing
(decreasing, resp.) on R" , i.e., such that f(x) < f(x') (f(x) = f(x’), resp.) whenever
0 < x < x’. The analysis of monotonicity for the purpose of applications to engineering
design problems was explored by Wilde et al. [1, 14, 15, 29], and subsequently, Hansen et
al. [5]. Dealing with constrained optimization problems involving partial monotonicity,
these authors focused on finding which constraints must be tight at the optimum in order
to lower the dimension of the problem and reduce it to a form more amenable to an
effective solution. A concept closely related to monotonicity is that of normal set which
is defined as any set G C R} suchthatx € G whenever0 < x < x’,and x’ € G.Normal
sets were first introduced in mathematical economics (see, €.g., [11, 13]) mostly from a
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conceptual point of view, in connection with the analysis of production activities within
an economic system. Just as convex sets are essentially lower level sets of quasiconvex
functions, normal sets are essentially lower level sets of increasing functions.

From the point of view of numerical optimization, the most basic property of an
increasing function is that when seeking a minimizer of it over a constraint set D; once
a solution x° € D is known, then all the solutions in the orthant x° + R’} can be omitted
because no better solution than x° can be found among the latter. Such information is
very useful and may sometimes help simplify the problem drastically by limiting the
search process to a restricted area. Likewise, if the constraint set is a normal set, then
any infeasible solution z° can be strictly separated from the constraint set by an orthant
%0+ R" , where x0 < 7Y is some suitable feasible solution. It is well known that the
classical separation property of convex sets is fundamental for many solution strategies in
convex and non-convex optimization. This suggests that the specific separation property
of normal sets should play an equally important role in the analysis and solution of
monotonic optimization problems.

The aim of this paper is to present a systematic study of normal sets with a view
of application to the theory of monotonic inequalities and monotonic optimization. We
shall show that any closed normal set is the intersection of a decreasing sequence of
elementary normal sets called polyblocks. This outer approximation of normal sets
by polyblocks is similar to the outer approximation of convex sets by polyhedrons.
It can be used to establish a characterization of the structure of the solution set of a
monotonic system in such a way as to allow efficient numerical analysis of monotonic
inequalities and monotonic optimization problems. More importantly, the polyblock
approximation method leads to a general approach for solving optimization problems
involving differences of increasing functions. The fact that any polynomial of several
variables is a difference of two increasing functions on the non-negative orthant implies
that the range of applicability of this approach includes polynomial programming,
in particular, non-convex quadratic programming, whose importance in global and
combinatorial optimization has very much increased in recent years.

This paper consists of six sections. After Sec. 1, we shall review in Sec. 2, the basic
properties of normal sets and reverse normal sets. Aside from known properties [11, 19],
we shall establish a number of new ones which seem to play a major role in monotonic
optimization. Polyblocks and reverse polyblocks are introduced and studied in Sec. 3.
Section 4 is devoted to systems of monotonic inequalities. Here, we shall introduce the
concepts of upper and lower basic solutions and shall prove that any of these solutions
can be characterized by a sequence of natural numbers between 1 and n. Based on this
characterization of the solution set structure of a monotonic system, algorithms will be
proposed in Sec. 5 for maximizing or minimizing an increasing function under monotonic
constraints. Finally, in Sec. 6, the approach will be extended to d.i. optimization, i.e.,
optimization of differences of increasing functions.

2. Normal Sets

We begin by introducing some notations and concepts. For any two vectors x’, x € R",
we write x' > x and say that x' dominates x if x| > x;, Vi = 1,...,n. We
write x' > x and say that x’ strictly dominates x if x| > x;, Vi = 1,...,n.
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EetdRac=n{r S BT hixvEl 0} and R}, = {x € R"| x > 0}. For x € R, let
I(x) = {i| x; = 0} and denote

K, ={x"€R}|x;>x; Vi ¢ [(x)}, clK,= {x' € RY|x' = x).

For a < b, the box (hyper-rectangle) [a, b] is defined to be the set of all x such that
a < x < b. We also write (a, b] := {x| a < x < b}, [a,b) :={x|a < x < b}. Asusual
e is the vector of all ones and ¢ the ith unit vector of R".

Aset G C R’ is called normal if, for any two points x, x" € R% such that x” < x,
if x € G, then x’ € G, too. The empty set, the singleton {0}, and R’} are special
normal sets which we will refer to as trivial subsets of R”,. If G is a normal set, then
GU{x e R} | x; =0 forsomei =1, ... ,n} is still normal.

For any set D C R, the orthant R’} is a normal set containing D. The intersection
of all normal sets containing D, i.e., the smallest normal set containing D, is called the
normal hull of D.

Proposition 1. The normal hull of a set D C R} is the set N[D] := (D — R}) N R}.
If D is compact, then so is N[D].

Proof. The set N[D] is obviously normal and any normal set containing D obviously
contains it. Therefore, N[D] is the normal hull of D. Let D be compact and let
x* € N[D], x* — x° as k — +oo. Then x* = y* — 7, with y* € D,z* € R%.
Since D is compact, we can assume, by passing to a subsequence if necessary, that
3 = R D. Hence, z¥ = y* — x*¥ — D=y —x0>0ie,x% =y° - 2°
with y0 € D, 7% € R", which implies that x% € N[D]. Therefore, N[D] is closed. If

D c [0, b], then N[D] C [0, b], so N[D] is bounded, and hence, compact. [ ]
Proposition 2. The intersection and the union of a family of normal sets are normal
sets.

Proof. Immediate. ]

Proposition 3. Every normal set is connected. A normal set G has a non-empty interior
if and only if it contains a point u € R’ .

Proof. The first assertion is trivial because, for any two points x, x’ in a normal set G,
both segments joining O to x and 0 to x” belong to G. If there is u € G N R, then
since [0, #] C G and [0, «] has interior points, it follows that intG # . The converse is
obvious because an interior point of a subset of R’, must have positive coordinates. ®

Apointy € R’} is called an upper boundary point of anormal set G if y € clG (hence,
[0, y] C cIG) while K, C R’} \ G. The set of upper boundary points of G is called the
upper boundary of G and is denoted by 3T G. If G is closed, then obviously 8" G C G.

Proposition 4. Let G C [0, b] be a compact normal set with non-empty interior. For
everyu € G and v € R’} \ {0} the halfline T (u, v) := {u + av| a > 0} meets the upper
boundary of G at a unique point oG (u, v) defined by

oc(u,v) =u+ uv, p=supf{a|u+ave G}. (@
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Proof. Obviously, u € I'(u, v) N G, and whenever x € I'(u, v) N G, then the whole
segment joining u and x belongs to I'(x, v) N G. Hence, I' (4, v) N G is a segment.
Let u and y be the endpoints of this segment. Clearly, y = og(,v) and y € G. If
there were x € G N K, then [y,x] C G, and since y = u + v, we would have
uwi + pv; < x;, Vi ¢ I(y), while u; + pv; = x; = 0, Vi € I(y), hence there
would exist @ > w such that u; + uv; < u; + av; < x;, Vi ¢ 1(y), i.e., such that
u+av € [y, x] C G, contradicting (1). Therefore, K, C R} \ G,andso y € 3+G.
For any y’ € 3G N I'(u, v), we have y’ € T'(u,v) \ Ky, hence, y = u + av with
o < u,ie., y’ < y.On the other hand, since y’ € 8%G, it follows that Ky N G = @,
ie,y € I'(w,v) \ Ky, and hence, y < y’. Therefore, y’ = y, completing the proof of
Proposition 4. |

Corollary 1. A compact normal set G is equal to the normal hull of its upper boundary
tG.

Proof. For any x € G \ {0}, we have x < y := 05(0,x) € 37G, ie.,, x € [0,y] C
N[0% G]. Therefore, G € N[dG]. The converse is obvious. ]

Let D be a compact subset of R’} . A point v € D is called an upper extreme point of
Difx € G,x > v = x = v. Clearly, every upper extreme point v of a compact normal
set G C R satisfies K, C R’} \ G, and hence is an upper boundary point of G. In other
words, if V = V(G) denotes the set of upper extreme points of G, then V C 31G.

