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Abstract. In this paper we introduce the notion of outer j/ -convex sets and outer / -convex functions
inanormedlinearspace X,and show, amongotherthings,thatafunction f :  D c X + IRis
outer y-convex if and only if the level set {x e D : f (x) + 6(x) < cu} is outer y-convex for every
continuous linear functional € e X* and for every rcal a. Two main properties of outer /-convex
functions are: (My) each y-minimizer (defined by f (x*) < f (x) for all x e D satisfying
l lx -x* l l<y*s forsomer>0) isag lobalmin imizer ,and( Iy)eachy- in f imizer (def inedby
l i m i n f y - - ' " r f ( y ) = f ( x ) f o r a l l  x e D s a t i s f y i n g l l x - x * l l < y * a f o r s o m e s > 0 ) i s a g l o b a l
i n f i m i z e r ( i . e . ,  l i m i n f y - + - r . f 0 ) = f ( x ) f o r a I l x e D ) . M o r e o v e r , f o r f  l a , D l c n + l R , i f
f + € fuIfills (My) or (!) for all linear functionals f on R, then f must be outer y-convex (if it
is in addition lower semi-continuous), or lsc/ is outer y-convex, respectively.

L. Introduction

One of the most important properties of convex functions with respect to optimization is

(M) each local minimizer is a global minimizer.

To obtain this property for a more general class of functions, the explicit quasiconvexity
was introduced (see [3]). Explicitly quasiconvex functions possess the property (M),
but in general it does not hold if they are disturbed by some linear functionals (even
with sufficiently small norm). In this sense, we say that explicitly quasiconvex functions
are not stable with respectto (M) (see [7]). To get generulized convex functions which
are stable with respectto (M), the so-called s-quasiconvexity was defined in [7]. It was
showed there that an s-quasiconvex function / is stable with respectto (M), i.e., there is
anr>0suchthatf* fpossesses(M)foral lcont inuousl inearfunct ional fsat isfy ing

116l l  <  e .
If some property of the function / is required to remain true even if it is disturbed by

arbitrary continuous linear functionals, then / is said tobe absolutely stable with respect
to this property (see [8]). Obviously, convex functions are absolutely stable with respect
to (M).It is more interesting that among lower semi-continuous functions defined on



324 Hoang Xuan Phu and PhanTh"anhAn

some compact interval of IR, only convex functions can be absolutely stable with respect
to (M) (see [8]).

A question we are interested in is: Which functions are absolutely stable with respect
to the property 

(Mv) each y-minimizer is a global minimizer?

(See definition in Sec. 4.) It was proved in [8] that lower semi-continuous /-convex
like functions are absolutely stable with respect to (Mr). Moreover, if a lower semi-
continuous function defined on some compact interval of IR is absolutely stable with
respect to (Mr), then it must be y-convex like.

As we see, to obtain the mentioned result in [8], one needs the assumption of lower
semi-continuity. To avoid this, the outer y-convexity of functions is introduced in Sec.
3. As Proposition 4.2 points out, each outer /-convex function is absolutely stable with
respect to (Mr), and also to the properfy

(Iy) each y-infimtzer is a global infimizer

(see definition in Sec. 4). Moreover, if a function f : la, bl + IR is bounded from below
and is absolutely stable with respect to (Ir), then its lower semi-continuous hull must
be outer /-convex (Proposition 4.5).

To get a similar relation as in the classical convexity, we define the notion of outer

f-convex sets (Sec. 2) and show that a function is outer /-convex if and only if it is
absolutely stable with respect to the property: each lower level set is outer /-convex
(Proposition3.2).

2. Outer y-Convex Sets

Let (X, ll . ll) be a normed linear space md y a fixed positive real number. For ?ny r0,
x1 € X and,i, e [0, 1], we denote

Definition 2,1. A subset M c X is said to be outer y-convex if, for all xs and x1 in M,
there exist k eN and

such that

Observe that if llxo - xr ll

x7 i: (1 - .I")xo * )"x1,

l x o , x t l : - { x x : 0 < l < 1 } ,

Lxo, xt[ :- [xs, xr] \ {xr},

lxo, xr[ :- [xs, xr [ \{xo}.

x ) , ,  €  M  f o r  i  : 0 , 1 , . . . , k .

