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Abstract. In this paper we introduce the notion of outer y -convex sets and outer y -convex functions
in a normed linear space X, and show, among other things, that a function f : D € X — R is
outer y-convex if and only if the level set {x € D : f(x) 4+ &£(x) < «} is outer y-convex for every
continuous linear functional £ € X* and for every real «. Two main properties of outer y-convex
functions are: (M, ) each y-minimizer (defined by f(x*) < f(x) for all x € D satisfying
lx —x*|l < y + & for some & > 0) is a global minimizer, and (I,,) each y-infimizer (defined by
liminfy_, - f(y) < f(x) forall x € D satisfying ||x — x*|| < y + ¢ for some & > 0) is a global
infimizer (i.e., liminfy + f(y) < f(x) for all x € D). Moreover, for f : [a,b] C R — R, if
f + & fulfills (M) or (I) for all linear functionals § on R, then f must be outer y-convex (if it
is in addition lower semi-continuous), or Isc f is outer y -convex, respectively.

1. Introduction
One of the most important properties of convex functions with respect to optimization is
(M) each local minimizer is a global minimizer.

To obtain this property for a more general class of functions, the explicit quasiconvexity
was introduced (see [3]). Explicitly quasiconvex functions possess the property (M),
but in general it does not hold if they are disturbed by some linear functionals (even
with sufficiently small norm). In this sense, we say that explicitly quasiconvex functions
are not stable with respect to (M) (see [7]). To get generalized convex functions which
are stable with respect to (M), the so-called s-quasiconvexity was defined in [7]. It was
showed there that an s-quasiconvex function f is stable with respect to (M), i.e., there is
an ¢ > 0 such that f + & possesses (M) for all continuous linear functional & satisfying
5N <.

If some property of the function f is required to remain true even if it is disturbed by
arbitrary continuous linear functionals, then f is said to be absolutely stable with respect
to this property (see [8]). Obviously, convex functions are absolutely stable with respect
to (M). It is more interesting that among lower semi-continuous functions defined on
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some compact interval of IR, only convex functions can be absolutely stable with respect
to (M) (see [8]).

A question we are interested in is: Which functions are absolutely stable with respect
to the property ,
(M,) each y-minimizer is a global minimizer?

(See definition in Sec. 4.) It was proved in [8] that lower semi-continuous y-convex
like functions are absolutely stable with respect to (M, ). Moreover, if a lower semi-
continuous function defined on some compact interval of R is absolutely stable with
respect to (M,,), then it must be y-convex like.

As we see, to obtain the mentioned result in [8], one needs the assumption of lower
semi-continuity. To avoid this, the outer y-convexity of functions is introduced in Sec.
3. As Proposition 4.2 points out, each outer y-convex function is absolutely stable with
respect to (M, ), and also to the property

(I,) each y-infimizer is a global infimizer

(see definition in Sec. 4). Moreover, if a function f : [a, b] — R is bounded from below
and is absolutely stable with respect to (I,,), then its lower semi-continuous hull must
be outer y-convex (Proposition 4.5).

To get a similar relation as in the classical convexity, we define the notion of outer
y-convex sets (Sec. 2) and show that a function is outer y-convex if and only if it is
absolutely stable with respect to the property: each lower level set is outer y-convex
(Proposition 3.2).

2. Outer y-Convex Sets

Let (X, || - ||) be a normed linear space and y a fixed positive real number. For any xo,
x1 € X and A € [0, 1], we denote

xy = (1 = Mxp + Axq,
[x0, x1] :={xx : 0 <A <1},
[xo0, x1[ := [x0, x1] \ {x1},
Ixo, x1[ := [x0, x1[ \{x0}.

