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Abstract. The non-commutative torus 4, = C*(Z", w) may be realized as the C*-algebra of
sections of a locally trivial C*-algebra bundle over S, with fibres C*(Z"/S,,, w1) for some totally
skew multiplier w; on Z"/S,,. We prove that A, ® M;(C) has the trivial bundle structure if and
only if Z"/S,, is torsion-free. It is shown that every non-commutative torus is stably isomorphic
to a non-commutative torus with trivial bundle structure.

1. Introduction

Given a locally compact abelian group G and a multiplier w on G, one can associate to
them the twisted group C*-algebra C*(G, w), which is the universal object for unitary
w-representations of G. Our problem is to understand the structure, especially the bundle
structure, of such C*-algebras.

The twisted group C*-algebra C*(Z", w) by a multiplier w on Z" is called a
non-commutative torus of rank n and is denoted by A,. The simplest non-trivial
non-commutative tori arise when G = Z2. In this case we may assume that o is
antisymmetric and @((1, 0), (0, 1)) = €” i When 0 is irrational, one obtains a simple
C*-algebra called an irrational rotation algebra, and is denoted by Ag. When 6 = m/k,
one obtains a rational rotation algebra, and is denoted by A, /«.

Now, the multiplier @ determines a subgroup S, of G called symmetry group. A
multiplier  on an abelian group G is called fotally skew if the symmetry group S,, is
trivial, and A, is called completely irrational if w is totally skew. Baggett and Kleppner
[1] showed that if G is a locally compact abelian group and w is a totally skew multiplier
on G, then C*(G, ) is a simple C*-algebra.

Baggett and Kleppner [1] also showed that even when w is not totally skew on a locally
compact abelian group G, the restriction of w-representations from G to S, induces a
canonical homomorphism of Prim(C*(G, w)) with S(,, It was shown in [1] that there
is a totally skew multiplier w; on Z"/S,, such that e is similar to the pull-back of w;.
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Furthermore, it is known (see [4,6,9]) that C*(G, w) may be real1zed as the C*-algebra
I"(¢) of sections of a locally trivial C*-algebra bundle ¢ over Sw = Prim(C*(G, w)) with
fibres C*(G, w)/x for x € Prim(C*(G, w)) and all C*(G, w)/x turn out to be the simple,
twisted group C*-algebra C*(G/S,,, w1).So A, is reahzed as the C*-algebra of sections
of a locally trivial C*-algebra bundle over Prim(A,,) = Sw with fibres C*(Z" /S,,, w1)
for w; a suitable totally skew multiplier on Z"/S,,,.

A natural question is when the locally trivial bundle ¢ is trivial. Poguntke [9] proved
that A,, is stably isomorphic to C So) ® C*(Z" /S, ®1).

Poguntke [8] showed that any primitive quotient of the group C*-algebra C*(G)
of a locally compact two step nilpotent group G is isomorphic to the tensor product
of a completely irrational, non-commutative torus A, and K(H) for some (possibly
finite-dimensional) Hilbert space H. Since C*(G/S,, w;) is the primitive quotient of
C*(G/Sw(®1)), where G/S,(w1) is the extension group of G/S,, by T defined by w1,
C*(G/8w, w1) is isomorphic to A, ® K(H).

In this paper, we investigate the structure of the fibre of A,. We are going to show
that A,, ® M;(C) has the trivial bundle structure if and only if Z"/S,, is torsion-free.
Furthermore, we will give an easy proof of the result of Poguntke.

2. Preliminaries
To fix notations, let

= the set of integers,
C = the set of complex numbers,
® = the minimal tensor product.

We start our investigations with a study of decomposition of multipliers on Z"/S,,.
If @ is a multiplier on G and H a closed subgroup of G, then we denote by w|y the
restriction of w to H. Furthermore, if G = G1 & G2, and if w; and w, are multipliers
on G and G, respectively, then we denote by @; @ w, the multiplier on G defined by

(01 ® w2) ((x1, x2), (1, ¥2)) = w1(x1, y1)wa(x2, ¥2),

x1,y1 € Gy and x2, y2 € Gy.
For some groups G, each multiplier on G turns out to be a bicharacter.

Proposition 1. [7, Theorem 7.1] Let G be a finitely generated discrete abelian group.
Then every multiplier on G is similar to a bicharacter.

Let wbe a ‘amultiplier on a locally compact abelian group G. Define a homomorphism
he:G—> G by hw(x)(¥) = w(x, y)o(y,x)"!, x, y € G and let S, := ker(h,,) denote
the symmetry group of w.

