Vietnam Journal of Mathematics 27:4 (1999) 301-308

Vietnam Journal of MATHEMATICS

© Springer-Verlag 1999

The Bundle Structure of Non-Commutative Tori*

Sei-Qwon Oh and Chun-Gil Park

Department of Mathematics, Chungnam National University, Taejou 305-764, Korea

Received July 12, 1998

Abstract. The non-commutative torus $A_{\omega} = C^*(\mathbb{Z}^n, \omega)$ may be realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over \widehat{S}_{ω} with fibres $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ for some totally skew multiplier ω_1 on \mathbb{Z}^n/S_{ω} . We prove that $A_{\omega} \otimes M_l(\mathbb{C})$ has the trivial bundle structure if and only if \mathbb{Z}^n/S_{ω} is torsion-free. It is shown that every non-commutative torus is stably isomorphic to a non-commutative torus with trivial bundle structure.

1. Introduction

Given a locally compact abelian group G and a multiplier ω on G, one can associate to them the twisted group C^{*}-algebra C^{*}(G, ω), which is the universal object for unitary ω -representations of G. Our problem is to understand the structure, especially the bundle structure, of such C^{*}-algebras.

The twisted group C^* -algebra $C^*(\mathbb{Z}^n, \omega)$ by a multiplier ω on \mathbb{Z}^n is called a *non-commutative torus of rank n* and is denoted by A_{ω} . The simplest non-trivial non-commutative tori arise when $G = \mathbb{Z}^2$. In this case we may assume that ω is antisymmetric and $\omega((1,0), (0,1)) = e^{\pi i \theta}$. When θ is irrational, one obtains a simple C^* -algebra called an *irrational rotation algebra*, and is denoted by A_{θ} . When $\theta = m/k$, one obtains a *rational rotation algebra*, and is denoted by $A_{m/k}$.

Now, the multiplier ω determines a subgroup S_{ω} of G called symmetry group. A multiplier ω on an abelian group G is called *totally skew* if the symmetry group S_{ω} is trivial, and A_{ω} is called *completely irrational* if ω is totally skew. Baggett and Kleppner [1] showed that if G is a locally compact abelian group and ω is a totally skew multiplier on G, then $C^*(G, \omega)$ is a simple C^* -algebra.

Baggett and Kleppner [1] also showed that even when ω is not totally skew on a locally compact abelian group G, the restriction of ω -representations from G to S_{ω} induces a canonical homomorphism of $Prim(C^*(G, \omega))$ with $\widehat{S_{\omega}}$. It was shown in [1] that there is a totally skew multiplier ω_1 on \mathbb{Z}^n/S_{ω} such that ω is similar to the pull-back of ω_1 .

^{*}This work was supported in part by the Basic Science Research Institute Program, Korean Ministry of Education, Project No. BSRI-97-1427 and by the Chungnam National University in 1997.

Furthermore, it is known (see [4, 6, 9]) that $C^*(G, \omega)$ may be realized as the C^* -algebra $\Gamma(\zeta)$ of sections of a locally trivial C^* -algebra bundle ζ over $\widehat{S_{\omega}} = \operatorname{Prim}(C^*(G, \omega))$ with fibres $C^*(G, \omega)/x$ for $x \in \operatorname{Prim}(C^*(G, \omega))$ and all $C^*(G, \omega)/x$ turn out to be the simple, twisted group C^* -algebra $C^*(G/S_{\omega}, \omega_1)$. So A_{ω} is realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\operatorname{Prim}(A_{\omega}) = \widehat{S_{\omega}}$ with fibres $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ for ω_1 a suitable totally skew multiplier on \mathbb{Z}^n/S_{ω} .

A natural question is when the locally trivial bundle ζ is trivial. Poguntke [9] proved that A_{ω} is stably isomorphic to $C(\widehat{S_{\omega}}) \otimes C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$.

Poguntke [8] showed that any primitive quotient of the group C^* -algebra $C^*(G)$ of a locally compact two step nilpotent group G is isomorphic to the tensor product of a completely irrational, non-commutative torus A_{φ} and $\mathcal{K}(\mathcal{H})$ for some (possibly finite-dimensional) Hilbert space \mathcal{H} . Since $C^*(G/S_{\omega}, \omega_1)$ is the primitive quotient of $C^*(G/S_{\omega}(\omega_1))$, where $G/S_{\omega}(\omega_1)$ is the extension group of G/S_{ω} by T defined by ω_1 , $C^*(G/S_{\omega}, \omega_1)$ is isomorphic to $A_{\varphi} \otimes \mathcal{K}(\mathcal{H})$.