(2.1)

Definition 2.1. A subset M C X is said to be outer y-convex if, for all xo and xy in M,
there exist k € IN and

A €011, i=0,1,...,k, with A\g=0, A =1,

K etors b epilnt. s ey

. TR 2.2)
"= Jlxo — xall

0<Xit1

such that
x, €M for i =0,1,... k. 2.3)

Observe that if ||xg — x1|| < y, then the above condition is always fulfilled for k = 1.
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Due to (2.1), the conditions in (2.2)~(2.3) mean that x;, = xo, Xy, = X1, X3, €
M N [xg, x1], and

lxx — X2l = Qigr —A) lxo —x1ll <y for i =0,1,....k— 1. 2.4)

The reason why we call such a set M outer y-convex is that a segment connecting

two points of M may contain at most gaps (i.e., subsegments outside M) whose length
is smaller than y. More precisely,

Proposition 2.1. Let M C X be outer y-convex, and let xo and x; belong to M. Then
[x, x1[ C [x0, x11\ M implies ||xq — x{|| < y-

Proof. By definition and (2.4), there exist k € IN and x;, € M N [xg, x1] with x;, = xo,
%), = x1,and |lx, — x| <y fori =0,1,...,k— 1. Since [x4, x1[ C [x0, x1]1 \ M,
there is some j € {0,1,...,k — 1} such that x; €lx;, x;41[ and x| € [xj, xj41].
Therefore, ||xy — x{ || < llxj — xj41ll < v- ]

The number k£ mentioned in Definition 2.1 can be very large and it possibly tends to
infinity during some convergence consideration. To avoid this negative effect, we use the
following assertion.

Proposition 2.2. Every set {Ag, A1, . .., Ax} satisfying (2.2) contains a subset which has
at most
k:=2rd ("x‘)y;’“”) L4 2.5)
elements and also fulfills (2.2), where
rd(x) :=min{z € Z : z > x}. (2.6)

Proof. Assume that k > k. With

j*i=rd ( llxo ;X1 ||) ’ @

define 2
JY
e =
7 llxo — xal
For each j € {1,2, ..., j* — 1}, Bj — Bi~1 = v/llxo — x1]| and (2.2) imply that there
exists some A; € [B;_1, B;]. Therefore, we can determine i (j) € {0, 1, ..., k} such that
Aighy = max{d; : Bj—1 <A < By}
Leti(0) := 0and i(j*) := 1. Due to the definition and (2.2), we have
Bi < Xi(jy+1 S Aigi+1 < Bj41 for j=0,1,.., "~ 1.

Therefore, it follows from

0<j<j*-1, Bp:=1. 2.8)

Roi=Xo =0, pop—1i=A =1, paj-1:=higj), M2j = ki1, J =12,y 51,
and 0 < 1— Bj=_1 < y/llxo — x1|| (due to (2.6)~(2.8)) that
Ofﬂl-l—l—ul 5 —y— fOI‘ i=071’~-'92j*_2'
llxo — x|

Since k = 2j* — 1, {u; : 0 < i < 2j* — 1} is the subset we have to seck for. [ ]

Relation (2.4) and Proposition 2.2 immediately yield the following.
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Proposition 2.3. M is outer y-convex if and only if, for all xy and x| in M, there exist
a natural number k and x), € M N [xo,x11,1 =0, 1, ..., k, such that

Xyy = X0, X), = X1, and llx;". — Xhit1 | <y fori =0,1,...,k—1, 2.9)
where k can be restricted by k < k = 21d (||xo — x1]|/y) — L.
The proof of the next assertion presents another application of Proposition 2.2.

Proposition 2.4. Suppose M C X. If M is outer y-convex, then cIM is outer y -convex,
too.

Proof. Let xj and x] be two arbitrary points of c1M. Then there are two sequences (x;j)
and (x7) in M such that

—_ d no__ %
lim x5 =x; and ngngoxl =xj. (2.10)

n—>0o0

Since M is outer y-convex and x;,x{ € M, there ex1st k" € IN and A} € [0,1],
i=0,1,... k", satisfying Af =0, A; =1,

v

0<A}, _——
M llxg — %7

for i=0,1,... k" —1, 2.11)
and
=1 —=ADxg +Afxf €M for i =0,1,...,k". (2.12)