Next, we introduce the concept of C*-algebra bundle over a locally compact Hausdorff
space. Let Prim(C* (G, w)) be the primitive ideal space of the twisted group C*-algebra
C*(G, w) of a locally compact abelian group G defined by a multiplier w.
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Proposition 2. [1,6] Let G be a locally compact abelian group and o a multiplier on

G. Then

(i) there is a multiplier w; on G/S, such that C*(G,w)/P is isomorphic to
C*(G /Sy, w1) for any P € Prim(C*(G, w)) and w is similar to the pull-back of a
totally skew multiplier wy;

(i) therestriction of a)-representatlons from G to S,, induces a canonical homomorphism
of Prim(C*(G, w)) with Sa,

By a trick similar to the proof of Theorem 1 in [4], one can show that, for a multiplier
w on a locally compact abelian group G, C*(G, w) can be realized as the C*-algebra of
sections of a locally trivial C*-algebra bundle. That is, if A is a twisted group C*-algebra
of a locally compact abelian group, its C*-algebra bundle is locally trivial. In particular,
A, = C*(Z", w) may be represented as the C*-algebra of sections of a locally trivial
C*-algebra bundle over Sw with fibres C*(Z" /S, w1) (see [4,6,9] for details).

A problem then is to decide when this locally trivial bundle is actually trivial. Brabanter
[2] proved that the rational rotation algebra has a non-trivial bundle structure. We will
present a new proof of this result in the next section.

Let G be a finitely generated discrete abelian group, e.g., Z" /S, w; a totally skew
multiplier on G, and T the maximal torsion subgroup of G. Then G = T @ F where F
is a torsion-free subgroup. Note that w1 | is always totally skew, but @;|7 need not be
totally skew. A multiplier @ on a group G is said to be type I if C*(G, w) is a type [
C*-algebra.

Lemma 1. [4, Lemma 1] Let @ be a multiplier on a locally compact abelian group G.
Suppose G has a closed subgroup H such that |y is totally skew and type I, and such
that the group extension

(0) > H— G > G/H — {0}

splits. Then there is a complement L to H in G such that (after replacing w by a similar
multiplier) w splits as w|g ® @|L.

3. The Bundle Structure of Non-Commutative Tori

Let A, be a non-commutative torus of rank n. A, is isomorphic to the C*-algebra of
sections of a locally trivial C*-algebra bundle over S, with fibres, the simple twisted
group C*-algebra C*(Z"/S,, 1) of a finitely generated discrete abelian group Z" /S,
defined by a totally skew multiplier @ on Z"/S,,. Here, o is similar to the pull-back of
wy.Then Z"/S,, = T & F where T is the maximal torsion subgroup of Z" /S,, and F is
a maximal torsion-free subgroup of Z" /S,,.

Assume T is trivial. Then, by Lemma 1, after replacing w; by a similar multiplier, we
may write Z" /S, = F and w1 = o1|F. Let F be the pull-back of F under the canonical
map of Z" to Z"/S,,. Then there is a subgroup F’ such that F=F@&S,=7"And
50 C*(Z", w) = C*(F, olp) = C*(F/, w|r) ® C*(Sp) = C*(F, w1|r) ® C*(Sp) =
C*(Z" /Sy, 1) ® C*(S,). This implies that if Z"/S,, is torsion-free, then A, has the
trivial bundle structure.



304 Sei-Qwon Oh and Chun-Gil Park

Theorem 1. [5, Theorem 2.2] Let A, = C*(uy, ..., u,) be a non-commutative torus
of rank n, where uy, . .., u, are unitary generators satisfying the commutation relations
ujnju; 1uj_1 = exp(27i6;;) (here, O is a skew-symmetric n x n matrix with real entries).

Then Ko(Aw) = K1(A,) = 72, and [1a,] € Ko(Ay) is primitive.

Proof. The proof is by induction on n. If n = 1, A, = C(S!) is abelian, and the result
is obvious. So assume that the result is true for all non-commutative tori of rank n — 1.
Write A, = C*(B, u,), where B = C*(u, ..., un—1). Then the inductive hypothesis
applies to B. Also, we can think of A,, as the crossed product of B by an action « of Z,
where the generator of Z corresponds to u, and acts on B by conjugation (sending u 5
to upuju, - juj, Aj = exp(2mwify;)). Note that this action is homotopic to the trivial
action, since we can homotope 6,,; to 0. Hence, Z acts trivially on the K -theory of B.
The Pimsner—Voiculescu exact sequence for a crossed product gives

Ko(B) —2 Ko(B) > Ko(Aw) — K1(B) =% Ki(B)

and similarly for K, where the map ® is induced by inclusion. Since ., = 1 and since
the K -groups of B are free abelian, this reduces a split short exact sequence

{0) > Ko(B) > Ko(Ay,) — K1(B) — (0}

and similarly for K. So K;(A,,) is free abelian of rank 2 - 2"~2 = 2"~ Fyrthermore,
since the inclusion B — A, sends 1z to 1 A,»> [14,] is the image of [1g], which is
primitive in Ko(B) by inductive hypothesis. Hence, the image is primitive since the
Pimsner—Voiculescu exact sequence is a split short exact sequence of torsion-free groups.