Proposition 5. A compact normal set G C R’ is equal to the normal hull of the set V
of its upper extreme points.

Proof. In view of Corollary 1, N[V] C N[0TG] = G, so it suffices to show that
TG C N[V]. Let y € 3*G. Define x! € argmax{x;| x € G, x > y}, and

x' € argmax{x;| x € G, x > x'1}fori = 2,...,n. Thenv := " € G and
v > x for all x € G satisfying x > y. Therefore, x € G, x > v = x = v. This means
that y < v € V, hence y € N[V], as was to be proved. [ |

Proposition 6. The set of upper extreme points of the normal hull of a compact set
D C R is contained in the set of upper extreme points of D.

Proof. If v € D but v is not an upper extreme point, then there exists a point x € D
satisfying x > v, x # v. Since D C N[D], this implies that v is not an upper extreme
point of N[D]. [ ]

Remark 1. For normal sets, upper extreme points play arole analogous to that of extreme
points for convex sets. In fact, Propositions 5 and 6 are analogous to well-known
propositions in convex analysis, namely that a compact convex set is equal to the convex
hull of the set of its extreme points, and any extreme point of the convex hull of a compact
set is an extreme point of this set.

A function f : R" — R is said to be increasing on R if f(x) < f(x") whenever
0 < x < x/; it is said to be increasing on a box [a,b] C L T R )
whenever ¢ < x < x’ < b. Functions increasing in this sense abound in economics,
engineering, and many other fields. Outstanding examples are production functions
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(e.g., the Cobb-Douglas function f&x = I;x;*, a; > 0), cost functions, and utility
functions in Mathematical Economics, posynomials (in particular quadratic functions)
with non-negative coefficients, posynomials )Ilj'.”zlcj o7, ()% (c; = 0,a;;j = 0) in
engineering design problems, etc. Other non-trivial examples are functions of the form
f(x) = sup{gw)| u € D(x)}, where g : R} — R is a continuous function and

D) R 2R% {5 a compact-valued multimapping such that D(x") D D(x) for x" > x.

Proposition 7.
@) If f1, fr are increasing functions, then for any non-negative numbers A1, A2, the
function A fi + A2 f2 is increasing.
(ii) The pointwise supremum of a bounded above family (fo)aeca of increasing functions
and the pointwise infimum of a bounded below family (foa)aca of increasing
functions are increasing.

Proof. Immediate. |

It is well known that the maximum of a quasiconvex function over a compact set is
equal to its maximum over the convex hull of this set and is attained at one extreme point.
Analogously:

Proposition 8. The maximum of an increasing function f(x) over a compact set D is
equal to its maximum over the normal hull of D and is attained at at least one upper
extreme point.

Proof. Let X be a maximizer of f(x) on G = N[ D). Since, by Proposition 5, G is equal
to the convex hull of the set V of its upper extreme points, there exists v € V such
that ¥ < v. Then f(v) > f(x), hence, v is also a maximizer of f(x) on G. But, by
Proposition 6, v is also an upper extreme point of D, hence, it is also a maximizer of
f(x)on D. [ |

Just as convex sets are essentially lower level sets of quasiconvex functions, normal sets
are essentially lower level sets of increasing functions, as shown by the next proposition.

Proposition 9. For any increasing function g(x) on R%, the level set G = {x €
Ri| gx) < 1}isa normal set, closed if g(x) is lower semi-continuous. Conversely,
for any compact normal set G C R’ with non-empty interior there exists a lower
semicontinuous increasing function g : R, — Ry such that G = {x € R} | g(x) < 1}.

Proof. We need only prove the second assertion. Let G be a compact normal set with
non-empty interior. For every x € R", define g(x) = inf{A > 0| x € AG}. From the
assumption intG # @, there is u > 0 such that [0, u] C G (Proposition 3). Then, for
any x € R, the halfline {ox| o > 0} intersects [0, u] C G, hence, 0 < g(x) < +00.
Since for every A > 0 the set AG is normal, if x < x’ € AG, thenx € 1G, too, so
g(x") = gx), ie., gx) is increasing. We show that G = {x| g(x) < 1}. In fact, if
x € G, then obviously g(x) < 1. Conversely, if x ¢ G, then since G is compact,
there exists « < 1 such that ax ¢ G, ie.,x ¢ (1/a)G. Hence, since G is normal,
x ¢ AG forall A > 1/, which in turn implies that g(x) > 1/e > 1, and hence,
G={xeRgkx) =1L It remains to prove the lower semicontinuity of g(x). Let
e R’ be a sequence such that g(xk ) < a Vk. Then, for any given o' > a, we have
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x* € /G Vk, hence x° € /G in view of the closedness of the set a’G. This implies
that g(x%) < o’ and since o’ can be taken arbitrarily near to o, we must have g(x% <.
Therefore, the set {x € R"” + | g(x) < o} is closed, as was to be proved. [ |

Note that if G = {x] g(x) < 1}, where g(x) is a continuous increasing function, then
obviously 3TG C {y € R"| g(y) = 1}, but the converse may not be true.

Aset H C R/, is said to be reverse normal if x' > x € H implies x’ € H. It is said
to be reverse normal in abox [0, b] if b > x" > x € H implies x’ € H or equivalently,
if x" ¢ H whenever 0 < x’ < x ¢ H. Clearly, a set H is reverse normal if and only if
the set H®> = R% \ H is normal. For any set D C R}, the set D + R’} is obviously the
smallest reverse normal set containing D. We call it the reverse normal hull of E and
denote it by r N[D].

It follows from Proposition 9 that, for any increasing function k(x) on R", the set
H = {x € RY| h(x) > 1} is reverse normal and this set is closed if &(x) is upper
semicontinuous.

Let H be areverse normal set. A point y € R’} is said to be a lower boundary point of
H if y € clH (hence, y + R’} C clH) while x ¢ H Vx < y. The set of lower boundary
points of H is called the lower boundary of H and is denoted by 0~ H. If H is closed,
thend~ H C H.

Proposition 10. Let H be a reverse normal set. For everyu € H and v € R\ {0},
the halfline {(u — av| a > 0} meets 3~ H at a unique point wy (u, v) defined by

o, v) =u —Av, A=sup{e|u—ave H). 2)

Proof. Similar to the proof of Proposition 4. |

Corollary 2. A closed reverse normal set H is equal to the reverse normal hull of its
lower boundary 3~ H.

Proof. Since the fact is obvious when 0 € H (ie., H = R%), we may assume that
O ¢ H. Forany x € H, wehave x > y '= wy(x,x) € 3" H, ie., x € rN[d”H].
Therefore, H C r N[0~ H]. The converse is obvious. [ ]

A point v of a compact set D C R, is called a lower extreme point if x € D, x <
v = x = v. Analogously to Propositions 5 and 8, we can prove that a closed reverse
normal set is equal to the reverse normal hull of the set of its lower extreme points; the
minimum of an increasing function over a compact set D C R is attained at a lower
extreme point.

Let G C [0, b] be a normal set and G* = R\ G. 1t is easily verified that

(@ G)NRL, CItGco G, A3)
but in general (GN3~G") \ 3G # @. A normal set G such that GN (3~ G”) C 87 G is
said to be regular. A set G is said to be robust if any point of G is the limit of a sequence

of interior points of G.