In this paper, we investigate the structure of the fibre of A_{ω} . We are going to show that $A_{\omega} \otimes M_l(\mathbb{C})$ has the trivial bundle structure if and only if \mathbb{Z}^n/S_{ω} is torsion-free. Furthermore, we will give an easy proof of the result of Poguntke.

2. Preliminaries

To fix notations, let

 \mathbb{Z} = the set of integers, \mathbb{C} = the set of complex numbers, \otimes = the minimal tensor product.

We start our investigations with a study of decomposition of multipliers on \mathbb{Z}^n/S_{ω} . If ω is a multiplier on G and H a closed subgroup of G, then we denote by $\omega|_H$ the restriction of ω to H. Furthermore, if $G = G_1 \oplus G_2$, and if ω_1 and ω_2 are multipliers on G_1 and G_2 , respectively, then we denote by $\omega_1 \oplus \omega_2$ the multiplier on G defined by

$$(\omega_1 \oplus \omega_2)((x_1, x_2), (y_1, y_2)) = \omega_1(x_1, y_1)\omega_2(x_2, y_2),$$

 $x_1, y_1 \in G_1$ and $x_2, y_2 \in G_2$.

For some groups G, each multiplier on G turns out to be a bicharacter.

Proposition 1. [7, Theorem 7.1] Let G be a finitely generated discrete abelian group. Then every multiplier on G is similar to a bicharacter.

Let ω be a multiplier on a locally compact abelian group G. Define a homomorphism $h_{\omega}: G \to \widehat{G}$ by $h_{\omega}(x)(y) = \omega(x, y)\omega(y, x)^{-1}$, $x, y \in G$ and let $S_{\omega} := \ker(h_{\omega})$ denote the symmetry group of ω .

Next, we introduce the concept of C^* -algebra bundle over a locally compact Hausdorff space. Let $Prim(C^*(G, \omega))$ be the primitive ideal space of the twisted group C^* -algebra $C^*(G, \omega)$ of a locally compact abelian group G defined by a multiplier ω .

Proposition 2. [1,6] Let G be a locally compact abelian group and ω a multiplier on G. Then

- (i) there is a multiplier ω_1 on G/S_{ω} such that $C^*(G, \omega)/P$ is isomorphic to $C^*(G/S_{\omega}, \omega_1)$ for any $P \in \text{Prim}(C^*(G, \omega))$ and ω is similar to the pull-back of a totally skew multiplier ω_1 ;
- (ii) the restriction of ω -representations from G to S_{ω} induces a canonical homomorphism of Prim $(C^*(G, \omega))$ with $\widehat{S_{\omega}}$.

By a trick similar to the proof of Theorem 1 in [4], one can show that, for a multiplier ω on a locally compact abelian group G, $C^*(G, \omega)$ can be realized as the C^* -algebra of sections of a locally trivial C^* -algebra bundle. That is, if A is a twisted group C^* -algebra of a locally compact abelian group, its C^* -algebra bundle is locally trivial. In particular, $A_{\omega} \cong C^*(\mathbb{Z}^n, \omega)$ may be represented as the C^* -algebra of sections of a locally trivial \widehat{S}_{ω} with fibres $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ (see [4, 6, 9] for details).

A problem then is to decide when this locally trivial bundle is actually trivial. Brabanter [2] proved that the rational rotation algebra has a non-trivial bundle structure. We will present a new proof of this result in the next section.

Let G be a finitely generated discrete abelian group, e.g., \mathbb{Z}^n/S_ω , ω_1 a totally skew multiplier on G, and T the maximal torsion subgroup of G. Then $G \cong T \oplus F$ where F is a torsion-free subgroup. Note that $\omega_1|_F$ is always totally skew, but $\omega_1|_T$ need not be totally skew. A multiplier ω on a group G is said to be type I if $C^*(G, \omega)$ is a type I C^* -algebra.

Lemma 1. [4, Lemma 1] Let ω be a multiplier on a locally compact abelian group G. Suppose G has a closed subgroup H such that $\omega|_H$ is totally skew and type I, and such that the group extension

$$\{0\} \to H \to G \to G/H \to \{0\}$$

splits. Then there is a complement L to H in G such that (after replacing ω by a similar multiplier) ω splits as $\omega|_H \oplus \omega|_L$.