(2.r)

(2.2)

(2.3)

i . ;  €  [ 0 ,  l f ,  i  -  0 ,  1 , .  . . , k ,  w i t h  ) " g : 0 ,  l k :  1 ,

0 < l ; + t - ) " ; < , , '  , , f o r i : 0 ,  1  k - 1 ,
l lxo - . rr  l l  "

< y, then the above condition is always fulfllled for k - 1.
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Due to (2.1), the conditions in (2.2)-(2.3) mean that x6 : xo, x),r, : xr, x),i €
M nlxs,xl], and

l l x r ,  - r r , * , l l  :  ( l ; + r  - I ; )  l l x o - r 1 l l  <  y  f o r  i : 0 ,  1 , . . . , k - t .  ( 2 . 4 )

The reason why we call such a set M outer /-convex is that a segment connecting
two points of M may contain at most gaps (i.e., subsegments outside M) whose length
is smaller than y. More precisely,

Proposition 2.1. Let M C X be outer y-convex, and let xs and xl belong to M. Then

l*'o, r't[ c [xo, xr] \ M implies ll"6 - xlll < y.

Prcof. By definition and (2.4), there exist k e IN and x),, € M nlxs, x1l with x^.0 : xo,
x ) , r : . x1 ,  & t td  l l x r ,  -  r r . , * , l l  <  y  fo r i  :0 ,  1 , . . .  , k  -  l .  S ince  l * '0 , * ' t [ c  [xo ,  x :d \M,
there  is  some 7  €  {0 ,  1 ,  . . . , k  -  1 }  such tha t  x [  e lx j , x j+ {and x ' ,  €  l x i , x i+ t ) .
Therefore,ll*'o - x'1ll < llxi - xi+tll a y. r

The number k mentioned in Definition2.l can be very large and it possibly tends to
infinity during some convergence consideration. To avoid this negative effect, we use the
following assertion.

Proposition 2.2. Every set {)"s,11 , . . . , Lt} satisfying (2.2) contains a subset which has
at most

(2.s)

(2.6)

(2.7)

(2.8)

k : _ 2 r o ( l l x o - x r l l ) _ ,
\ v /

elements and also fulfills (2.2), where

rd(x) : :  min{z e Z:  z > x} .

Proof. Assume that k > k. With

i* ::ro ( l l"o - tt l l  '1

\ v /
define

f i  : -  ; i - -  
i Y  

: -  t , ,  o <  i  =  i *  - 1 ,  F i .  : - r .t r  
l l r o - x r l r

Foreach j  e  {1 ,2 , . . . ,  j *  - l } ,  f l i  -  f l i - r :  y / l l xo  -x1 l l  and  (2 .2 ) imp ly tha t there
exists some ),i e lBi-t, fljl.Therefore, we can determine i (7) e {0, I , ..., k} such that

Li(j): max{},; : f i-r < Li < Fi}.

Let t(0) :: 0 and tU-) :: 1. Due to the definition and (2.2), we have

f l i  < ) " i t i > + l  <  ) " i 1 + t ) 3 f l i + t  f o r  i : 0 ,  1 , . . . , i *  - 1 .

Therefore, it follows from

p0 : :10  :  0 ,  &Z j * - t : :  1 .1  :  l ,  FZ j - t  : :  I ;C l ) ,  l -LZ j  :  l ; ( j )+ t ,  j  :  1 ,2 , . . . ,  j " -1 ,

and0 < 1- Fj . - t  < y l l l "o -x1l l  (dueto(2.6)-(2.8)) that

0 < t t i+t  -  t t r  < 
#A 

for i  :  0,  1,  . .  . ,2 i*  -  2.

S i n c e  k  - 2 j *  - 1 , { t " i : 0  <  i  < 2 j *  -  1 } i s t h e s u b s e t w e h a v e t o s e e k f o r .  I

Relation (2.4) and Proposition2.2 immediately yield the following.
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Proposition 2.3. M is outer y-cotwqc if and only if, for all xs and xy in M, there exist
a natural number k and x),, € M fllxg, xtl, i : 0, 1, . . ., k, such that

t , l . o :  x 0 ,  x ) , r , : x t t  a n d l l x v , - x L i + r l l  < y  f o r i  -  0 ,  1 , . . . , k - 1 , (2.e)

where k can be restricted by k I k - 2rd(llxo - xrll/y) - I.