Assume, without loss of generality, that ||x{ — x{|l < ||x5 —x]|| + y foralln € IN. Due
to Proposition 2.2, we can choose

n__ ,n * Lk
k"52rd(lx°—xl">—15k*:=2rd<”x°y—xl")+l, AR A M
y

If k" < k*, thenset A? = 1 and x], = x{ for K" < i < k*.In such a way, we can obtain
k" = k* for all n € IN. The tuples (A], A3, ..., A.), n € IN, form a bounded sequence
in R¥". Therefore, we can assume, without loss of generality that

lim A7 =AY, i=0,1,... k" (2.13)

n—>o0

(2.11) and (2.13) imply 0 = A < A} < --- < A%, = land

Tor it =001 S P e

: Y Y

* *

1 — A < lim =

LT = asoo IxB — x| T llxg — x|

Finally, due to (2.10) and (2.12),
X = (1= ))xg + Afxf = lim (= AHxg + ATx}) = Jim xJ,,
which yields that x}. € cIM fori =0, 1, ..., k*. Hence, clM is outer y-convex. [

Note that if M is contained in some convex set D C X, then the same proof shows
that if M is outer y-convex, so is the relative closure of M in D (i.e., D N clM), too.
Let us now introduce a weaker notion of generalized convexity.
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Definition 2.2. A subset M C X is said to be y-convex like if 1xo, x1[NM # @ holds
true for all xg and x| in M satisfying || xo — x1| > y.

Clearly, each convex-like set is y-convex like (for an arbitrary y > 0), and each outer
y-convex set is y-convex like. In general, the converse does not hold. For example, the
set [0, 1[U{2} C R is y-convex like for an arbitrary y > 0, but it is not outer y-convex
for y < 1. Under the closedness assumption, we have the following equivalence.

Proposition 2.5. Suppose M C D C X, D is convex and M is relatively closed in D.
Then M is outer y-convex if and only if it is y -convex like.

Proof. Clearly, we only have to show that if M is y -convex-like, then it is outer y-convex.
Without loss of generality, assume M € D € R. Letxg and x; bein M and x; —x¢ > .
With j* defined in (2.7), determine

X — X
¥j :=xo-|-jy1—L for 0<j <j*—1 and yj» := xy.
llxo — x1 i

Since M is closed and xg, x; € M, there exist yj_ and yj+‘in M N [xp, x1] satisfying

f= min x, j=12,.,j -1

;= max x and =
y] J x€lyj,x11NM

T xelxo.y M

This yields that either y7 = y = y; € M, or y; ¢ M, {y;,y} C M and
]yj_, y]T"[ NM = . Since M is y-convex like, we have

0=yf -y v, j=12,.,j"~1, (2.14)

which implies immediately y;" —y; < yj+—y]-' <yandyj1—y;y < y}ll—yﬁr] <=V
15€5,
Y v € yinl =12, -1

Consequently, by definition,
0<y—Y Syr-=y=v, j=L2.,j" -1 (2.15)

Moreover,0 < y; —x¢ < yand0 < xl—y]t_l < y.Consequently, dueto (2.14)—(2.15),
we obtain with

AP ettt -
Xrg = X0s Xigpe_y = X1y Xy y 1= Y; and x,,, 1= i =12, =1,

achain x;, € M N [xp, x1],i =0, 1, ..., k := 2j* — 1, which satisfies (2.9). Therefore,
by Proposition 2.3, M is outer y-convex. [ |

Outer y-convex sets still have other interesting properties, but we will deal with them
in another paper. Here, only some results are stated which are useful for the next section.
3. Outer y-Convex Functions

In this section, we introduce the y-convexity of functions given on some convex subset
D of the normed linear space X.
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Definition 3.1. f : D — RU{—00} is called outer y -convex if, for all xo and x; in D,
there existk € Nand A; € [0,1],i =0, 1, ..., k, satisfying (2.2) such that

fGa) = (1= A f(xo) +Ai f(x1) for 0 <i <k. @G.1)

Observe that if || xop — x1]| < v, then the above condition is always fulfilled for k = 1.