3. The Bundle Structure of Non-Commutative Tori

Let A_{ω} be a non-commutative torus of rank n. A_{ω} is isomorphic to the C^* -algebra of sections of a locally trivial C^* -algebra bundle over $\widehat{S_{\omega}}$ with fibres, the simple twisted group C^* -algebra $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ of a finitely generated discrete abelian group \mathbb{Z}^n/S_{ω} defined by a totally skew multiplier ω_1 on \mathbb{Z}^n/S_{ω} . Here, ω is similar to the pull-back of ω_1 . Then $\mathbb{Z}^n/S_{\omega} \cong T \oplus F$ where T is the maximal torsion subgroup of \mathbb{Z}^n/S_{ω} and F is a maximal torsion-free subgroup of \mathbb{Z}^n/S_{ω} .

Assume *T* is trivial. Then, by Lemma 1, after replacing ω_1 by a similar multiplier, we may write $\mathbb{Z}^n/S_{\omega} = F$ and $\omega_1 = \omega_1|_F$. Let \tilde{F} be the pull-back of *F* under the canonical map of \mathbb{Z}^n to \mathbb{Z}^n/S_{ω} . Then there is a subgroup *F'* such that $\tilde{F} = F' \oplus S_{\omega} \cong \mathbb{Z}^n$. And so $C^*(\mathbb{Z}^n, \omega) \cong C^*(\tilde{F}, \omega|_{\tilde{F}}) \cong C^*(F', \omega|_{F'}) \otimes C^*(S_{\omega}) \cong C^*(F, \omega_1|_F) \otimes C^*(S_{\omega}) \cong C^*(\mathbb{Z}^n/S_{\omega}, \omega_1) \otimes C^*(S_{\omega})$. This implies that if \mathbb{Z}^n/S_{ω} is torsion-free, then A_{ω} has the trivial bundle structure.

Theorem 1. [5, Theorem 2.2] Let $A_{\omega} = C^*(u_1, \ldots, u_n)$ be a non-commutative torus of rank n, where u_1, \ldots, u_n are unitary generators satisfying the commutation relations $u_i u_j u_i^{-1} u_i^{-1} = \exp(2\pi i \theta_{ij})$ (here, θ is a skew-symmetric $n \times n$ matrix with real entries). Then $K_0(A_{\omega}) \cong K_1(A_{\omega}) \cong \mathbb{Z}^{2^{n-1}}$, and $[1_{A_{\omega}}] \in K_0(A_{\omega})$ is primitive.

Proof. The proof is by induction on n. If n = 1, $A_{\omega} = C(S^1)$ is abelian, and the result is obvious. So assume that the result is true for all non-commutative tori of rank n-1. Write $A_{\omega} = C^*(B, u_n)$, where $B = C^*(u_1, \dots, u_{n-1})$. Then the inductive hypothesis applies to B. Also, we can think of A_{ω} as the crossed product of B by an action α of Z, where the generator of \mathbb{Z} corresponds to u_n and acts on B by conjugation (sending u_i to $u_n u_j u_n^{-1} = \lambda_j u_j$, $\lambda_j = \exp(2\pi i \theta_{nj})$). Note that this action is homotopic to the trivial action, since we can homotope θ_{n_i} to 0. Hence, \mathbb{Z} acts trivially on the K-theory of B. The Pimsner-Voiculescu exact sequence for a crossed product gives

$$K_0(B) \xrightarrow{1-\alpha_*} K_0(B) \xrightarrow{\Phi} K_0(A_\omega) \to K_1(B) \xrightarrow{1-\alpha_*} K_1(B)$$

and similarly for K_1 , where the map Φ is induced by inclusion. Since $\alpha_* = 1$ and since the K-groups of B are free abelian, this reduces a split short exact sequence

$$\{0\} \to K_0(B) \xrightarrow{\Psi} K_0(A_{\omega}) \to K_1(B) \to \{0\}$$

and similarly for K_1 . So $K_i(A_{\omega})$ is free abelian of rank $2 \cdot 2^{n-2} = 2^{n-1}$. Furthermore, since the inclusion $B \to A_{\omega}$ sends 1_B to $1_{A_{\omega}}$, $[1_{A_{\omega}}]$ is the image of $[1_B]$, which is primitive in $K_0(B)$ by inductive hypothesis. Hence, the image is primitive since the Pimsner–Voiculescu exact sequence is a split short exact sequence of torsion-free groups. Therefore, $K_0(A_{\omega}) \cong K_1(A_{\omega}) \cong \mathbb{Z}^{2^{n-1}}$, and $[1_{A_{\omega}}] \in K_0(A_{\omega})$ is primitive.