The proof of the next assertion presents another application of Proposition2.2.

Proposition 2.4. Suppose M C X. If M is outer y-convex, then clM is outer y-convex,
too.

Proof. Let xfi and xf be two arbitrary points of clM, Then there are two sequences (xfr)
and(rf) nM suchthat

,g x6: xt and ,ryL xi: xi'

Since M is outer /-convex and x[,x! € M, there exist /cn e IN and
I : 0, 1, . . . , /cn, satisfying ),ff :0, )"t : l,

o ' l l * ,  - x ' ,  = W q l  f o r  i : 0 ,  1 , - . . , k n - r ,

and
, f i  :  Q -  )" i )x[  + x ix i  e M for i  :  0,  1, . . . ,kn.  (2.12)

Assume,withoutlossofgenerality,thatllxfi -xfll S llx6-"f ll *yforalln e IN.Due
to Proposition2.2, we can choose

k n  < r r o ( l l x t - x i l l )  -  t  < k *  i : z r a ( l l * 6 - * I l l )  *  t  s  l r : r , 2 , . . . .
\ v / \ v /

I f  k"  < k*,  thenset l , f  :  l  and * l?:  x l forkn < i  < k*. Insuchaway, wecanobtain

k'  :  k* for  a l ln e IN.Thetuples (^. i , ) " ; , . . . ,Lfr-) ,n € IN, formaboundedsequence
in IRft.. Therefore, we can assume, without loss of generality that

Jg L ' :  -  ) "T,  i  :  0 ,  l ,  . . . ,k* .

(2.10)

)\f € [0, 1],

(2.rr)

(2.r3)

(2.rr) and (2.13) imply 0 : rd = ri S

r l * , - r l S , l j [  
f f i : f f i  

f o r  i : 0 ,  1 , . . . , k * - 1 .

Finally, due to (2.10) and (2.I2),

,Ii: (1 -),|)xfi +,ii"1 - JIL(fr 
- x}*fi +xixi): )g*y.,

whichyields thatxf i .  eclM for i :0,  1, .  . . ,k*.  Hence, c lMis outer/-convex. r

Note that if M is contained in some convex set D C X, then the same proof shows
that if M is outer /-convex, so is the relative closure of M in D (i.e., D n clM), too.

Let us now introduce a weaker notion of generalized convexity.



Outer y -Convexity in Normed Linear Spaces 327

Definition 2.2. A subset M c X is said. to be y-convex like if lxo, xrlAM I A holds
true for all xo and x1 in M satisfying llxo - xtll > y.

Clearly, each convex-like set is /-convex like (for an arbitrary y > 0), and each outer

/-convex set is /-convex like. In general, the converse does not hold. For example, the
set [0, 1tU{2} C IR is /-convex like for an arbitrary y > 0, but it is not outer /-convex
for y < 1. Under the closedness assumption, we have the following equivalence.

Proposition 2.5. Suppose M c D c X, D is convex and M is relatively closed in D.
Then M is outer y -convex if and only if it is y -convex like.

Proof. Clearly, we only have to show thatlf M is y-convex-like, then it is outer /-convex.
Withoutloss of generality, assume M c D c IR. Letxs andxrbein M andxl -xo > y.
With 7* defined in (2.7), determine

l i : : x o * i y f f i  f o r  0  < i  < i * - l  a n d  y i .  : : x r .

Since M is closed and x0, xr € M, there exist yf and yri in M ['l [xo, x1] satisfying

yi : 
,.t#,frnr' attd yj* : 

".r## n**' 
j : l '2' "' ' j" - l '

This yields that either y, _ y; _ yj € M, or yi / M, {yj ,yi} C M and

ll1 ,litiM - 0. Since M is y-convex like, we have

0 s l j _

which implies immediatety yf
r'o" 

lf ' 4+r
Consequently, by definition,

0  =  y ; * t  - y f  S y i + r - ! i  : y ,  i  : 1 , 2 , . . . ,  i *  - L  ( 2 . 1 5 )

Moreover, 0 < yl -r0 ( y andO < A-!i_r ( y. Consequently, dueto (2.14)-(2.15),
we obtain with

x),0 XO, X),z j*-r :  XL X),r j - ,  : :  l i  and x;r ,  : -  y; ,  i  :1,2,  . . . ,  i *  -  L,

a c h a i n x ) . i € M n f x s , x t | , i : 0 ,  1 , . . . , k : - 2 j * - l , w h i c h s a t i s f i e s ( 2 . 9 ) . T h e r e f o r e ,
by Proposition2.3, M is outer /-convex. r

Outer /-convex sets still have other interesting properties, but we will deal with them
in another paper. Here, only some results are stated which are useful for the next section.