Proposition 11. A normal set G is regular if and only if it is robust.
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Proof. Let H = G°. Suppose G is robust and let y € G N3~ H. Then y + R? C clH
(becausé¢ y € 9~ H).If z € GN Ky, then, since z € G, we have z = limj, 1 e
G, zF > 0, and, since z € Ky, ie., z; > y; Vi ¢ I(y), we must have, for k large enough,
> yi Vi ¢ 1(y), ie, 2F € y+ R%, while z* ¢ clH, a contradiction. Therefore,
K,NG =@, and hence, y € 97 G. Conversely, suppose for some y € G there is no
interior point of G in some neighborhood of y. Then, for z = Ay with0 < A < 1 and A
close enough to 1, one has z € clH, and x € G Vx < z, hence, z € 3~ H. On the other
hand, z ¢ 3G because y € G N K. Therefore, GN 3~ H \ 3tG # @. |

3. Polyblocks

The simplest non-empty normal set is abox [0, y] C R’, determined by apointy € R’;.
By Proposition 2, the union of a family of boxes is a normal set. Conversely, it is obvious
that

Proposition 12. For any normal set G, we have
G = Uyegl0, y1. n

This suggests that a compact normal set could be approximated by a finite union of
boxes. An “elementary” normal set which is the union of finitely many boxes (i.e., the
normal hull of a finite set in R”}) is called a polyblock. More precisely, a set P is called
a polyblock in [a, b] if P = U,erla, z], where T C [a, b] (|T| < 40c). The set T
is called the vertex set of the polyblock. A vertex z € T is said to be improper if it is
dominated by some other 7’ € T, i.e., if there is z € T \ {z} such that [0, z] C [0, z'].
Of course a polyblock is fully determined by its proper vertices.

Proposition 13. Any polyblock is normal and compact. The union or intersection of
finitely many polyblocks is a polyblock.

Proof. The first assertion follows from the fact that any box [a, z] C R’} is a normal
compact set while the union of a finite family of normal compact sets is a normal
compact set. The union of finitely many polyblocks is obviously a polyblock. To see that
the intersection of finitely many polyblocks is a polyblock, it suffices to observe that
(Ui A)) N (U;Bj) = U;, j(A; N B;) and [a, p] N [a, q] = [a, u] with u; = min{p;, g;}.M

The concept of polyblock is analogous to that of polytope in convex analysis. In fact,
justas apolytope is the convex hull of finitely many points in R”, a polyblock is the normal
hull of finitely many points in R’,. We next show that, just as any convex compact set is
the intersection of a nested family of polytopes and can be approximated, as closely as
desired, by a polytope enclosing it, any normal compact set is the intersection of a nested
family of polyblocks and can be approximated, as closely as desired, by a polyblock
containing it.

Proposition 14. Let G C [0, b] be a normal closed set. For any z € [0, b] \ G, there
exists y € 0T G such that the set K, separates z strictly from G (i.e., contains z but is
disjoint from G).
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Proof. Recall that Ky := {x € R}| y; < x; Vi ¢ I(y)}, where I(y) = {i| y; = 0}. Let
¥ be the last point of G on the ray from 0 through z (i.e., y = 05(0, z) as defined by
(1)). Clearly, z € Ky and y € 381G by Proposition 4, hence, K y is disjoint from G. m

Proposition 15. If 0<x<zZ=<b,then P =[0,z]\ K; is a polyblock in [0, b] with
vertex set V.= {z'|i ¢ I(x)} C R}, where

7 =7 — (T —xi)e'.

PrOOf- Let Ki = {x & RKH ii < xi}. Since Ki = mi¢1(i)Ki, we have P = [0’ Z]\K" -
Uigr ([0, 2] \ K;). But

[ AN K = (x]0:E 5 Wy, OV o £ 2o 201 = [0) 201,
where 7' denotes the vector such that z; =z Vj #i, 2 = %,ie,7 =7 — T —%)e'.
To prove that V C R" T consider any 7 with i ¢ I(x). Then for every j # i, we have,
zj—z,>0,whﬂez,—x,>0. ]

Proposition 16. Let G be a compact set contained in a box [0, b] C R Then the
following assertions are equivalent:
(1) G is normal,
() For any point z € [0, b] \ G, there exists a polyblock in [0, b] separating z from G
(i.e., containing G but not z7).
(iii) G is the intersection of a family of polyblocks in [0, b].

Proof. ()= (ii) If z € [0, b] \ G, then by Proposition 14, there exists y € 87 G such
that z € K, but K, NG =@, i.e., [0, b] \ K, (which is a polyblock by Proposition 15)
separates z from G.

(i))=(iii) Let E be the intersection of all polyblocks containing G. Clearly, G C E.
If (ii) holds, then, for any z € E \ G, there is a polyblock containing G but not z, so
Bl G

(iii)=>(i) Obvious by Proposition 3 because any polyblock is closed and normal. m

Aset Q C [a, b] C R}, which is the union of boxes [y, b],y € T C [a, b], |T| <
+00, is called a reverse polyblock in [a, b] with vertex set T. A vertex y € T is improper
if there exists y' € T \ {y} such that y’ < y, i.e., [y, b] C [y’, b]. Of course a reverse
polyblock is fully determined by its proper vertices. The next propositions are analogous
to Propositions 15 and 16.

Proposition 17. If 0 < y < X < b, then Q = [y, b1\ [}, X) is a reverse polyblock with
vertices ‘ :

Y=y+@&—y)e i=1,...,n.
If X € 07H, where H is a reverse normal set and Q = [y,b] \ [y, %), then
HNQ=HN[y,b]

Proof. Let L; = {ul Yi < ui < X} Since [y,x) = N}_,L;, we have Q =
[y,b]\[}_’,i) 1([y,b]\L)—U {”|x1<ul<bn yi Sujp <bjVj#£i}=

U [y', b]. The second assertion is 1mmed1ate because [y, ¥) is disjoint from H when
7 e ORIETE [ ]
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Proposition 18. Let H be a compact subset of [a, b]. Then the following assertions are
equivalent:

(i) H is reverse normal in [0, b];

(i) foranyy € [a, b]\ H, there exists a reverse polyblock separating y from H;

(ili) H is the intersection of a family of reverse polyblocks in [a, b].

Proof. Similar to the proof of Proposition 16. |

4. Systems of Monotonic Inequalities

By the system of monotonic inequalities (or monotonic system, for short), we mean a
couple of inequalities of the form

gx) =1, )
[ h(x) > 1, (%)

where g(x), h(x) are increasing functions on R%. Often g(x) = max;=i._..m, 8&(x),
h(x) = minj_, +1,... m hj(x), where g; (x), hj(x) are increasing functions on R, so a
monotonic system may actually consist of finitely many inequalities:

gx)<l@=1,...,m); hx)=21(G=m+1,...,m).

Setting
G={xeR}lgx) <1}, H={xeR}|lh(x)=1},

we can rewrite the system as
xeGNH, (6)

where G is a normal set, and H a reverse normal set. We will make the following blanket
assumption for this section:

G and H are closed subsets of R’} ;

7k
intG # @, G C[0,cl], Hb:=R$\HC[a,b], where 0 <a < c¢ < b. @

Conditions (7) can always be made to hold, provided G N H is compact, say G N H C
[a, c]. Indeed, it suffices toreplace G, H by G' := GN[0, ¢}, H' := HN{x € [0, b]l| x =
a}, respectively, where b > c is selected so that G' N H' = G N H. Clearly, the new sets
G', H' will satisfy (7).

To provide insight into the structure of the solution set of a monotonic system (4)—(5),
we shall focus on characterizing particular solutions called upper basic and lower basic
solutions. These concepts are motivated by the application to optimization problems
under monotonic constraints.

4.1. Upper Basic Solutions

A point x € G N H is called an upper basic solution (ubs for short) of the system (4)—(5)
if x < x’ € GN H implies x = x'. Clearly, any ubs x must belong to TG (upper
boundary of G) because, if x ¢ 391G, then there is y € K, N G, and since H is reverse
normal and x € H, onemusthavey € H,ie.,y € GNH, buty # x (because y € Kx),
conflicting with x being a ubs.
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A ubs of (4) and (5) is nothing but an upper extreme point of the set G N H.
Therefore, as we saw in the proof of Proposition 5, for any y € G N H, there is
aubs x > y, namely x = 7", where ! e argmax{z;| z € GN H, z > y},
7' cargmax{z;|z€e GNH, z>7 Y fori=2,...,n.