Now, we investigate the structure of the fibre $C^*(\mathbb{Z}^n/S_\omega, \omega_1)$ of $C^*(\mathbb{Z}^n, \omega)$.

Let G be a compactly generated locally compact abelian group and ω_1 a totally skew multiplier on G. Then let $E := G(\omega_1)$ be the extension group of G by \mathbf{T}^1 defined by ω_1 . The following result of Poguntke clarifies the structure of the fibre of A_{ω} .

Theorem 2. [8, Theorem 1] Let G be a compactly generated locally compact abelian group and ω_1 a totally skew multiplier on G. Let K be the maximal compact subgroup of E and let E_{ρ} be the stabilizer of an irreducible unitary representation ρ of K restricting on \mathbf{T}^1 to the identity. Then

$$C^*(G, \omega_1) \cong C^*(E_\rho/K, m) \otimes \mathcal{K}(\mathcal{L}^2(E/E_\rho)) \otimes M_{\dim(\rho)}(\mathbb{C}),$$

where m is the associated Mackey obstruction.

This theorem is applied to understand the structure of the twisted group C^* -algebra $C^*(\mathbb{Z}^n/S_\omega, \omega_1)$. Let $G = \mathbb{Z}^n/S_\omega$, $E = (\mathbb{Z}^n/S_\omega)(\omega_1)$, and let E_ρ be the stabilizer of an irreducible unitary representation ρ of the extension $K := T(\omega_1|_T)$ of T by T^1 defined by $\omega_1|_T$, which restricts to the identity on \mathbf{T}^1 . The Mackey method says that $C^*(\mathbb{Z}^n/S_\omega, \omega_1) \cong C^*(F \oplus T, \omega_1)$ is isomorphic to the primitive quotient of $C^*(E)$ lying over ρ . Then, by Theorem 2,

$$C^*(\mathbb{Z}^n/S_{\omega}, \omega_1) \cong C^*(E_{\rho}/K, m) \otimes \mathcal{K}(\mathcal{L}^2(E/E_{\rho})) \otimes M_{\dim(\rho)}(\mathbb{C}).$$

Bundle Structure of Non-Commutative Tori

Now by definition, E_{ρ} is of index $|S_{\omega_1|_T}|$ in E, where $S_{\omega_1|_T}$ is the symmetry group, a subgroup of T, of $\omega_1|_T$. So

$$[E: E_{\rho}] = \# \text{ of irreducible } \omega_1|_T \text{-representations of } T$$
$$= |S_{\omega_1|_T}|,$$

and dim $(\rho)\sqrt{|T|/|S_{\omega_1|_T}|}$, and E_{ρ}/K is a subgroup of finite index $[E : E_{\rho}]$ in E/K. Let F_{ρ} be the isomorphic image of E_{ρ}/K under the natural map of E/K to F. Then $\{x \in F \mid h_{\omega_1}(x)(y) = 1, \forall y \in S_{\omega_1|_T}\}$ is exactly F_{ρ} , and F_{ρ} is a subgroup of finite index $[E : E_{\rho}]$ in F. Let $J_F = F/F_{\rho}, J = J_F \oplus S_{\omega_1|_T}$, and $T_t = T/S_{\omega_1|_T}$. Then $|J_F| = |S_{\omega_1|_T}|$. Since F_{ρ} is a subgroup of F, we can consider $J_F \oplus S_{\omega_1|_T}$ as a subgroup of $(F \oplus T)/F_{\rho}$. So $(\mathbb{Z}^n/S_{\omega})/F_{\rho}$ is isomorphic to $J_F \oplus T$ and $((\mathbb{Z}^n/S_{\omega})/F_{\rho})/J$ is isomorphic to T_t .