By Proposition 2.2, we can restrict ourselves to k < k = 2rd(||xg — x; I/v) —1,ie.,
f is outer y-convex if and only if, for all xp and x; in D satisfying ||lxo — x1|| > y, there
existk <kandA; € [0,1],i =0, 1,..., k, such that (2.2) and (3.1) are fulfilled.

Note that almost all types of roughly convex functions introduced in [1, 2, 4, 5, 10]
are special kinds of outer y-convex functions.

The following assertion is obvious.

Proposition 3.1. The sum of an outer y-convex function and a convex function is outer
y-convex.

Similar to convex functions, outer y-convex functions can be characterized by their
lower level sets

Lo(f)={xeD: f(x) <a}.

Proposition 3.2. The function f : D C X — R is outer y-convex if and only if, for
every continuous linear functional & on X and for every real number «, the level set
Lo(f + &) is outer y-convex.

Proof. Necessity. Assume that £ € X*, o € R and xo, x; € Lo(f + &) with
lixo — x1ll > y. Obviously, f + & is outer y-convex because f is outer y-convex and
& is linear. Therefore, by definition, there exist k € INand A; € [0,1],i = 0,1, ... , k,
satisfying (2.2) such that

FO) + &) < (1 =2)(f(x0) + Ex0)) + A (f(x1) + E(x1)) < a,

Le., x), € Lo(f +&) for0 <i < k. Hence, L,(f + £) is outer y-convex.

Sufficiency. Assume L, (f + &) is outer y-convex for every £ € X* and ¢ € R. Let
xo and x; be in D and satisfy [|xo — x1|| > y. We now choose £ € X* such that
§(x1—x0) = — f (x1)+ f (x0). Since £ is linear, this yields f (xo)+£(xo) = f(x1)+&(x1).
Thus, for @ = f(x0) + &(x0), x0 and x; belong to L, (f + £). By the outer y-convexity
of this set, there existk € INand A; € [0,1],i =0, 1, ...k, satisfying (2.2) such that
X € Lo(f +8),ie,,

F@x) +&0,) < a =1 —1)(f(x0) + E(x0)) + A (f (x1) + E(x1))
for 0 < i < k. Due to the linearity of & again, this implies
Fx) = (A=) f(xo) + Ai f(xy) for0 < i <k.

Hence, f is outer y-convex. ]
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If f is allowed to attain the value —oo, then the necessity in the last proposition
remains true, but the sufficiency does not. For instance, the function

1/x ifx e[-2,0[

fx)=4{0 ifxel0 1]
—o0 ifx=1
is not outer y-convex on D = [—2, 1] for y = 2 (to see this, choose xp = —2 and
x1 = 1) although the level set L, (f + &) is outer y-convex for every continuous linear
functional £ on IR and for every real number « (even for @ = —00).

Recall that f : D — R is said to be y-convex like if, for all xo and x; in D satisfying
llxg — x1| > y, there exists A €]0, 1[ such that

fx) <@ —=A)f(xo) +Af(x1).

[8]. Obviously, each lower level set of a y-convex like function is y-convex like, and
each outer y-convex function is y-convex like but not vice versa. Nevertheless, the
equivalence holds for lower semi-continuous functions.

Proposition 3.3. Let f : D — R be lower semi-continuous. Then f is outer y-convex
if and only if it is y-convex like.

Proof. Assume that f is y-convex like. Then, for all £ € X*, f + & is y-convex like
and lower semi-continuous. Therefore, the level set £, (f + &) is always y-convex like
and relatively closed in D. Due to Proposition 2.5, L, (f + §) is outer y-convex for all
£ € X* and o € R. Therefore, Proposition 3.2 implies that f is outer y-convex. [ ]

Note that if f : D — R U {—oc}, then the assertion of Proposition 3.3 is true, too.
But in this case, one cannot use Proposition 3.2 to prove it.
Let us now consider the so-called lower semi-continuous hull of the function f defined
by
Isc f(x) := lim iilf fx)
y——)

(where y € D may be equal to x). It is well known that this function is the greatest lower
semi-continuous function on D majorized by f (compare with [9]).