Therefore, Ko(Aw) = K1(Ap) = Z% ™, and [14,] € Ko(A,) is primitive. [

Now, we investigate the structure of the fibre C*(Z"/S,,, w1) of C*(Z", w).

Let G be a compactly generated locally compact abelian group and w; a totally skew
multiplier on G. Then let E := G () be the extension group of G by T! defined by w.
The following result of Poguntke clarifies the structure of the fibre of A,,.

Theorem 2. [8, Theorem 1] Let G be a compactly generated locally compact abelian
group and ) a totally skew multiplier on G. Let K be the maximal compact subgroup of
E and let E , be the stabilizer of an irreducible unitary representation p of K restricting
on T! to the identity. Then

C*(G, w1) = C*(E,/K,m) ® K(LX(E/E,)) ® Mgim(p)(C),

where m is the associated Mackey obstruction.

This theorem is applied to understand the structure of the twisted group C*-algebra
C*(Z"/Sw, w1). Let G = Z"'/S,, E = (Z"/S,)(w1), and let E,, be the stabilizer of
an irreducible unitary representation p of the extension K := T(wi|r) of T by T!
defined by @ |7, which restricts to the identity on T'. The Mackey method says that
C*(Z"/Sw, 1) = C*(F ® T, wy) is isomorphic to the primitive quotient of C*(E)
lying over p. Then, by Theorem 2,

C*(Z"[Sw, @1) = C*(Ep/K, m) ® K(LX(E/E})) ® Mim(p)(C).
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Now by definition, E,, is of index |S,,|, | in E, where Sy, is the symmetry group, a
subgroup of T, of w1|r. So

[E : E,] = # of irreducible ) |r-representations of T

= |Sw||T|’

and dim(p)./|T|/|Se,|, |, and E,/K is a subgroup of finite index [E : E,] in E/K.
Let F, be the isomorphic image of E,/K under the natural map of E/K to F. Then
{x € F| he,(x)(y) =1, Vy € Sy,1,} is exactly F,, and F,, is a subgroup of finite index
[E : Ep] inF.LetJp = F/F,,J = JF @ Sw,|;>and Ty = T/Sy,|,- Then | Jp| = |Sw1|1l-
Since F,, is a subgroup of F, we can consider Jr @ Sy,|, as a subgroup of (F & T)/F).
So (Z"/S,)/ F, is isomorphic to Jr & T and ((Z"/S»)/ F,)/J is isomorphic to T;.

Next, we show that C*(E,/K, m) is isomorphic to C*(F,, wi|F,). By Theorem
2, C*(F,, wilp,) = C*(Fy(@ |F,)/T!, m1), where m; is the associated Mackey
obstruction. Let w; be a totally skew multiplier on 7; whose pull-back to T is similar to
w1 |7. It is sufficient to show that the Mackey obstruction m5, in the isomorphism

C'(F, ®T,, wilr, ® @2)
= C*((F, @ T (w11F, ® @)/ Ti (@2), m2) ® C*(Tt, w2)
= C*(va Cl)lle) ® C*(T'ta w2)

is essentially the same as mj. But for 1 € F,, the unitary operators E; in
[3, XII.1.17] are the same for F, and for F, @ T; up to scalar. They give the same
Mackey obstructions. So

C*((F,® = T)(@1F, ® @2)/ Ti(w2), m) = C*(Fy(a1|g,)/T", my)
g C*(F,lh Cl)]le),

and C*(E, /K, m) is isomorphic to C*(Fy, w1|F,).
Corollary 1. C*(Z" /Sy, 1) = C*(F,, w1|F,) ® ME:E,1(C) ® Maim(p) (C).
Proof. By Theorem 2,

C*(Z"/Sp, 1) = C*(E, /K, m) ® K(L*(E/E))® = Maim(p)(C)
= C*(Fp, w1lF,) ® Mig:£,1(C) ® Miim(p) (C).

Here, Mig.£,1(C) = M,;,(C) and Miim(p)(C) = M 77(C). Hence, one obtains the
result. ]

Note that C*(F),, w1|F,) is a completely irrational, non-commutative torus.

Let A,, be a non-commutative torus. It follows from Corollary 1 that A, is isomorphic
to the C*-algebra I" (1) of sections of a locally trivial C*-algebra bundle n over §; with
fibres C*(F,, w11r,) ® Mig:£,1(C) ® Maim(o)(C).