Next, we show that $C^*(E_{\rho}/K, m)$ is isomorphic to $C^*(F_{\rho}, \omega_1|_{F_{\rho}})$. By Theorem 2, $C^*(F_{\rho}, \omega_1|_{F_{\rho}}) \cong C^*(F_{\rho}(\omega_1|_{F_{\rho}})/\mathbf{T}^1, m_1)$, where m_1 is the associated Mackey obstruction. Let ω_2 be a totally skew multiplier on T_t whose pull-back to T is similar to $\omega_1|_T$. It is sufficient to show that the Mackey obstruction m_2 , in the isomorphism

$$C^{*}(F_{\rho} \oplus T_{t}, \omega_{1}|_{F_{\rho}} \oplus \omega_{2})$$

$$\cong C^{*}((F_{\rho} \oplus T_{t})(\omega_{1}|_{F_{\rho}} \oplus \omega_{2})/T_{t}(\omega_{2}), m_{2}) \otimes C^{*}(T_{t}, \omega_{2})$$

$$\cong C^{*}(F_{\rho}, \omega_{1}|_{F_{\rho}}) \otimes C^{*}(T_{t}, \omega_{2})$$

is essentially the same as m_1 . But for $h \in F_\rho$, the unitary operators E'_h in [3, XII.1.17] are the same for F_ρ and for $F_\rho \oplus T_t$ up to scalar. They give the same Mackey obstructions. So

$$C^*((F_{\rho} \oplus = T_t)(\omega_1|_{F_{\rho}} \oplus \omega_2)/T_t(\omega_2), m_2) \cong C^*(F_{\rho}(\omega_1|_{F_{\rho}})/\mathbf{T}^1, m_1)$$
$$\cong C^*(F_{\rho}, \omega_1|_{F_{\rho}}),$$

and $C^*(E_{\rho}/K, m)$ is isomorphic to $C^*(F_{\rho}, \omega_1|_{F_{\rho}})$.

Corollary 1. $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1) \cong C^*(F_{\rho}, \omega_1|_{F_{\rho}}) \otimes M_{[E:E_{\rho}]}(\mathbb{C}) \otimes M_{\dim(\rho)}(\mathbb{C}).$

Proof. By Theorem 2,

$$C^*(\mathbb{Z}^n/S_{\omega},\omega_1) \cong C^*(E_{\rho}/K,m) \otimes \mathcal{K}(\mathcal{L}^2(E/E_{\rho})) \otimes = M_{\dim(\rho)}(\mathbb{C})$$
$$\cong C^*(F_{\rho},\omega_1|_{F_{\rho}}) \otimes M_{[E:E_{\rho}]}(\mathbb{C}) \otimes M_{\dim(\rho)}(\mathbb{C}).$$

Here, $M_{[E:E_{\rho}]}(\mathbb{C}) \cong M_{|J_{F}|}(\mathbb{C})$ and $M_{\dim(\rho)}(\mathbb{C}) \cong M_{\sqrt{|T_{l}|}}(\mathbb{C})$. Hence, one obtains the result.

Note that $C^*(F_{\rho}, \omega_1|_{F_{\rho}})$ is a completely irrational, non-commutative torus.

Let A_{ω} be a non-commutative torus. It follows from Corollary 1 that A_{ω} is isomorphic to the C^* -algebra $\Gamma(\eta)$ of sections of a locally trivial C^* -algebra bundle η over \widehat{S}_{ω} with fibres $C^*(F_{\rho}, \omega_1|_{F_{\sigma}}) \otimes M_{[E:E_{\rho}]}(\mathbb{C}) \otimes M_{\dim(\rho)}(\mathbb{C})$.

Theorem 3. Let l be a positive integer. Then $A_{\omega} \otimes M_l(\mathbb{C})$ is not isomorphic to $A \otimes M_{kl}(\mathbb{C})$ for any C^* -algebra A if $k \neq 1$.

Proof. Assume that $A_{\omega} \otimes M_{l}(\mathbb{C})$ is isomorphic to $A \otimes M_{kl}(\mathbb{C})$ for some integer k and some C^* -algebra A. Then the unit $1_{A_{\omega}} \otimes I_{l}$ maps to the unit $1_{A} \otimes I_{kl}$, where I_{d} denotes the $d \times d$ identity matrix. Since $[1_{A} \otimes I_{kl}] = kl[1_{A}]$, there is a projection e in $A_{\omega} \otimes M_{l}(\mathbb{C})$ such that

$$[1_{A_{\omega}} \otimes I_l] = kl[e].$$

Hence, He

$$l[1_{A_{\alpha}}] = [1_{A_{\alpha}} \otimes I_l] = kl[e]$$

But, by Theorem 1, the K-groups of A_{ω} are torsion-free, so $[1_{A_{\omega}}] = k[e]$, which contradicts Theorem 1 if $k \neq 1$.

Therefore, $A_{\omega} \otimes M_l(\mathbb{C})$ is not isomorphic to $A \otimes M_{kl}(\mathbb{C})$ for any C^* -algebra A if $k \neq 1$.