To describe a characterization of ubs’s we will assume, additionally, @ > 0 in (7), so
that

GNH C[a,b] C(0,b]. ®)

As usual, define G” := R” \ G. Condition (8) implies that
KxN(GNH)=@ ¥x€d G". )

Indeed, for any x € 8~ G”, we have intK, C G”, hence K, N G C clK, \ intK,
C {x| min; x; = 0}, and therefore, in view of (8), K N (G N H) = .
Also, setting H, = {x € H| x > a}, we have from (8):

GAAFHAGHY. (10)
Now, let us fix a vector v € Ri e and for any z € [0, b] \ G, define
w(z) =z—Av, A=sup{a|z—Ave[0,b]\ G}, (11

i.e., m(z) = wg (z, v) (last point of cIG® on the halfline { —av | @ > 0}; see Proposition
7 and formula (2)). Clearly, 7 (z) < z € [0, b] because Av > 0.

Proposition 19. Every upper basic solution of the system (4)—(5) is the limit of a
sequence {z¥} C H, suchthat 2° >z > 72 > --- and

L=b, == (zf-‘k = x,ﬁ)ei"; a2
*=nb), ik eIExr), k=0,1,....

For the proof, we need some auxiliary propositions.
Lemma 1. Every sequence 2° = b > 7! > z2 > --. > 0 has a limit.

Proof. By compactness, the sequence z* has at least an accumulation point %. This point

satisfies z¥ > %, Vk because z° > z! > --- . Now, if x = limg_; 4 oo zka is an arbitrary
accumulation point, then z% > %, Vg, hence, x > %. By interchanging the roles of x
and X, one also has ¥ > x, hence, x = X. Therefore, X = limg_, o0 Z*. ]

Lemma 2. The sequences {z¥}, {x*} in (12) satisfy 7* — x* — 0 as k - +oo.
Proof. By (12), z{.‘k'f'l = xi, while by Lemma 1, limg_, 4o [|2F*! — zF|| = 0. Therefore,
? —xf =2~ < =50 (k> +o0).

But by construction, F—xk = & — 7@ = Mo, s0 zi — xi = Akv;,, hence,

M = & — xb)/vi,. Since v;, > mini—1,_,v > 0, it follows that Ax — 0, and
consequently, z¥ — x*¥ — 0. [



Normal Sets, Polyblocks, and Monotonic Optimization 287

Lemma 3. If 7%, x* satisfy (12), then € (3% G) N H, where % is the common limit of
7% and x* as k — +oo.

Proof. Since x* € 3~ G Vk, one must have ¥ = lim_, 40 x* € 9~ GP. On the other
hand, since z¥ € H, Vk, one must have ¥ = limg_, 4o0 z¥ € H,. The latter implies that
% > 0, and since ¥ € 9~ G”, it follows from (3) that X € 97G.Thus, ¥ € @Y*G)NH.m

Proof of Proposition 19. Let x be any upper basic solution. We shall construct a nested
sequence of boxes [0, 21> [0, z!'1 > - -+ O [0, x] such that z* € H,, and (12) holds.
First, observe that, if b ¢ H, then b’ ¢ H for some b’ > b, hence, [0,b'] C R \ H,
contradicting (7). Therefore, b € H,. If b € G, then b is the only upper basic solution,
hence, x = b and the sequence ¥ = b, Yk satisfies the desired conditions. Now,
let b ¢ G, and suppose that we have already defined 20,74, ... , z" satisfying (12),
where z¥ € H,, and [0,25] D [0,x] for k = 0,1,...,h. If z7# € G, then since
7" € H and " > x, we have, z!" = x (by the definition of an upper basic solution),
so z¥ = x (Vk = h + 1) satisfies (12). Otherwise, since e H;\G C R%_\G, we
have x" < z/'. x" € 3~ G”, so that, in view of (9), K,» N (G N H) = @. Therefore, the
polyblock Py41 = [0, z" \ K, still contains x. Let Vj,1 be the set of proper vertices
of Pj, that belong to H,. Since H, is reverse normal, if y ¢ H,, then [0, y]N H, =¥,
hence V.1 = @ would imply that Py NH, = @, conflicting with x € Pj41. Therefore,
Vie1 % @ and there exists "1 e V4, such that x € [0, z"+11. By Proposition 15,
= 2t — (g — e for some i = iy ¢ 1(x™). Since z"*! € H,, the sequence
20, 21, ..., "t satisfies (12). Thus, a sequence {z¥} € H, satisfying (12) can be
constructed such that 20 = z!' > z2 > ... > x. By Lemmas 1 and 2, the two sequences
7%, x* tend to a common limit ¥ and by Lemma 3, ¥ € G N H. Since & > x, Wk, it
follows that ¥ > x, and hence ¥ = x because x is a ubs. This completes the proof of
Proposition 19. |

4.2. Lower Basic Solutions

A point x € G N H is called a lower basic solution (Ibs for short) of the system (4)—(5)
if x > x’ € GN H implies x = x'. Clearly, any lbs x must belong to 3~ H (lower
boundary of H) because, if x ¢ 9~ H, then, since x € H, there must exist x’ € H such
that x' < x and, since G is normal, x’ € G, ie., x’ € GN H and x’ < x, conflicting
with x being a lower basic solution.

An Ibs can also be defined as a minimal element of the set G N H with respect to
the ordering x > x’ < x; > xlf Vi. By Zorn’s Lemma, for any feasible solution of the
system (4)—(5), there exists a lower basic solution dominated by it, namely a minimal
element of the set of all x € G N H that are dominated by this solution.

To describe a characterization of Ibs’s, it is convenient to assume ¢ = b in (7), so that

intG # @, G C[0,b], H® = RU\NHC[0,b]l, GNHC [a, b].
Fix a vector v € R1+, e.g,v=>b—a, and for every z € H", define
p(z) =z +uv, p=sup{a|z+avela,bl\ H}, 13)

i.e., p(z) = o (z, v) (first point of H on the halfline {z + av| @ > 0}; see Proposition
4 and formula (1)).
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Proposition 20. Any lower basic solution of the system (4)—(5) is the limit of a sequence

{(*YC Gsuchthat?® =a<z! <2 <-.. and

k k ]
ZO =a, Zk+1 =z + (xik - zi)elk

*=pE", k=0,1,.... (14)

Proof. Let x be an lbs. We construct a nested sequence of boxes [z°, ] D [z}, ] D
.-+ D [x, b] such that z* € G and z* satisfies (14). Since a € G, ifa € H, then a is
the only Ibs, hence, x = a and the sequence z¥ = a Vk satisfies the desired conditions.
Now, leta ¢ H and suppose we have already defined 2071, 7" satisfying (14) and
Z¥eGfork=0,1,... ,h. If " € H, then, since z* € G and 7" < x, we must have
" =x (by the definition of an Ibs), so that z¥ = x (Vk > h+ 1) satisfies (14). Otherwise,
"= o > 2, and by Proposition 17, the reverse polyblock Q41 = [”, b]\[2", x")
still contains x. Let Wy, 11 be the set of proper vertices of Oy that belong to G. Since G is
normal,ify ¢ G, then[y, b]NG = @, hence, W41 = @ would imply that On+1NG = 0,
conflicting with x € Qp.1. Therefore, W41 # @ and there exists zt! € W, such
that x € [z"*!, b]. From Proposition 17, we know that 7! = 7 + (xI' —zM)et for some
i = ip. Since Z"*! € G, the sequence z°, 7!, ... , Z"*! satisfies (14). Thus, a sequence
{z*} satisfying (14) has been constructed.