3. Outer y-Convex Functions

In this section, we introduce the y-convexity of functions given on some convex subset
D of the normed linear space X.

-  1 1  3  V ,  i  : 1 , 2 ,  . . . ,  i *  -  I ,  ( 2 . 1 4 )

-yi < yl -yi  < v andl i+r-!- t  3 yf+r-t1ar < Y,

e  l y j , ! j + r l ,  j  :  1 ,2 ,  . . . ,  j *  -  l .
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Definition 3.1. f : D + R.u {-oo} is called outer y-cotwex if, for all xs and x1 in D,
thereexistk enland), ;  € [0,  l l , i  -  0,  1, .  . . ,k,  sat isfuing (2.2) suchthat

f(xx) < (1 - Li)f@il +i,r f(x) for 0 < i < k. (3 .1 )

Observe that if llxo - xr ll < y, thenthe above condition is always fulfilled for k - 1.
By Proposition2.2, we can restrict ourselves to k < E - Zrd0xs - xll/y) - 1, i.e.,

/ is outer /-convex if and only if, for all xe and x1 in D satisfying llxo - 11 ll > y , there
exist k < k and.l,; € [0, If, i -0, 1, . . ., k,such that (2.2) and(3.1) are fulfilled.

Note that almost all types of roughly convex functions introduced in [1, 2, 4, 5, lO]
are special kinds of outer /-convex functions.

The following assertion is obvious.

Proposition 3.L. The sum of an outer y -corwex function and a convex function is outer
y-cotwex.

Similar to convex functions, outer /-convex functions can be characterized by their
lower level sets

L " ( f ) : : { x e D : f ( x ) < a } .

Proposition 3.2. The function f : D C X + R. is outer y-convex if and only if, for
every continuous linear functional € on X and for every real number d,, the level set
L"(f + 6) ,s outer y-convex.

Proof. Necessity. Assume that f € X*, d € IR and xo, xr € Lr(f * 6) with
llxo - xr ll > y. Obviously, 

"f * f is outer /-convex because / is outer y-convex and
f is linear. Therefore, by definition, there exist ft e IN and )"; € [0, rl, i - 0, 1, . ..,k,
satisfying (2.2) such that

f (xx )  *  € (xx)  <  (1  -  L ) ( f (xo)  *  6 (xo) )  +  x , ( f  (x ) f  6 (x r ) )  <  cu ,

i.e., x7, € Lo(f +f) for0 < i < k. Hencs, Loff +f) is outer /-convex.

Sufficiency. Assume L"(f + 6) is outer /-convex for every € e X* and a e IR. Let
xe and x1 be in D and satisfy llxo - xr ll
€(a-xd: - f  (x)+f  (xd.Sincef is l inear, th isyields f  (xd+€(xo):  f  (x)+€(x).
Thus, fora : f (xd f f(xo),xs andx1 belong to Loff +f).Bytheouter7-convexity
o f  th isse t , thereex is tk  e  INand) , ;  €  [0 ,  l ] , i  -  0 ,  1 , .  . . , k ,sa t is fy ing(2 .2)suchtha t
x),i € L"(f + 6), i.e.,

f (xx) * f(x,:,.) < u - (1 - r;)("f(ro) + 6(ro)) t )"i(f @) + 6(xr))

for 0 < i < k. Due to the linearity of f again, this implies

f  (xx)  < (1 - ) " i ) f  @d +i ' r  f  (x)  for0 < i  <k.

Hence, / is outer /-convex.
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If / is allowed to attain the value -@, then the necessity in the last proposition

remains true, but the sufficiency does not. For instance, the function

is not outer /-convex on D -- l-2,11 for Y :2 (to see this, choose 'x0 - -2 and

xr :1) although the level set L"(f + f ) is outer /-convex for every continuous linear

functional f on IR and for every real number a (even for cv - -m).

