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Abstract. The non-commutative torus A, : C*q, a) may be realized as the C*-algebra of
sections of alocally trivial C*-algebrabundle over S, with fibres C* (Zn I S@, ruo1) for some totally
skew multiplier ar1 onZ /Sr.We prove that A, @ Mt(C) has the trivial bundle structure if and
only if Z" /5, is torsion-free. It is shown that every non-commutative torus is stably isomorphic
to a non-commutative torus with trivial bundle structure.

1. Introduction

Given a locally compact abelian group G and a multiplier crl on G, one can associate to

them the twisted group C*-algebra C" (G, a.r), which is the universal object for unitary
@-representations of G. Our problem is to understand the structure, especially the bundle
structure, of such C*-algebras.

The twisted group C*-algebra C*(Z",o) by a multiplier al on Zn rs called a
non-commutative torus of rank n and is denoted by Ar. The simplest non-trivial
non-commutative tori arise when G _ 22. In this case we may assume that a.r is
antisymmetric and @((1,0), (0, 1)) : eoi9.When g is irrational, one obtains a simple
C*-algebra called anirrational rotation algebra, and is denoted by Ae. When 0 - m I k,

one obtains a rational rotation algebra, and is denoted bY A^lt.
Now, the multipher a determines a subgroup S, of G called symmetry group. A

multiplier @ on an abelian group G is called totally skew lf the symmetry group S, is

trivial, and A, is called completely irrational if ar is totally skew. Baggett and Kleppner

[1] showed that if G is a locally compact abelian group and o is a totally skew multiplier

on G, then C* (G, a) is a simple C*-algebra.
Baggett and Kleppner [1] also showed that even when ar is not totally skew on a locally

compact abelian group G, the restriction of a.r-representations from G to S, induces a

canonical homomorphism of Prim(C*(G, to)) with Sr. It was shown in [1] that there
is a totally skew multiplier @r on Z" I S, such that ar is similar to the pull-back of ar1.
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Furthermore, it is known (see [4, 6,9]) that C* (G, a) may be re alized as the C*-algebra
f (f ) of sections of alocallytrivial C*-algebrabundle ( overS - Prim(C*(G, a.r))with
fibres C*(G,o)/x forx e Prim(C*(G,a))andall C*(G,@)/xturnouttobethesimple,
twisted group C*-algebra C* (G / 5., iar). So A, is realized as the Cx-algebra of sections
of a locally trivial C* -algebra bundle over Prim (A.) : 

-S, 
with fibres C* (2" f Sr, co1)

for o1a suitable totally skew multiplier onZ" f S,,.
A natural question is when the locally trivial bundle ( is trivial. Poguntke [9] proved

that A, is stably isomorphic to C(S) I C* (2" /Sae, o).
Poguntke [8] showed that any primitive quotient of the group C*-algebra C*(G)

of a locally compact two step nilpotent group G is isomorphic to the tensor product
of a completely irrational, non-commutative torus A, and K(11) for some (possibly
finite-dimensional) Hilbert space 7/. Since C*(G/Se), rrrl) is the primitive quotient of
c*(G/s.,(arr)), where Gls6Qo) is the extension group of G/s, by T defined by ,t,
C* (G I S@, ar1 ) is isomorphi c to A, I rcQt .

In this paper, we investigate the structure of the fibre of Ar. We are going to show
that A, I Mr(C) has the trivial bundle structure if and only if Z" / S, is torsion-free.
Furthermore, we will give an easy proof of the result of Poguntke.

2. Preliminaries

To fix notations. let

Z : the set of integers,

C - the set of complex numbers,

I : the minimal tensor product.

We start our investigations with a study of decomposition of multipliers on Z" /Sr.
If ar is a multiplier on G and.F1 a closed subgroup of G, then we denote by cols the
restriction of ar to //. Furthermore, if G - Gt @ Gz, and if @1 and @2 ?ta multipliers
on G1 and G2, respectively, then we denote by ,t @ dsz the multiplier on G defined by

(arr O r,t) ((xt, x2), Or, y)) - e)r(xt, yr)az(xz, yz),

xl, l t e Gt and x2, lz e GZ.
For some groups G, each multiplier on G turns out to be a bicharacter.