It remains to show that such constructed sequences ({zF}, {x*}) tend to a common
limit which is exactly x. First, by Lemma 1 (with the order < replacing >), the sequence
? =a <z7' <72 < .. < b has a limit . Now, by (14), 2+ = x! while
¥+ — 728 5 0 (k > +00). Therefore,

k
xo—gf =gt = <1 K >0 (k> +o0).
k k
But by construction, xk— k= p(zk) — ¢ = UiV, SO xikk — zf.‘k = uiv;,, hence,

= (xi — zfi)/v,-k. Since v;, > min;—1 . ,v; > 0, it follows that uy — 0, and
consequently, x¥ — z — 0,i.e., ¥ = lim zF = lim x¥. Since z* € G Vk, it follows that
X € G.Also,x* = p(z*) € 3T H” € 9 H,Vk, hence,% € 3~ H,andso¥ € GN(3~H).
Finally, the fact z° < z! < 7% < ... implies that ¥ < x, and since x is an Ibs, it follows
that X = x. L

We have thus proved the following characterization of the basic solutions of a
monotonic system:
(i) Every upper basic solution x of a monotonic system (4)—(5) is characterized by a
sequence (ig, i1, ... , Ik, ...}, Where iy € {1,2,...,n}, such that x is the limit of
the sequence 70 > z! > z2 > ... defined by (12).
(ii) Every lower basic solution x of a monotonic system (4)—(5) is characterized by a
sequence {ip, i1, ..., ik,...} Where ix € {1,2, ..., n}, such that x is the limit of
the sequence 70 < z! < z? < ... defined by (14).
Let us agree to call the sequence {io, i1, ... , i, ...} that determines an upper (or
lower) basic solution x its characteristic sequence and iy, its kth characteristic number.
Forany z € R} andi € {1,2, ..., n}, define

i =z2— @ —m@e, 2 =z+ (0@ —z)e, (15)
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where 7; (z), p; (z) are the ith coordinate of ;r (z) and p(z), respectively. Also, write z[;,;,]
for (zf;,1)1;,;] and analogously, Zloit] for (zlelylit], Then for any upper basic solution x
with characteristic sequence {ig, i1, . . . }, we have

b[ioil“‘ik] € H, /AR fo = i) b[ioil"‘ik]’ (16)
k—+00

while for a lower basic solution x,

gl e G, VK, x= lim gl il an

k—+00

. From the proofs of Propositions 19 and 20, it is easily seen that [0,x] =
NF210, byiyi,...i,1] for an upper basic solution and [x, b] = N [aliot#1 ] for alower
basic solution.

Remark 2. Proposition 19 remains valid when we replace 7(z) by an arbitrary mapping
m:HNRY, — 37 G such that

n(z) =z —Av, where A, >0, v; >n>0.

For example, under assumption (8), one can take 7 (z) = z — A;z, with A = sup{a| (1 —
o)z € G}.

Also, Proposition 20 remains valid when we replace p(z) by an arbitrary mapping
p: GNRY — 3+ H® such that

0(z) =z + pv, where u; >0, v=b—zeR},.

For example, under the assumption z < b ¥z € G, one can take p(z) = 2+ u (b —2)
with p, = sup{e| z + a(b —2) € H’}.

5. Optimization Under Monotonic Constraints

Given a monotonic system (6) and an increasing function f(x), consider the following
problems which are encountered in many important applications:

(A) max{f(x)|x € GNH}, (18)
(B) min{f(x)| x € G N H}, (19)

where G := {x € R} | g(x) < 1}and H = {x € R’ | h(x) = 1}, with g(x), h(x) being
increasing functions on [0, »] C R’, such that (7) is satisfied.

The next proposition, together with Propositions 19 and 20, provide a theoretical basis
for a solution approach to these problems.

Proposition 21. An increasing function f (x) achieves its maximum over the set G N\ H
at an upper basic solution of the system (4)—(5), and its minimum at a lower basic
solution.
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Proof. Let x € GN H be a feasible solution of Problem (A) and x = 7 (x). Thenx < x,
and since H is reverse normal, x still belongs to H, hence, x is a feasible solution which
is at least as good as x. Clearly, x is an upper basic solution because x < x’ € CN H
implies x = x. Consequently, for any optimal solution of (A), there exists an optimal
solution which is an upper basic solution. Analogously, the same holds for Problem (B).

u

Thus, a global maximizer of f(x) must be sought among the upper basic solutions
of the system (4)—(5), while a global minimizer must be sought among the lower basic
solutions.

5.1. Maximization Problem

It was shown in the preceding section that, under assumption (7) where 0 < a < b,
every ubs of (6) is the limit of a sequence by;;,...;,}» kK = 0, 1, ... . Therefore, solving
Problem (A) amounts to finding a suitable sequence {ig, i1, ... , ik, ... }.

Let us introduce some definitions. Denote by O the set of all vectors of the form
byipiyi,)s for k = 0,1,.... Given a vector z = by;;,...;,], We say that a ubs x is
covered by z if x € [0, by;;,..;,7] (i-e., if its first k + 1 characteristic numbers are
exactly i, i1,...,it). Any vector z € ( determines a set of ubs’s, namely the set
E(z) of all ubs’s covered by z. By Proposition 15, E(z) = U{E(zy)| i ¢ I(m(2))},
so replacing a z € Q by {z[;1| i ¢ /(7 (z))} amounts to partitioning E(z) into subsets
E(zp),i ¢ I(w(z)). Avector z € T C Q is said to be an improper member of T if
z < 7/ (hence, E(z) C E(Z))) for some 7’ € T \ {z}.

Now, we can outline the branch and bound procedure for maximizing f (x) over GNH.

Start from Ty = {b}, i.e., from the set E (b) of all ubs’s. Since b € H, := {x € H| x >
a}, if b € G, then it is obviously an optimal solution. Otherwise, proceed to iteration
k = 1. At iteration k > 1, we already have a set 7y C Q which defines a collection of
sets {E(z)| z € Tr} C E(b) such that U,c7, E(z) contains at least one optimal solution,
if there is one. In the collection 7}, we can delete the improper members, the members
z € Ty \ H, (because E(z) = ¢ when z ¢ H, in view of the reverse normality of H,)
and also delete all z € T such that f(z) < f(x), where x is the best feasible solution
known up to this stage (indeed, no ubs covered by such z can be better than x). Let Z;
be the set of remaining members of 7. If Z; = @, then X is an optimal solution (if
no x exists, the problem is infeasible). If Z; # @, select zF with maximal f(Z5), ie.,
ZF € argmax{f(z)|z € Zz). Since z¥ € H,, if z*¥ € G, then z* is an optimal solution.
Otherwise, compute x* = 7 (z) and replace z* by the set {Zﬁ'] li ¢ I(x%)} (i.e., further
partition E(z¥) into E (z’[‘i]), i ¢ I(x)). Let Ti41 be the resulting set. Go to iteration
k + 1 with Ty in place of 7T%.

It turns out that, whenever infinite, this branch and bound procedure generates a
sequence by;,|, byigir]s - - - » cOnverging to an optimal solution.

We can thus state the following algorithm for solving Problem (A).

Algorithm 1. (For Problem (A), under assumption (7) with a > 0.) Select a vector
v € R}, for the mapping 7w : R} , \ G — 3~ G" (see (11) and also Remark 1). Select
a tolerance € > 0.
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Initialization. If a ¢ G, terminate (the problem is infeasible because G N H = ).
Otherwise, let Ty = {b}. Let x be the best feasible solution available, CBV = f(x). If
no feasible solution is available, set CBV = —o0. Set k = 0.

Step 1. In T delete all improper members, all z € T; \ H,, and delete all z such that
f(@) < CBV + ¢. Let Z; be the set of remaining members of T.

Step 2. If Z; = @, then terminate: if CBV > —o0, the current best feasible solution ¥
is accepted as an g-optimal solution of (A); if CBV = —o0, the problem is infeasible.

Step 3. If Z; # @, select 2 € argmax{f(z) | z € Zt). If z¥ € G, then terminate (z*

is-an optimal solution). Otherwise, compute x* = 7 (z*). Update the current best value
CBYV and the current best feasible solution x.

Step 4. Let Tyt = (Zi \ {Z}) U (zF — (&F — xM)el|i ¢ I1(x5)).
Step 5. Set k < k + 1 and return to Step 1.
Proposition 22. Assume f (x) is upper semicontinuous on H. If Algorithm 1 is infinite,

it generates at least one infinite sequence by, bligi1, - - . , bligi,..i]» - - - converging to
an optimal solution.