In particular, one obtains that no non-trivial matrix algebra can be factored out of any rational rotation algebra $A_{m/k}$. So every rational rotation algebra has a non-trivial bundle structure. This gives an alternative proof of a result of Brabanter.

Theorem 3 implies that if $A_{\omega} \otimes M_p(\mathbb{C})$ is isomorphic to $A_{\rho} \otimes M_q(\mathbb{C})$, then p = q. However, there are non-isomorphic non-commutative tori A_{ω} and A_{ρ} such that $A_{\omega} \otimes M_p(\mathbb{C})$ is isomorphic to $A_{\rho} \otimes M_p(\mathbb{C})$ for some integer p.

Corollary 2. Let *l* be a positive integer. Then $A_{\omega} \otimes M_l(\mathbb{C})$ has a non-trivial bundle structure unless \mathbb{Z}^n/S_{ω} is torsion-free.

Proof. Assume $A_{\omega} \otimes M_l(\mathbb{C})$ has the trivial bundle structure, i.e., $A_{\omega} \otimes M_l(\mathbb{C})$ is isomorphic to $C^*(F_{\rho}, \omega_1|_{F_{\rho}}) \otimes C(\widehat{S_{\omega}}) \otimes M_l(\mathbb{C}) \otimes M_k(\mathbb{C})$, where $M_k(\mathbb{C}) := M_{[E:E_{\rho}]}(\mathbb{C}) \otimes M_{\dim(\rho)}(\mathbb{C})$. If \mathbb{Z}^n/S_{ω} is not torsion-free, then $M_k(\mathbb{C})$ is non-trivial. So $A_{\omega} \otimes M_l(\mathbb{C})$ is isomorphic to $A \otimes M_{kl}(\mathbb{C})$ where A is isomorphic to $C^*(F_{\rho}, \omega_1|_{F_{\rho}}) \otimes C(\widehat{S_{\omega}})$. This contradicts Theorem 3 if \mathbb{Z}^n/S_{ω} is not torsion-free.

Therefore, $A_{\omega} \otimes M_l(\mathbb{C})$ has a non-trivial bundle structure unless \mathbb{Z}^n/S_{ω} is torsion-free.

We have obtained that $A_{\omega} \otimes M_l(\mathbb{C})$ has the trivial bundle structure if and only if $\mathbb{Z}^n / S_{\omega}$ is torsion-free.

4. Stable Isomorphism of Non-Commutative Tori

The non-commutative torus A_{ω} of rank n is obtained by an iteration of n-1 crossed products by actions of \mathbb{Z} , the first action on $C(\mathbf{T}^1)$ (see [5]). When A_{ω} is not simple, by a change of basis, A_{ω} can be obtained by an iteration of n-2 crossed products by actions of \mathbb{Z} , the first action on a rational rotation algebra $A_{m/k}$, where the actions on the fibre $M_k(\mathbb{C})$ of $A_{m/k}$ are trivial, since $M_k(\mathbb{C})$ is a factor of the fibre of A_{ω} .

Theorem 4. [2, Theorem 3] *The rational rotation algebra* $A_{m/k}$ *is stably isomorphic to* $C^*(k\mathbb{Z} \times k\mathbb{Z})$.

Poguntke proved that every non-commutative torus A_{ω} is stably isomorphic to $C(\widehat{S}_{\omega}) \otimes C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$. The Mackey machine for a twisted crossed product says that $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ is isomorphic to the tensor product of a completely irrational, non-commutative torus A_{ρ} with a matrix algebra $M_{kd}(\mathbb{C})$.

Theorem 5. [9] A_{ω} is stably isomorphic to $C(\widehat{S_{\omega}}) \otimes C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$.

Proof. By Theorem 4, $A_{m/k} \otimes \mathcal{K}(\mathcal{H})$ is isomorphic to $C^*(k\mathbb{Z} \times k\mathbb{Z}) \otimes M_k(\mathbb{C}) \otimes \mathcal{K}(\mathcal{H})$. The non-simple, non-commutative torus A_{ω} of rank *n* may be realized as the crossed product

$$A_{m/k} \times_{\alpha_1} \mathbb{Z} \times_{\alpha_2} \cdots \times_{\alpha_{n-2}} \mathbb{Z},$$