Recall that f : D + IR is said to be y-convex like Lf, for all.rs and xr in D satisfying

llxo - xr ll > y, therc exists ), e 10, 1[ such that

f (x) < (1 - L) f (xd * A.f (x).

[8]. Obviously, each lower level set of a y-convex like function is y-convex like, and

each outer /-convex function is y-convex like but not vice versa. Nevertheless, the

equivalence holds for lower semi-continuous functions.

Proposition 3.3. Let f : D + R.be lower semi-continuous. Then f is outer y-convex

if and only if it is y-cowex like.

Proof. Assume that f is y-convex like. Then, for all € e X*,, f + € is y-convex like

and lower semi-continuous. Therefore, the level set LoU + f ) is always 7-convex like

and relatively closed in D. Due to Proposition2.5, L"(f + 6) is outer /-convex for all

6 e X* and a e lR. Therefore, Proposition 3.2 implies that / is outer /-convex. r

Note that if f : D + IR U {-oo}, then the assertion of Proposition 3.3 is true, too.

But in this case, one cannot use Proposition 3.2to prove it.

Letus now considerthe so-called lower semi-continuous hullof the function / defined

by
lsc/(x) :- l imTf /(x)

(where y e D may be equal to x). It is well known that this function is the greatest lower

semi-continuous function on D majoizedby f (compare with [9]).

Proposition 3.4. If f : D + lRU{-oo} isoutery-convex,thenlscf isoutery'convex,

too.

Proof. Let xfr, ri € D with llrd - xf ll > y.By definition, there exist two sequences

(16) and (xf ) in D satisfying

,$ xfi - x$, ,$g f @U - lsc/(x6),

,g xl -  xf,  m f@i)- lsc/(xf),

l l x t  -  x i l l  =  l l t d  -  x i l l  +  Y ,  n :  r , 2 , . . .

Since / is outer /-convex, due to Proposition 2.2, there exist ),f € [0, 1], i -

0, 1, . . . , k* :- Zrd(llxd - 
"i lll4) + 1, satisfying

1 6 : 0 ,  \ f t , . : 1 , 0 . L ? * r - t ( <  
'  

, . .  f o r l : 0 ,  1  k * - 1 ,--t _ 
llxt _ ril l 

- -, -1 -

I  
I /x i f  x e l -2,01

/(x) :- | 0 if "r e [0, 1[
[  - *  i f  x : l
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and

f  @ i : )  <  (1  -  x i ) f  @3)  +  x i  f  @D fo r  i  : 0 ,  1 , . . . , k * .

Similarly as in the proof of Proposition2.4, we can assume, without loss of generality,
that

,gLLT 
:  L f  i  : l ' 2 '  " "k*  - r '  16  :  o " l ' ; .  -  1 '

0 < I I - , - l l < , . = '  , r ,  f o r i : 0 ,  I  k * -  I .. - r r  , -  
l l " d _ r l l l

Therefore, limn-*6p *l: : xf. and

lsc/(xi.) 5 ,li- f (xi,:) < (1 -,r,|)lsc/("d) + ),ilsc/(xf )

for i : 0, 1, . . . , k*. Hence, lsc/ is outer /-convex.

4. Optimization Properties

In the first part of this section, let y be a non-negative real number. x* e D is said to be a
y -minimizer or a y -infimizer of the function f : D C X -> IR U { - m} if there exists an
e > 0 suchthat f (x.) < f (x)orl iminfy--+x. f 0) < f (x) for arlx e D)B(x*, y t e)
(B(x*,r) :: {x e X : llr -.r*ll < r}), respectively. In particular, if y : O, then a
7-minimizeris alocalminimizeranda y-rnfimtzerisalocalinfimizer.lt f (x*) < f (x)
or liminfy-*". f(y) = f(x) for alI x e D, then x* is a global minimizer or a global
infimi ze r, respectively.

Proposition 4.1. x* is a y-infimizer (or global infimizer) of f if and only if it is a
y-minimizer (or global minimizer, respectively) of lscf .