Proof. Let us agree that z’ is a successor of z if 2’ € {zp1y, ... , zju)}; a descendant of
z if 2 = zpg) for some & = (%o, &1, - .. , &), where k is a non-negative integer and
& e{l,...,n}, i =0,1,...,k. If the Algorithm is infinite, at least one successor of

b, say y° = by;,}, has infinitely many descendants. Then at least one successor of y°,
say yl = yﬁ.l] = byi,i,], has infinitely many descendants, and so on. Continuing, we find
an infinite sequence yO =51 y1 = bjigi}y - - ,yk = bj,...i,]> - - - such that yk € H,
Vk. By Proposition 19, by;y;,..;,] = Z € G N H. From the selection of z* in Step 3, we
have f(byyi,.i,1) = f(2), Yz € G N H. Hence, by upper semicontinuity of f(x) on H,
f@) = f(x),¥x € GN H, as was to be proved. [

Remark 3. To alleviate storage problems which may arise in connection with the growth
of Ty as the Algorithm proceeds, Step 5 of the Algorithm can be modified as follows.
Let L be the maximum size allowed for |7%|.

Step 5. If |Ty41| < L, then set k <— k + 1 and return to Step 1. Otherwise, go to Step 6.

Step 6. Redefine Tyt1 = (b — (b; — xF)e', i =1,... ,n}, setk < k + 1 and return to
Step 1.

With this modification, each time Step 6 occurs, the Algorithm is restarted from the last
x*. Restarting is a device for overcoming memory space limitations at the expense of
more computational time in order to solve large scale problems.

Example 1. Consider the problem

max{pu(x))| x € D}, (20)
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where D C R} is a non-empty compact convex set, ¢ : RY — R is an increasing
function, u(x) = (u1(x), ..., um(x)), u; : D — R, being non-negative-valued con-
tinuous functions on D. By Proposition 1, this problem can be written as max{g(y)| y €
u(D)} = max{p(y)| y € N[u(D)]}, ie.,

max{p(y)|y € G},

where G := N[u(D)] ={y € R} | x € D, y < u(x)}. This is of course a problem (A),
with H = R’ and G being closed by continuity of u(x). Furthermore, without loss of
generality, we can assume

maxu;(x) >0, Vi=1,...,m. Q1)
xeD

It is then easily checked that there is a y > O satisfying y € G, i.e., intG # @. Also, if
every u;(x),i = 1, ..., mis concave or convex, then, for every z € R’} \ {0}, the point
7(z) as defined by (11) can be computed easily.

Example 2. Consider the problem
max{{c, x} | x € D, ¢(u(x)) < 1}, (22)
where D, ¢ and u(x) are as previously. Observe that the set
H = {y € R}| u(x) < y for some x € D}
is closed and reverse normal, since H = u(D) + R = r N[u(D)]. Define

B(y) = [ Sup{(c’x) | x €D, u(x) =< y}, lfy eH (23)

—-M, otherwise,

where M > 0 is an arbitrary number such that —M < min{({c, x) | x € D}. Since D is
non-empty compact, clearly —co < 6(y) < +00, Vy € R

Proposition 23. The function 6(y) is increasing and upper semicontinuous on R} . If
u1(x), ..., unm(x) are convex, then 6(y) is concave on the convex set H = u(D) + RY.

Proof. Ify < y’andy ¢ H,then6(y) = —M while6(y’) > —M = f(y’).Butify <y’
and y € H, then @ # {x € D| u(x) <y} C {x € D| u(x) < y'}, hence, 6(y) < 8().
Therefore, 8(y) is increasing. We now show the upper semicontinuity of 8(y). Since
H is closed and 8(y) = —M Vy ¢ H, it suffices to show the upper semicontinuity of
6(y) on H. Let y* — y0 (where y* € H), and for each k, let x* be such that x* €
D, u(x*) < y*, (c, x*) = 6(yF). Since D is compact and u(x) is continuous, we can
assume x* — x% € D, u(x°) < y°. Then 6(y°) > (c, x0) = limg(c, x*) = lim; 6(55),
as desired. Finally, if every function u1, . . . , u,, is convex and 0" = (e, x1), 0(y%) =
(c, x?), where x! € D, u(x’) < y', i = 1,2, then, for any « € (0, 1), we have
x:=ax!+ (1 —a)x? e Dand u(x) < au(x') + (1 — au(x?) < pl gl —af)y2 =y
Hence, 0(ay' + (1 — a)y?) > (c, ax! + (1 —a)x?) = af(y") + (1 — af(y?), proving
the concavity of 6(y) on H = u(D) + R}. [
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Proposition 24. Problem (22) is equivalent to

max{0(y) | ¢(y) =1, y € H} (24)

in the sense that if X solves (24), then y = u(x) solves (24), and conversely, if y solves
(24) and 6(3) = (c, X) for an optimal solution X of (23) (where y = y), then X solves
(22).

Proof. Let x solve (22) and y = u(x). Then ¢(y) < 1, y € H. But for every y € RY
such that ¢(y) < 1, y € H, we have 8(y) = (c,x) for some x € D, such that
u(x) < y and hence, ¢(u(x)) < 1. Therefore, 0(y) < (c, X), proving that y solves (24).
Conversely, let y solve (24) and 8(y) = (c, x) for an optimal solution X of (23). Then for
every x € D such that ¢(u(x)) < 1, we have for y = u(x) : ¢(y) < 1,y € H. Hence,
on the one hand, 6(y) < 8(y) = (¢, x), on the other, (c, x) < 6(y), so (¢, x) < (¢, X),

i.e., x solves (24). |
Again (24) is a Problem (A) in R™, with G = {y € R} | ¢(y) < 1}. Note that if
ui(x),i =1...,m, are convex, then 6 (y) is the optimal value in a convex program.

Problems (20) and (22) with ¢(y) = II}_,y; have been studied in [20] and [28],
where some essential ideas of monotonic optimization have been first put forward.
Computational experiments reported in these papers on two earlier versions of Algorithm
1 for instances of problems (20) and (22) with n < 15 convincingly demonstrate the
efficiency of the monotonic approach. Not only is this approach applicable to many
problems so far known to be notoriously difficult, it even outperforms existing methods
in several cases of interest.

5.2. Minimization Problem

In much the same way, we can derive the following algorithm for the minimization under
monotonic constrains.

Algorithm 2. (For Problem (B), under assumption (7).) Select a vector v € R}, to
define the mapping p : H — 3+ H" (see (13) and also Remark 2). Select a tolerance
e > 0.

Initialization. Let Ty = Zo = {a}. Let x be the best feasible solution available (the
current best feasible solution), CBV = f(x). If no feasible solution is available, set
CBV = +00. Setk = 0.

Step 1. In Ty, delete all improper elements, all z € Z; \ G, and delete all z such that
f(z) > CBV — ¢. Let Z; be the set of remaining elements of 7.

Step 2. If Z; = f, then terminate: if CBV = +o0, the problem is infeasible; if
CBV < +00, X is an g-optimal solution.

Step 3. Select e argmin{ f(x) | x € Z}. If Z¥ € H, then z* is an optimal solution.
Otherwise, compute xF = p(F). Update CBV and x.

Step 4. Define Tiy1 = (Zi \ {(Z*D U {ZF + F = 20)el, i=1,... ,n).
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Step 5. Set k < k + 1 and return to Step 1.

Proposition 25. Assume that f(x) is lower semicontinuous on G. If Algorithm 2 is

infinite, it generates a sequence all glionl = glivivid converging to an optimal
solution.
Proof. Analogous to the proof of Proposition 22. n

Remark 4. As with Algorithm 1, to alleviate storage problems in connection with the
growth of T}, as the algorithm proceeds, Step 5 of Algorithm 2 can be modified as follows.
Let L be the maximum size allowed for |7%|.

Step 5. If |Ty11| < L, then set k < k + 1 and return to Step 1. Otherwise, go to Step 6.

Step 6. Redefine Ty = {xfei, i=1,...,n}, setk « k + 1 and return to Step 1.

With this modification, each time Step 6 occurs, Algorithm 2 is restarted from the last
xF. This restarting device enables us to overcome memory space limitations in solving
large scale problems.