Proposition 1. [7, TheoremT.l] Let G be afinitely generated discrete abelian group.
Then every multiplier on G is similar to a bicharacter.

Let a be a multiplier on a locally compact abelian group G. Define a homomorphism
h r :  G  *  G b y h r ( x ) ( y ) :  r o ( x , y ) t o ( y , x ) - r , x , y  e  G a n d l e t S ,  : : k e r ( h )  d e n o t e
the symmetry group of a.

Next, we introduce the concept of C* -algebra bundle over a locally compact Hausdorff
space. Let Prim(C* (G, ar)) be the primitive ideal space of the twisted group C*-algebra
c* (G, ar) of a locally compact abelian group G defined by a multiplier ar.
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Proposition 2.ll,6l Let G be a locally compact abelian group and a a multiplier on

G. Then
(i) there is a multiplier o1 on GlS, such that C*(G,o)lP is isomorphic to

C*(GlSr, ar1) for any P e Prim(C*(G, at)) and ar is similar to the pull-back of a

totally skew multiplier rrrl;

(ii) the restriction of a.r-representations from G to S, induces a canonical homomorphism

of Prim(C*(G,o)) with Se,,.

By a trick similar to the proof of Theorem 1 in [4], one can show that, for a multiplier

o on alocally compact abelian group G, C* (G, a) can be realtzed as the C*-algebra of

sections of a locally trivial C* -algebra bundle. That is, if A is a twisted group C*-algebra

of a locally compact abelian group, its C*-algebra bundle is locally trivial. In particular,

A, a C* (2", ar) may be represented as the C*-algebra of sections of a locally trivial

C*-algebra bundle over S- with fibres C* (2" I Sr, ar1) (see 14,6,91for details).

A problem then is to decide when this locally trivial bundle is actually trivial. Brabanter

[2] proved that the rational rotation algebra has a non-trivial bundle structure. We will

present a new proof of this result in the next section.

Let G be a finitely generated discrete abelian group, e.g., Z" f Sr, (Dr 3 totally skew

multiplier on G, and Z the maximal torsion subgroup of G. Then G = T O F where F

is a torsion-free subgroup. Note that o4lp is always totally skew, but a.rr l7 need not be

totally skew. A multiplier o on a group G is said to be type I if C* (G, a) is a type 1

C*-algebra.

Lemma l.14, Lemma ll Let a be a multiplier on a locally compact abelian group G.

Suppose G has a closed subgroup H such that alll is totally skew and type I, and such

that the group extension

{ 0 } - +  H + G + G l H  - + { 0 }

splits. Then there is a complement L to H in G such that (after replacing a by a similar

multiplier) o splits as atls @ rolr.

3. The Bundle Structure of Non'Commutative Tori

Let A, be a non-commutative torus of rank n. A, is isomorphic to the C*-algebra of

sections of a locally trivial C*-algebra bundle over S, with fibres, the simple twisted

group C*-algebra C* (2" lSr, a.r1) of a finitely generated discrete abelian group Z" /5,
defined by a totally skew multiplier al1 on Z" /Sr. Here, ar is similar to the pull-back of

ar1. Then Z" lS, = f O F where Z isthemaximaltorsion subgroup of Z" /5, and F is

a maximal torsion-free subgroup of Z" / Sr.