where α_i act trivially on the fibre $M_k(\mathbb{C})$ of $A_{m/k}$. So

$$A_{\omega} \otimes \mathcal{K}(\mathcal{H}) \cong (A_{m/k} \times_{\alpha_1} \mathbb{Z} \times_{\alpha_2} \cdots \times_{\alpha_{n-2}} \mathbb{Z}) \otimes \mathcal{K}(\mathcal{H})$$
$$\cong (A_{m/k} \otimes \mathcal{K}(\mathcal{H})) \times_{\tilde{\alpha_1}} \mathbb{Z} \times_{\tilde{\alpha_2}} \cdots \times_{\tilde{\alpha_{n-2}}} \mathbb{Z},$$

where $\tilde{\alpha}_i$ are the canonical extensions of α_i such that $\tilde{\alpha}_i$ act trivially on $M_k(\mathbb{C}) \otimes \mathcal{K}(\mathcal{H})$. Thus,

$$A_{\omega} \otimes \mathcal{K}(\mathcal{H}) \cong (C(k\overline{\mathbb{Z}} \times \overline{k}\mathbb{Z}) \otimes M_k(\mathbb{C}) \otimes \mathcal{K}(\mathcal{H})) \times_{\tilde{\alpha_1}} \mathbb{Z} \times_{\tilde{\alpha_2}} \cdots \times_{\tilde{\alpha_{n-2}}} \mathbb{Z}$$
$$\cong (C(k\overline{\mathbb{Z} \times k}\mathbb{Z}) \times_{\alpha_1} \mathbb{Z} \times_{\alpha_2} \cdots \times_{\alpha_{n-2}} \mathbb{Z}) \otimes M_k(\mathbb{C}) \otimes \mathcal{K}(\mathcal{H}).$$

Thus, A_{ω} is stably isomorphic to $(C(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_1} \mathbb{Z} \times_{\alpha_2} \cdots \times_{\alpha_{n-2}} \mathbb{Z}) \otimes M_k(\mathbb{C})$. But $C(k\mathbb{Z} \times k\mathbb{Z}) \times_{\alpha_1} \mathbb{Z} \times_{\alpha_2} \cdots \times_{\alpha_{n-2}} \mathbb{Z}$ is a non-commutative torus with fibres $A_{\rho} \otimes M_d(\mathbb{C})$. So by a finite step of the above process, one can obtain that $A_{\omega} \otimes \mathcal{K}(\mathcal{H})$ is isomorphic to $C(\widehat{S_{\omega}}) \otimes A_{\rho} \otimes M_{kd}(\mathbb{C}) \otimes \mathcal{K}(\mathcal{H}) \cong C(\widehat{S_{\omega}}) \otimes C^*(\mathbb{Z}^n/S_{\omega}, \omega_1) \otimes \mathcal{K}(\mathcal{H})$.

Therefore, A_{ω} is stably isomorphic to $C(S_{\omega}) \otimes C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$.

We have obtained that the non-commutative torus A_{ω} is stably isomorphic to $C(\widehat{S_{\omega}}) \otimes A_{\rho} \otimes M_{kd}(\mathbb{C}) \cong C(\widehat{S_{\omega}}) \otimes C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$. Hence, A_{ω} is stably isomorphic to the non-commutative torus $C(\widehat{S_{\omega}}) \otimes A_{\rho}$, which has the trivial bundle structure.

Acknowledgement. The author wishes to acknowledge the financial support of KOSEF in the program year of 1999.

References

- 1. L. Baggett and A. Kleppner, Multiplier representations of abelian groups, J. Funct. Anal. 14 (1973) 299–324.
- 2. M. Brabanter, The classification of rational rotation C*-algebras, Arch. Math. 43 (1984) 79-83.
- 3. R.S. Doran and J.M.G. Fell, Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Academic Press, San Diego, 1988.
- 4. S. Echterhoff and J. M. Rosenberg, Fine structure of the Mackey machine for actions of abelian groups with constant Mackey obstruction, *Pacific J. Math.* **170**(1) (1995) 17–52.
- 5. G.A. Elliott, On the *K*-theory of the *C**-algebra generated by a projective representation of a torsion-free discrete abelian group, in: *Operator Algebras and Group Representations*, G. Arsene et al. (eds.), Vol. 1, Pitman, London, 1984, pp.157–184

- 6. P. Green, The local structure of twisted covariance algebras, Acta. Math. 140 (1978) 191-250.
- 7. A. Kleppner, Multipliers on abelian groups, Math. Ann. 158 (1965) 11-34.
- 8. D. Poguntke, Simple quotients of group C*-algebras for two step nilpotent groups and connected Lie groups, Ann. Scient. Ec. Norm. Sup. 16 (1983) 151-172.
- D. Poguntke, The structure of twisted convolution C*-algebras on abelian groups, J. Operator Theory 38 (1997) 3–18.