Proof. By definition,.tr* is a y-infimizer of / if and only if if there exists an r > 0 such
that

lsc/(-r*) - t1a1+f f 0) = f (x) forallx e DiB(x*,t I e),

which holds if and only if

lsc / (x*)  St rg inf  f  0)  -  lsc / (x)  fora l l  x  e DrB(x* ,y  *e) ,

i.e., if and only if r* is a 7-minimizer of lsc/. The rest is similar.

We will use the last assertion to prove the following main properties of outer /-convex
functions:

(My) eachy-minimizer is a global minimizer,

(Iv) each y-inflmizer is a global infimizer.

In the following,let y > 0.

Proposition 4.2. An outer y -convex function possesses the properties (My) and. (Iy),
and it is absolutely stable with respect to them.
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Proof. Let xs e D I X and f : D + IR be outer /-convex. By definition, for all
x1 € D, there is )"1 € 10, y /llxo - xl lll such that

f  (xx) < (1 -  L) f  (xo) +.r .1 f  @),

which implies llxo - xr,ll < y and

f(x) - f(xd > (f(xx) - f (xO)/\.

Therefore, if x6 is a y-minimizer of f, then /(x1,)
f (x) > f (xd for all x1 e D, i.e., xs is a global minimizer of f .

Let xs now be a y-infimizer of /. Due to Propositions 3.4 and4.l,x6 is a y-minimtzer
of the outer /-convex function lsc/. By the assertion just proved, xs is a global minimizer
of lsc/. Consequently, Proposition 4.1 implies that x6 is a global infimizer of f .

The absolute stability of an outer /-convex function with respect to (My) and (1r)
follows then from Proposition 3.1. I

Using Proposition4.2, we can prove a stronger assertion, where the outer y-convexity
of / is not required.

Proposition 4.3. If lscf is outer y-convex, then f possesses the properties (Mr) and
(Iy), and f is absolutely stable with respect to them.

Proof. If x* is ay-infimizerof f,thenitisay-minimizerof theouter/-convexfunction
lsc/ (Proposition 4.1), which implies that it is a global minimizer of lsc/ (Proposition
4.2). Hence, by Proposition 4.1, x* is a global infimizer of f , i.e., f possesses the
property (/y).

If x* is a y-minimizer of /, then it is a y-minimizer of lsc/, too. Moreover, this fact
also yields 

"f 
(x*) - lsc/(.r*). Since lsc/ is outer f -convex, Proposition 4.2 implies

that xx is a global minimizer of lsc/. Therefore,

f (x*) - lsc/(x*) < lsc/(x) < f (x) for all x e D.

Hence, / possesses the property (My).
For all continuous linear functional E e X*, we have lsc(/ * 6) : lsc/ * f, which

is outer /-convex (due to Proposition 3.1). Following, f + f possesses (Mv) and (Iy),
i.e., f is absolutely stable with respect to them. I

Propositions4.2and4.3ensurethatanyfunctionf:DCX+lRisabsolutelystable
with respect to (Mr) and (Iy) it / or lsc/ is outer /-convex. This type of functions
can be considered as the most general one having this property, because under some
additional assumptions, this absolute stability is sufficient for the outer y-convexity of

f orlscf , as the following assertions show.

Proposition 4.4. Let f : la, bl C IR + R. be lower semi-continuous. Then f is outer
y -cotvoc if and only if f + € possesses the properU (Mv) for every linear functional $
onR..

Proof. By Theorem 3.1 in [8], a lower semi-continuous function f : la, bl c n -+ IR
is y-convex like if and only if, for every linear functional f on lR, each y-mtnimizer of

f + € is a global minimizer. (The notion of y-minimizer in [8] is a bit different from the
one here, but the assertion remains true with the same proof.) Therefore, Proposition 3.3
implies the assertion.
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Proposition 4.5. Let f : [a, bl C ]R + R. be bounded from below. Then lsc f is outer
y -convex if and only if f + € possesses the property (Iv) for every linear functional I
o n R .