Assume Z is trivial. Then, by Lemm a | , afler replacing ot by a similar multiplier, we

may write Z" /5, - F and o)r : allr.Let F be the pull-back of F under the canonical

map of Z" to Z" /Sr. Then there is a subgroup F' such that F - F' el S, = Zn. And

so C*(2",  a)  = C*(F, col i l  = C*(F' ,  o l r ' )  I  C*(Sr)  = C*(F, tot l i l  I  C*(Sr)  =

C* (V-," / Sr, arr ) 6l C* (Sr). This implies that if Z" I S, is torsion-free, then A, has the

trivial bundle structure.
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Theorem 1. [5, Theorem 2.2] Let A. : C* (ut u) be a non-commutative torus
of rank n, where ut, . . . ) ttrn are unitary generators satisfying the commutation relations
u;uiu,rui ' :exp(Zr iT; j ) (here,0isaskew-symmetr icnxnmatr ixwithrealentr ies).

Then Ko(Ar) 7 Kr(Ar) = Z2n-' , and l l l , l  e Ks(Ar) is primitive.

Proof. The proof is by induction onn.If n - l, A, - C(Sl) is abelian, and the result
is obvious. So assume that the result is true for all non-commutative tori of rank n - 1.
Write A, : C* (8, ur), whete B : C* (ut un-r). Then the inductive hypothesis
applies to B . Also, we can think of A, as the crossed product of B by an action a of Z,
where the generator of Z conesponds to un and acts on B by conjugation (sending z;
to u"uiurL - ).juj, Lj : exp(2ni1"r)). Note that this action is homotopic to the trivial
action, since we can homotope 1ni to 0. Hence, Z acts trivially on the K-theory of B.
The Pimsner-Voiculescu exact sequence for a crossed product gives

Ko(B) f5 Ko(B) 3 xr(e; -+ Kr(B) g K{B)

and similarly for K1, where the map <D is induced by inclusion. Since ore, :1 and since
the K-groups of B are free abelian, this reduces a split short exact sequence

{0} --+ Ko@) Ko(A,) --> Kt(B) + {0}

and similarly for K1. So K1(A.) is free abelian of rank 2 . 2"-2 - 2'-r. Furthermore,
since the inclusion B + A, sends 1s to le,, lIill is the image of [1s], which is
primitive in Ko(B) by inductive hypothesis. Hence, the image is primitive since the
Pimsner-Voiculescu exact sequence is a-split short exact sequence of torsion-free groups.

Therefore, Ko(Ar) 7 Kt(Ar) Z 22"-' , and [1a.] e Ko(Aa) is primitive. I

Now, we investigate the structure of the fibre C*(Z'/So , a-t1) of C*(2", a).
Let G be a compactly generated locally compact abelian group and a.r1 a totally skew

multiplier on G. Then let E :: G(a) be the extension group of G by T1 defined by ,r.
The following result of Poguntke clarifies the structure of the fibre of Ar.

Theorem 2.18, Theorem Il Let G be a compactly generated locally compact abelian
Sroup and a4 a totally skew multiplier on G. Let K be the maximal compact subgroup of
E and let E, be the stabilizer of an irreducible unitary representation p of K restricting
onTr to the identity. Then

C* (G, a) a C* (E p / K, m) g rc(fz @ /Ep)) e Mai^@)(C),

where m is the associated Mackey obstruction.

This theorem is applied to understand the structure of the twisted group C*-algebra
C*(2" / Sr, rgDr). Let G : Z, / Sr, E : (2" /S.)(arr), and let Eo bethe stabilizer of
an irreducible unitary representation p of the extension K :_ T(torlr) of Z by T1
defined by ,tlr, which restricts to the identity on Tl. The Mackey method says that
C* (2" / S@, roor) = C* (F O T , rar) is isomorphic to the primitive quotient of C* (E)
lying over p. Then, by Theorem 2,

o
+

C*(2" /5. ,  ( i r )  = C*(Ep/K,m) e K(Lz@/Ep)) g M661o;(C).
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Now by definition , E o is of index lSr,l, I rn E , where ,Sr,;, is the symmetry group, a

subgroup of T, of a1lr. So

lE : E ol - # of ineducible a1l7-representations of Z
-  lSr , l .  l ,

and dim(p)JtrVtr;e, and EolX is a subgroup of finite index lE : Ep)in ElK.