Example 3. Consider the problem
min{g(u(x)) [x € D}, (25)
where D, ¢, u(x) are as previously. This problem can be written as

min{p(y) | y € u(D)} = min{p(y) |y € r N[u(D]},
or, equivalently, as
min{g(y) |y € H}

with H :=rN[u(D)] ={y € [0,b] | x € D, y > u(x)}, so this is a Problem (B) where
G = [0, b]. The reverse normal set H is closed by continuity. As in Example 1, without
loss of generality, we can assume that maxyep #;(x) > OVi = 1,...,m, ie., that the
normal set [0, ]\ H has an interior point. Also, if u;(x),i = 1, ... , m are convex, then
H is a reverse convex set, so for any z € H, it is easy to compute the point p(z) where
the halfline from z in the direction of e = (1, ..., 1) € R} meets 0~ H.

Example 4. Consider the problem
min{(c, x) | x € D, ¢(u(x)) = 1} (26)
with D, ¢, h as previously. Observe that the set
G = {y € R| y < u(x) for some x € D}
is closed and normal, since G = RY' N (u(D) — R) = N[u(D)]. Define
0(y) = [ Lujl{(c,X) |x €D, y <u(x)} LftzefwiGS;’ @7

where M > 0 is an arbitrary number satisfying M > max{(c, x) | x € D}. Since D is
non-empty compact, clearly —oo < 6(y) < +00 Yy € R’ and it can easily be verified
that the function 6(y) is lower semicontinuous and increasing (proof analogous to that
of Proposition 23). Also, 8(y) < M & y € G.
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Proposition 26. Problem (26) is equivalent to
min{6(y) | 9(y) = 1, y € H} (28)

in the sense that if x solves (26), then y = u(x) solves (28) and conversely, if y solves
(28) and 6(¥) = (c, x) for an optimal solution x of (27) (where y = y), then X solves
(26).

Proof. Analogous to the proof of Proposition 24. [ ]

Thus, (26) appears to be a Problem (B) in R™, with H = {y € R | p(y) > 1}. If
ui(x),i =1...,m,are concave, then 9(y), for y € G, is the optimal value of a convex
program.

6. Optimization of Differences of Increasing Functions

Just as convex maximization methods can be extended to optimization of differences
of convex functions, the above approach to monotonic optimization can be extended to
optimization of differences of increasing functions. For the sake of convenience, we call
d.i. function on [a, b] C R’ any function which can be represented as a difference of
two increasing functions on [a, b]. The set of all d.i. functions on [a, b] forms a linear
space, denoted by DI[0, b], which is the linear space generated by increasing functions
on [a, b]. The following proposition shows that DI[a, b] includes a very large class of
functions.

Proposition 27.
(i) DI [a, b] is a lattice with respect to the operations

(f1 Vv 2)(x) = max{f1(x), 2(0)}, (fi A f2)(x) = min{fi(x), f2(x)}.

(ii) DI [a, b] is dense in the space Cla, b] of continuous functions on [a, b] endowed
with the usual supnorm.

Proof. (i) Let f; = g — h;, where g;,h; are increasing on [a, b]. Noting that
fi=(g1+h2)—(hi+h2), fr=(g2+h1)— (hy +h2) and settingh = hy +h2, p =
g1+ hy,q =gr+hionehas fi VvV fo = max{p — h, g — h} = max{p, g} — h, while
fi A fo = min{p — h,q — h} = min{p, q} — h. Since max{p, ¢} and min{p, g} are
increasing, it follows that f; Vv f> and fi A f» are d.i. on [a, b].

(ii) A polynomial in x € R" with positive coefficients is obviously an increasing
function on R’} . Since an arbitrary polynomial P (x) is a difference of two polynomials
with positive coefficients: P(x) = P1(x) — P_(x) where P, (P_, resp.) is the sum of all
terms of P with positive (negative, resp.) coefficients, every polynomial is a d.i. function
on any box [a, b] C R’;. But by the Weierstrass theorem, the set of polynomials on [a, b]
is dense in C|a, b]. Therefore, DI[a, b] is dense in Cla, b]. [ ]

Consider now the general d.i. optimization problem:
min  fi(x) — f2(x),
(DIOP) st. gi(x)—hi(x) <0, i=1,...,m,
x €[0,b] C RY,



296 Hoang Tuy
where fi, f2, gi, h; are increasing on [a, b].

Proposition 28. Any d.i. optimization problem can be reduced to minimizing an
increasing function under monotonic constraints.

Proof. We show that any (DIOP) can be transformed into an equivalent Problem (B).
The transformation is performed in two steps.

Step 1. Reduce the problem to minimizing an increasing function under d.i. constraints.
Let y be any positive number such that y > f>(b), i.e., ¥y — fo(x) > 0Vx € [0, b]. We
can rewrite (DIOP) as

min fi(x) +¢
st. gi(x)—hi(x) <0 i=1,...,m,
t+ f2(x) >y,

0<t=<y-— f£200), xel0b>b]

Here, the function (x,¢) +— fi(x) + ¢ is increasing and the constraints are d.i. on
[0,8] x [0,y — £2(0)] C R} x R,.

Step 2. Transform the resulting system of d.i. constraints into a monotonic system. By
changing the notations, we can assume that this system of d.i. constraints has the form

g(x)—hi(x) <0 i=1,...,p, (29)
or, equivalently,

p
Vg —hilx) <o0.

i=1

Noting that v, [g; —hi]1(x) = g(x) —h(x) where g = V!_ [g;+ X 4ih;], h = B2 h;

are increasing, we can rewrite (29) as
8(x) —h(x) <0.
In turn, this inequality is equivalent to the monotonic system:
gx)+u=<n hx)+uz=n 0=<u<n-—g)),

where 7 is any positive number such that » > g(b) (hence, forevery x € [0, b] : g(x) <
n,ie,g(x)+u<n, u=>0).

To sum up, Step 1 reduces the problem to minimizing an increasing function of (x, r)
under a system of d.i. constraints in (x, ¢), then Step 2 converts the latter into a monotonic
systemin (x, ¢, u). The resulting problem, equivalent to the original (DIOP), is a Problem
(B) in the variables (x, ¢, u). ]

Thus, at the expense of introducing at most two additional variables, any optimization
problem involving differences of increasing functions can be reduced to minimizing or
maximizing an increasing function under monotonic constraints. We close this paper
with some applications.
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6.1. Polynomial Programming

Denote by P(x) the set of polynomials in x € R" with positive coefficients. As was
already noticed, by grouping separately the terms with positive and the terms with
negative coefficients, any polynomial f (x) can be writtenas f(x) = f1(x) — f2(x) with
f1, f>» € P(x). Therefore, any polynomial program can be written as a d.i. optimization
problem (DIOP), where fi, f» as well as g;,h; (i = 1,...,m) all belong to P(x).
By then applying further transformations described in Step 1 above and changing the
notations, we can rewrite a polynomial program in the form

min f(x), (30)
st. gix)—hi(x)<0 i=1,...,m, (31)
x € [0, b), (32)

where f, g;, h; € P(x), i = 1, ..., m. Finally, by applying transformations described
in Step 2 and changing the notations again, we obtain the following monotonic
optimization problem:

min  f(x), (33)
s.t. max{gi,...,8m}+u=<1, 34)
h(x)+u>1, (35)
(x,u) € [0, 5] x [0, byt1], (36)

where b, 1 > g(b)—g(0)and f, h, g1, ..., gn € P(x). Thelatter problem is a Problem
(B) (see (19)) with

G = {(x,u) | max{g1(x),...,8m()}+u <=1}, H={(x,u)|h(x)+u=1}.
The operator p : GﬁRi+1 — 9 H" in Algorithm 2 for this problem is defined as follows:
z=(x,u) = p(z) = max{t | h(x +tb) +u + thpy1 = 1}.

This is an equation in ¢, of the form
o@) :=h(x+th)+u+thyy1=10<t <1,

where ¢(t) is a monotone increasing polynomial in 7. Since the derivative ¢’ () is readily
available and is itself a polynomial in # with positive coefficients, i.e., an increasing
function, this equation is very easy to solve. Therefore, Algorithm 2 reduces to solving
a connected sequence of polynomial equations of one variable.