Proof. Since / is bounded from below, the function lsc/ only attains its values in IR.
Therefore, we can apply Proposition 4.4 for lsc/, which yields that lsc/ is outer /-convex
if and only if lsc/ * f possesses the property (My) for every linear functional f on IR.
Since lsc/ * 5 - lsc(/ + 6), Proposition 4.1yields that lsc/ + 6 fulfills (My) if and
only if f + € satisfies (1y). This completes our proof. r

To conclude this section, let us consider the case y : 0, i.e., local minimizers and
local infimizers instead of y-minimizers or y-infimizers.

Proposition 4.6. Let f : D c X -> R.ff f orlscf isconvexthen,forallcontinuous
linear functional € e X*, f + € possesses the following properties:

and

(M) each local minimizer is a global minimizer

(1) each local infimizer is a global infimizer.

Proof. It suff,ces to show that the convexity of lsc/ implies the properties (M) and (/)
of f . The rest follows from the fact that, if / is convex, then so are lsc/ and f + €.

Assume now that lsc/ is convex and x* e D is a local minimizer or infimizer of f ,
i.e., there exists e > 0 such that f (x*) < f (x) or limirfy-+x. f 0) = /(x) for all
x e D O B(;*, e). Since lsc/ is convex, it must be outer /-convex with y :: e /2.For
this y, x* is a y-minimizer or y-infimtzer of f ,respectively. Therefore, Proposition 4.3
yields that x* is a global minimizer or global infimizer of f , respectively. I

Similar to Propositions 4.4 and 4.5, under some suitable assumptions, the absolute
stability of / with respect to (M) or (1) becomes a sufficient condition for the convexity
of f or lsc/, respectively. In fact, Theorem3.2 in [8] says that a lower semi-continuous
funct ion f  : [a,bl  c IR + IRisconvexi f  andonly i f  f  +€ sat isf ies (M)for every
linear function f on IR. Applying this and Proposition 4.I leads by the same way as in
the proof of Proposition 4.5 to the following:

Proposition 4.T. Let f : la, bl C IR + R be boundedfrom below. Then lsc f is convex
if and only if, for every linearfunctional I onR, f + € possesses the property (I).

Note that the assumption of boundedness from below in Propositions 4.5 and 4.1 is
really needed. For instance, let

I I / ( l x l  - 1 )  i f x e l - 1 ,  1 [
71x) :: 

I o if rxr - r,

D : l-1, 11, and y : 1. Then f + € possesses the properties (/z) and (1) for every
linear functional f on lR, but lsc/ is neither convex nor outer /-convex.
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5 Concluding Remarks

In [4-8], we used the following weaker condition
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(5 .1 )f ( * * )= f (x )  fo ra l l  xeD sa t i s fy ing  l l x -x * l l=V

to define y-minimizers of f arrd also get the property (Mv) for some kinds of roughly

convex functions. If we do so in this paper, the assertion ".r* is a y-infimizer of / if it

is a y-minimtzer of lsc/" in Proposition 4.1 does not hold anymore. For instance, let

f  0  i f  l x l  <  I
f ( x )_ l r _ * ,  i r i , i  = r

and y - 1. Then lsc/ - f and 7s,* :0 is a y-minimizer in the sense of (5.1) but not

a y-infimizer. Nevertheless, all other assertions in Sec. 4 remain true without changing

their proof.
The quantity e > 0 in the deflnition of y-minimizer is really needed in order for

the outer /-convex functions to possess (Iy).In fact, the function f (x) - [*] (where

[x] :- **{z e Z : z < x}) is outer /-convex for y : 1, and each x* e Z satisfies

x* - 1 : l iminfr--"* f(y) = f(x) forall x e [x* - 1,x* + 1], but x* cannot be a
global infimizer of f .

As pointed out in Sec. 4 of [8], we can deflne another kind of roughly convex functions

as follows: For all xo, xr e D, there exist,l,; € [0, 1] such that

l l ( 1  -  L ) x o l L i x t - x i l l  3 Y  a n d

r.r i - o r *l:-,ffiil:;: ;::::: ];l.;1" "",.r, c.nvex
functions; nevertheless they also possess (M). But in general, these functions cannot
satisfy (1) as the following example shows. The function

I x  i f x e ] - o o , - 1 [ U ] 1 , * m l
l ( x )  l :  {

[ 1 + 2 l x l  i f  l x l  < 1

fulfills the above condition for y :: 1.5, and x* - 1 is a y-infimizer of f ,but it cannot

be a global infimizer.
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