Let Fo be the isomorphic image of EolK underthe natural map of E/K to F. Then

{x e F lh^r(x)(y) :1,  Vy e Sr, l r } isexact ly Fo,andFrisasubgroupof f in i te index

lE :  Epl in F.Let Jr  -  F I  Fp, J -  JrOSr, lp and Tt :  T /  Sr, ; ' .  Then lJr l  :  lSr, l , '  l .
Since F, is a subgroup of F, we can consider Jr @ So,,1, tls a subgroup of (F @T)/Fp.
So (2" lS,)/Fois isomorphicto Jr O 7 and ((2" lS,)/Fp)/J is isomorphic to Zr.

Next, we show that C*(Ep/K, m) is isomorphic to C*(Fp, otl+).By Theorem

2, C*(Fp, otlr) = C*(Fp(alr)lTr, ff ir), where rn1 rs the associated Mackey

obstruction. Let a2be a totally skew multiplier onTl whose pull-back to Z is similar to

atlr.It is sufficient to show that the Mackey obstructior/,tr2, in the isomorphism

C* (Fp @ Tt, atlr, @ roz)

= C* ((fp O T,)(anlr', O a) I Tt(az), m) & C" (71, a2)

= C*(Fp, ttt lr) I C* (Tt, r,sz)

is essentially the same as mr. But for ft €

[3, XII.I.l7l are the same for Fo and for Fp @
Mackey obstructions. So

Fo, the unitary operators EL in
Tt up to scalar. They give the same

C*( (Fp@: T) ( to r l r ,  O a) lT t (az) ,  * )  7  C* (Fo(ar l r ) /T r ,  mr )
=  C * ( F p ,  a t l p " ) ,

and C* (Ep/K, m) is isomorphicto C*(Fo, atlr).

Corollary L. C* (2" / So,, a) 7 C* (Fp, torlr) I MW:nol (C) O Moi-tpt (C).

Proof. By Theorem 2,

C* (v"" / 5,, l,l,r) 7 C* (E p / K, m) I rc(Lz @ / Ep))e : Mai^@)(C)

= C*(Fp, arlr) I Mw:n,l (C) g Mai-ol(C).

Here, M1n:no1 (A) = Mltol(C) and Ma^b) (A) = M1q@). Hence, one obtains the

result. I

Note that Cx (Fo, atlr) is a completely irrational, non-commutative torus.

Let Arbe a non-commutative torus. It follows from Corollary I that A, is isomorphic

to the C*-algebra f (ry) of sections of a locally trivial C*-algebra bundle 4 over S, with

fibres C*(Fp, alr) I Mg:nol (O g Maigp>(C).

Theorem 3. Letl be apositive integenThen ArSMr(C) ts not isomorphic to AAM*(C)

for any C* -algebra A if k + l.
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Proof. Assume that Ar 8 M(C) is isomorphic to A & Mu(C) for some integer k and
some C*-algebra A. Then the unit 1a, I I maps to the unit la & Ia, where fu denotes
the d x d identity matrix. Since lle& Iul - kllll.l,there is aprojection e in Are M(C)
such that

Hence,

[1a,  I  I i :  k l le ] .

l l Ie. l  -  Ut.8 I i l  -  kl lel .

But, by Theorem 1, the K-groups of A. are torsion-free, so [1a,] _ k[e], which
contradicts Theorem I it k + I.

Therefore, Ar 8 Mr(C) is not isomorphic to A I Mu(C) for any C*-algebra A if
k + r .  r

In particular, one obtains that no non-trivial matrix algebra can be factored out of any
rational rotation algebra Am/k. So every rational rotation algebra has a non-trivial bundle
structure. This gives an alternative proof of a result of Brabanter.

Theorem 3 implies that if A, I Mp(C) is isomorphic to Ao I Mn(C), then
p - q. However, there are non-isomorphic non-commutative ton A, and Ao such
that A, & Mo(C) is isomorphic to A, I Mp(C) for some integer p.