Theorem 3. Letl be apositive integer. Then A, ®M;(C) is not isomorphic to AQ My, (C)
for any C*-algebra A ifk # 1.
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Proof. Assume that A, ® M;(C) is isomorphic to A ® My;(C) for some integer k and
some C*-algebra A. Then the unit 14, ® ; maps to the unit 14 ® Iy;, where I; denotes
the d x d identity matrix. Since [14 ® Ix;] = kI[14], there is a projection e in A,, ® M;(C)
such that

(14, ® Ij] = ki[e].

Hence,

1,1 =114, ® I;] = kl[e].

But, by Theorem 1, the K-groups of A, are torsion-free, so [14,] = k[e], which
contradicts Theorem 1 if k # 1.

Therefore, A, ® M;(C) is not isomorphic to A ® Mjy;(C) for any C*-algebra A if
kel [ ]

In particular, one obtains that no non-trivial matrix algebra can be factored out of any
rational rotation algebra A, /. So every rational rotation algebra has a non-trivial bundle
structure. This gives an alternative proof of a result of Brabanter.

Theorem 3 implies that if A, ® M,(C) is isomorphic to A o ® M,(C), then
P = q. However, there are non-isomorphic non-commutative tori A, and A, such
that A, ® M, (C) is isomorphic to A, ® M, (C) for some integer p.

Corollary 2. Let | be a positive integer. Then A, ® M;(C) has a non-trivial bundle
structure unless 7." | S, is torsion-free.

Proof. Assume A, ® M;(C) has’\ the trivial bundle structure, ie., A, ® M;(C) is

isomorphicto C*(F,, w1|F,)RC (S,)@M;(C)@M;(C), where My (C) := Mig.g,1(O)®

Mim(p) (C). If Z"/ S,, is not torsion-free, then My (C) is non-trivial. So A, ® M;(C) is

isomorphic to A @ M;;(C) where A is isomorphic to C*(F,, w| F,) ® C(S;). This
contradicts Theorem 3 if Z" /S,, is not torsion-free.

Therefore, A, ® M;(C) has a non-trivial bundle structure unless Z" /S,,, is torsion-free.

||

We have obtained that A, ® M;(C) has the trivial bundle structure if and only if Z" /S,
is torsion-free.

4. Stable Isomorphism of Non-Commutative Tori

The non-commutative torus A, of rank # is obtained by an iteration of n — 1 crossed
products by actions of Z, the first action on C(T!) (see [5]). When A, is not simple, by a
change of basis, A, can be obtained by an iteration of n — 2 crossed products by actions
of Z, the first action on a rational rotation algebra A,, /k» where the actions on the fibre
My (C) of A, are trivial, since My (C) is a factor of the fibre of A,,.

Theorem 4. [2, Theorem 3] The rational rotation algebra Ay, is stably isomorphic to
C*(kZ x k7).
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Poguntke proved that every non-commutative torus A, is stably isomorphic to
C(S,) ® C*(Z"/Ss, ®1). The Mackey machine for a twisted crossed product says
that C*(Z"/S,, w1) is isomorphic to the tensor product of a completely irrational,
non-commutative torus A, with a matrix algebra My, (C).

Theorem 5. [9] A,, is stably isomorphic to C (3;) ® C*(Z" /Sy, w1).

Proof. By Theorem 4, A, ;. ® K(H) is isomorphic to C*(kZ x kZ) @ M (C) @ K(H).
The non-simple, non-commutative torus A, of rank n may be realized as the crossed
product

Am/k Xay Z Xay *° Xa,_, Z,

where o; act trivially on the fibre My (C) of Ay k. So

Ap @K(H) = (Am/k Xay Z Xa, " Xa,_, Z) ® K(H)
= (Am/k ® K(H)) Xg, Z Xg, - -+ Xof , Ly

where ¢; are the canonical extensions of «; such that ¢; act trivially on My (C) ® K(H).
Thus,

Ap ® K(H) = (C(Z x kZ) ® Mi(C) ® K(H)) xg, Z X, - X, L
2 (C(KZ X KZ) X0y T %o+ Xy, Z) ® Mi(C) ® K(H).

Thus, A, is stably isomorphic to (C(KZ x kKZ) Xa, Z X, -+ Xa, , L) ® Mi(C). But
C (ka) Xy L X, * * + Xa,_, Z is a non-commutative torus with fibres A, ® M;(C).
So by a finite step of the above process, one can obtain that A, ® IC(H) is 1s0m0rphlc
t0 C(5) ® Ay ® Ma(C) ® K(H) = C(Sa)) ® C*(Z" | S, w1) ® K(H).

Therefore, A,, is stably isomorphic to C (Sw) ® C*(Z" ]Sy, w1). [

We have obtained that the non- -commutative torus A, is stably isomorphic to
C(Sw) ® Ay @ Mpq(C) = C(Sa,) ® C*(Z" /S, w1)- Hence, A, is stably isomorphic to
the non-commutative torus C (Sw) ® A,, which has the trivial bundle structure.
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