Proof. By Theorem 4, $A_{n+1} \otimes K(R)$ is informable to $C^*(k\mathbb{Z} \times k\mathbb{Z}) \otimes M_1(\mathbb{C}) \otimes K(R)$. The non-simple, non-commutative (acus A_n of rank a may be realized as the prosses product

2. Show a sublement them a little

where at not trivinity on the fibre M₁ (C) of A_{m14}. S

 $h_{\mu} \otimes \mathcal{K}(\mathcal{H}) \cong (A_{\mu/k} \times_{m_{1}} \otimes \times_{m_{2}} \cdots \times_{m_{n_{n}}} \otimes) \otimes \mathcal{K}(\mathcal{H})$ $\cong (A_{\mu/k} \otimes \mathcal{K}(\mathcal{H})) \times_{d} \otimes \times_{d_{n-1}} \otimes$

where p_i are the canonical extensions of p_i such that d_i are trivially on $M_i(\mathbb{C}) \otimes \mathcal{K}(\mathcal{H})$. Thus,

$$A_{n} \otimes \mathcal{K}(\mathcal{H}) \equiv (\mathcal{L}(\mathcal{L} \times_{\mathcal{H}} \mathcal{L}) \otimes \mathcal{H}_{\mathcal{H}}(\mathcal{L}) \otimes \mathcal{K}(\mathcal{H})) \times_{\mathcal{L}} \mathbb{Z} \times_{\mathcal{H}} \cdots \times_{\mathcal{H}^{-1}} \mathbb{Z}$$
$$\equiv (\mathcal{L}(\mathcal{L} \times_{\mathcal{H}} \mathcal{L})) \times_{\mathcal{H}} \mathbb{Z} \times_{\mathcal{H}} \left(\widehat{\mathcal{L}} \times_{\mathcal{H}^{-1}} \mathbb{Z} \right) \otimes \mathcal{H}_{\mathcal{H}}(\mathcal{L}) \otimes \mathcal{K}(\mathcal{H}).$$

Thus, A_{ij} is stabily isomorphic to $(C(k\mathbb{Z} \times k\mathbb{Z}) \times_{u_i} \mathbb{Z} \times_{u_i} \cdots \times_{u_{-1}} \mathbb{Z}) \otimes M_1(C)$. But $C(k\mathbb{Z} \times k\mathbb{Z}) \times_{u_i} \mathbb{Z} \times_{u_i} \mathbb{Z} \times_{u_i} \mathbb{Z}$ is a non-commutative torus with fibres $A_i \otimes M_1(C)$. So by a finite step of the above process, one can obtain that $A_u \otimes KO(i)$ is isomorphic to $C(k_i) \otimes A_i \otimes M_1(C) \otimes K(N) \cong \mathbb{C}(k_i) \otimes \mathbb{C}^*(\mathbb{Z}^n/S_u, \omega_i) \otimes KO(i)$.

We have obtained that the non-commutative torus A_{α} is stably isomorphic to $C(\widehat{S_{\alpha}}) \otimes A_{\alpha} \otimes M_{0,\ell}(\mathbb{C}) \cong C(\widehat{S_{\alpha}}) \otimes C^{*}(\mathbb{Z}^{*}/S_{\alpha}, \omega_{\ell})$. Hence, A_{α} is stably isomorphic to the unrecommutative torus $C(\widehat{S_{\alpha}}) \otimes A_{\alpha}$, which has the trivtal bundle structure.

Acknowledgement. The number without to telenowledge the financial support of ECELP in the moment year of (999).

References

- Te Bingget and A. Kieppiete Multiplier representations of aliellon groups. J. Frank. June 14 (1973) 209–324.
- M. Bachmarr, The classification of rational relation C. algebras, Aco. Math. 43 (1994) 79–83.
 R. S. Dorquintad L.M. G. Full, Representations of a Algebras. Locally Compact Groups: and
 - S. Estimatory and J. M. Encenterg, Fire measure of the Markey methics for actions of abeing the second secon
- 5 G.A. Billion, On the K-theory of the C'-stigation generated by a projective inpresentation of a torsion-free director abelian group, in: Operator Algebras and Gene Representation, G. Armone et al. (eds.), Vol. 1, Pittum, London, 1984, pp. 157–184.