Corollary 2. Let I be a positive integer Then Ar 8 M(C) has a non-triviat bundte
structure unless Z" /5, is torsion-free.

Proof. Assume A, I M(C) has^the trivial bundle structure, i.e., A, I Mt(C) is
isomorphic to C* (F o, lr;,tl r, ) OC (S) @ M t (q A M t (C), where M r (C) :: M12, E: or (C) g
Mdi^(p) (C). If Z" /5, is not torsion-free, then Mr(C) is non-trivial. So A, & Mt(C) is
isomorphicto A8 Mp(C) where A is isomorphic to C*(Fo, arlp) g C(S). fnis
contradicts Theorem 3 If V," /5, is not torsion-free.

Therefore, ArE M(C) has a non-trivial bundle structure unless Z" / Sris torsion-free.
T

We have obtained that A16 Mr(C) has the trivial bundle structure if and only if Zn / S,
is torsion-free.

4. Stable Isomorphism of Non-Commutative Tori

The non-commutative torus A, of rank n is obtained by an iteration of n - 1 crossed
products by actions of Z,thefirst action on C(Tl) (see [5]). When A, is not simple,by a
change of basis, A, canbe obtained by an iteration of n - 2 crossed products by actions
of Z, the first action on a rational rotation algebra Am/k, where the actions on the fibre
W(C) of A^17.' are trivial, since W(C) is a factor of the fibre of Ar.

Theorem 4.lz,Theorem 3l The rational iotation algebra Am/k is stably isomorphic to
C* (kZ x kZ).
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!-guntke proved that every non-commutative torus A, is stably isomorphic to
C(Sr) & C*(V,"/Sr,,uot). The Mackey machine for a twisted crossed product says
that C*(2"/Sr,ar1) is isomorphic to the tensor product of a completely irational,
non-commutative torus Ao with a matrix algebra Mu(C).

Theorem 5. t9l A. is stably isomorphic to C(fi) @ C*(Z'lS,,a\).

Proof. By Theorem 4, A^1p I K(71) is isomorphic to C* (kZ x kZ) A Mr(C) I rcQt.
The non-simple, non-commutative torus A, of rank n may be realized as the crossed
product

A* lk  ,o ,  Z  xo ,  '  Xo ,  ,2 ,

where a; arct trivially on the fibre Mt(C) of A*1p. So

A, I K(11) I (A^/k xo, Z Xo, . xqn_z Z) A K(7{)

7  (A^ l r  I  K(T t ) )  x&,2  xdz  " '  xo i  ,2 ,

where d,; arc the canonical extensions of cvi such thatdi act trivially on Mp(C) @ rct\.
Thus,

A,8K(71)=  (c& i l ;Eu  a  uo(A)  e  K(11) )  xa ,Zxdz . . . xo i_ ,Z

= G&il;ED xo, Z xa2...  Xq,-zZ) g Mr,(C) I  rc(1t.

Thus, A., isstably isomorphicto (C&frED xo, 'Z xaz...Xan-22) gMr(C). But
.....-.^-

C (kV" x kZ) xo, Z Xaz . Xan_zZ is anon-commutative torus with fibres Ap I Ma(C).
So by a finite step of the above process, one can obtain that A.8 rcQt is isomorphic
to c(S) 8 Ao I Mr,a(c) I rc(70 = c(O e c*(2" /s,, arr) I K(11).

Therefore , A, is stably isomorphic to C (S, ) I C* (2" / Sr, rcot) . I

We have obtained that the non-commutative torus A, is stably isomorphic to
C(s) 8 Ap I Mr,a(C) = C(Q I c* (2" /S,, a,lr). Hence, A, is stably isomorphic to
the non-commutative torus C(S.) I Ao, which has the trivial bundle structure.

Aclcnowledgement. The author wishes to acknowledge the financial support of KOSEF in the
program year of 1999.
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