In the special case of non-convex quadratic programming problems, the computation
of p(z) is even simpler because it reduces to solving a mere quadratic equation of one
variable.

6.2. A Problem of Smale

A challenging problem of global optimization which emerged from the complexity
theory and is related to the arrangements of Fekete points on a sphere (see, €.g., [21]),
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consists of determining N points on a sphere such that the product of their mutual
distances is maximized, i.e.,

max [ I =x/l, st Ix'l=1i=1,...,N.

1<i<j<N

By rewriting this problem as

max [] yy.stoyy <l —x/l. 1<i<j<N, |xll=1 i=1,...,N,

1<i<j<N

we see that it has the form of a monotonic optimization problem, namely

max[ [T wily=0wec} win 37)

I<i<j<N

G={y=0i)ly <lIx¥-%/|1<i<j<N, [5=1i=1...,N}

Here, the objective function is obviously increasing for y = (y; 7) = 0, while G is a
normal set because 0 < y' < yand y € G imply y' € G. Let @ > 0 be the product of
mutual distances of any N chosen distinct points on the unit sphere. Since the distance
between any two points on the unit sphere is at most 2, for any y € G and any (i, j)
satisfying 1 <i < j < N, wehavea < [N(N —1)/2 — 112y;;,

(24

Aegl=aslin s
Yi=T= NN -1)-2

Therefore, if we define H = {y = (y;;| y;; > n}, then the problem (37) is the same as

max{ 1_[ )’ij|y=(Yij)€GnH}»

I<i<j<N

which is exactly a Problem (A). For solving this problem by Algorithm 1, the
computational burden comes from the determination of 7 (z) as defined from (11) for
each given z = (z;;) ¢ G. In fact, computing 7 (z) for the above set G amounts to
solving the distance geometry problem

minfA | Az;j < |x* —x/|| 1<i<j <N, |¥|=1i=1,...,N). (38)

(Given positive numbers §;; = Az;;, find N points x', ..., x" on the unit sphere, such
that the distance between any two points x*, x/ equals at least §; ;-) This is still a difficult
problem, which, however, can be solved, in principle, by currently available methods
of non-convex quadratic programming (see, e.g., [25]), or also by the above-developed
method of monotonic optimization (then each problem (38) reduces to a sequence of
quadratic equations of one real variable).
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7. Conclusion

We have presented a theory of normal sets and polyblocks and have shown how it provides
a general mathematical framework for the study of monotonic systems of inequalities
and monotonic optimization problems, including optimization problems involving d.i.
functions. We have illustrated the applicability of this approach by examples of problems
from generalized multiplicative programming, non-convex quadratic optimization, and
more generally, polynomial programming. These difficult problems of non-convex global
optimization have attracted considerable interest in recent years. In a companion paper
[26], devoted especially to monotonic optimization, we will discuss these and other
applications in greaater detail.

References

1. S. Azarm, Local monotonicity in optimal design, Ph.D. Thesis, University of Michigan, Ann
Arbor, 1984.
2. S.Azarm and P. Papalambros, An automated procedure for local monotonicity analysis, ASME
Journal of Mechanisms, Transmissions, and Automation in Design 106 (1984) 82-89.
3. R.J. Duffin, E.L. Peterson, and C. Zener, Geometric Programming, Wiley, New York, 1966.
4. C.R. Hammond and G.E. Johnson, A general approach to constrained optimal design based
on symbolic mathematics, in: Advances in Design Automation — Design Methods, Computer
Graphics and Expert Systems, S.S. Rao (ed.), ASME, Vol. 1, 1987, pp. 31-40.
5. P.Hansen, B. Jaumard, and S. H. Lu, Some further results on monotonicity in globally optimal
design, Journal of Mechanics, Transmissions and Automation in Design 111 (1989) 345-352.
6. R. Horst and H. Tuy, Global Optimization (Deterministic Approaches), 3rd ed., Springer-
Verlag, Berlin-New York, 1996.
7. H. Konno and T. Kuno, Generalized multiplicative and fractional programming, Annals of
Operations Research 25 (1990) 147-162.
8. H. Konno, Y. Yajima, and T. Matsui, Parametric simplex algorithms for solving a special class
of non-convex minimization problems, Journal of Global Optimization 1 (1991) 65-81.
9. H. Konno, P.T. Thach, and H. Tuy, Optimization on Low Rank non-convex Structures, Kluwer
Academic Publishers, Dordrecht - Boston-London, 1997.
10. H.L. Li and P. Papalambros, A production system for use of global optimization knowledge,
ASME Journal of Mechanisms, Transmissions, and Automation in Design 107 (1985) 277-284.
11. V.L.Makarov and A. M. Rubinov, Mathematical Theory of Economic Dynamic and Equilibria,
Springer-Verlag, Berlin-New York, 1977. _
12. T.S. Motzkin and E. G. Strauss, Maxima for graphs and a new proof of a theorem of Turan,
Canad. J. Math. 17 (1965) 533-540.
13. H. Nikaido, Economic Theory and Convex Structures, Academic Press, New York, 1969.
14. P. Papalambros and H.L. Li, Notes on the operational utility of monotonicity in optimization,
ASME Journal of Mechanisms, Transmissions, and Automation in Design 105 (1993) 174-180.
15. P. Papalambros and D.J. Wilde, Principles of Optimal Design — Modeling and Computation,
Cambridge University Press, New York, 1986.
16. P. Pardalos and G.L. Xue (eds.), Journal of Global Optimization, Special issue on molecular
and protein conformations, 11 (1997).
17. U. Passy, Global solutions of mathematical programs with intrinsically concave functions, in:
Advances in Geometric Programming, M. Avriel (ed.), Plenum Press, New York, 1980.
18. K.M. Ragsdell and D.T. Philipps, Optimal design of a class of welded structures using
geometric programming, ASME Journal of Engineering for Industry 98 (1976) 1021-1025.
19. A. Rubinov and B.M. Glover, Duality for increasing positively homogenuous functions and
normal sets, Recherche Operationnelle (Operations Research) 32 (1998) 105-123.
20. A. Rubinov, H. Tuy, and H. Mays, Algorithm for a monotonic global optimization problem,
SIMS, University of Ballarat, Australia, 1998 (preprint).



300 Hoang Tuy

21. E. Saff and A. Kuijlaars, Distributing many points on a sphere, Mathematical Intelligencer 10
(1997) 5-11.

22. H. Tuy, The complementary convex structure in global optimization, Journal of Global
Optimization 2 (1992) 21-40.

23. H. Tuy, D.C. Optimization: Theory, methods and algorithms, in: Handbook on Global
Optimization, R. Horst and P.M. Pardalos (eds.), Kluwer Academic Publishers, Dordrecht-
Boston-London, 1995, pp.149-216.

24. H. Tuy, Convex Analysis and Global Optimization, Kluwer Academic Publishers, Dordrecht-
Boston-London, 1998.

25. H. Tuy, Normal branch and bound algorithms for general non-convex quadratic programming,
in: Combinatorial and Global Optimization, P.M. Pardalos, A. Migdalas, and R. Burkard
(eds.), World Scientific Publishing Co., 1999 (to appear).

26. H. Tuy, Monotonic optimization: Problems and solution approaches, Institute of Mathematics,

_Hanoi, 1999 (preprint).

27. H. Tuy, The MCCNFP with a fixed number of non-linear arc costs: Complexity and
approximation, in: Approximation and Complexity in Numerical Optimization: Continuous
and Discrete Problems, P.M. Pardalos (ed.), Kluwer Academic Publishers, 1999 (to appear).

28. H. Tuy and Le Tu Luc, A new approach to optimization under monotonic constraint, Institute
of Mathematics, Hanoi, 1998 (preprint).

29. D.J. Wilde, A maximum activity principle for eliminating over-constrained optimization cases,
ASME Journal of Mechanisms, Transmissions, and Automation in Design 108 (1986) 312-314.