Proposition 3.4. If f : D — RU{—00} is outer y -convex, then lsc f is outer y -convex,
too.

Proof. Let x}, x{ € D with |lxg — x{ || > y. By definition, there exist two sequences
(x3) and (x]) in D satisfying

. no__ % . ny __ *
Tim xf =5, lm f(xf) = lscf (x3),

lim o =, lim fG]) = lscf (D),

lxg — x7 1l < lxg —xill+y, n=12,....

Since f is outer y-convex, due to Proposition 2.2, there exist A} € [0,1], i =
0,1,...,k* :=2rd(|lx§ — xII/¥) + 1, satisfying

PR o (e s

<—>=— fori=0,1,....,k" -1,
" g — 1l iy
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and
f(xjfl") SA=ADfEE) +Af@ED) for i =0,1, ..., k*.

Similarly as in the proof of Proposition 2.4, we can assume, without loss of generality,

that
lim A} =47, i51,2,5. k" =1, Aj=0, AL =1,

n—00
Y

OFT e e

FORMA=—r(), T, 3 i <e=he]
1 —_ y 3 v .
ik o rrvcllegy szl

Therefore, lim,_, o x}» = x}. and
lscf () < lim f(h) < (1— ADlsef () + Aflscf (x})
i n o i

fori =0, 1, ..., k* Hence, Isc f is outer y-convex. o

4. Optimization Properties

In the first part of this section, let  be a non-negative real number. x* € D is said to be a
y -minimizer or a y -infimizer of the function f : D € X — R U {—o0} if there exists an
¢ > Osuchthat f(x*) < f(x)orliminf, s f(y) < f(x) forallx € DN B(x*, y+¢€)
(B(x*,r) := {x € X : |lx — x*|| < r}), respectively. In particular, if y = 0, then a
y-minimizer is a local minimizer and a y-infimizer is a local infimizer. If f(x*) < fx)
or liminfy ,,« f(y) < f(x) for all x € D, then x* is a global minimizer or a global
infimizer, respectively.

Proposition 4.1. x* is a y-infimizer (or global infimizer) of f if and only if it is a
y -minimizer (or global minimizer, respectively) of Isc f.

Proof. By definition, x* is a y-infimizer of f if and only if if there exists an & > 0 such
that
Iscf(x*) = liminf f(y) < f(x) forallx € DN B(x*,y +¢),
y—x*

which holds if and only if

Iscf(x*) < liminf f(y) =Iscf(x) forallx € DN B(x*, y +¢),
y—x

i.e., if and only if x* is a y-minimizer of Isc f. The rest is similar. ]

We will use the last assertion to prove the following main properties of outer y-convex

functions:
(M) each y-minimizer is a global minimizer,

(I,) each y-infimizer is a global infimizer.

In the following, let y > 0.

Proposition 4.2. An outer y-convex function possesses the properties (M) and (1),
and it is absolutely stable with respect to them.
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Proof. Let xo € D € X and f : D — IR be outer y-convex. By definition, for all
x1 € D, thereis A; €]0, y/|lxo — x1||] such that

fla) = A =21 f(xo) + A f(x1),

which implies ||xp — x5, || < y and

FG1) = f(xo) = (f(xy) — f(x0)) /A1
Therefore, if xo is a y-minimizer of f, then f(x,,) > f(x0), which yields that
f(x1) > f(xp) for all x; € D, i.e., xp is a global minimizer of f.

Let xo now be a y -infimizer of f. Due to Propositions 3.4 and 4.1, xg is a y-minimizer
of the outer y-convex function Isc f. By the assertion just proved, xg is a global minimizer
of Isc f. Consequently, Proposition 4.1 implies that xo is a global infimizer of f.

The absolute stability of an outer y-convex function with respect to (M, ) and (I;,)
follows then from Proposition 3.1. [

Using Proposition 4.2, we can prove a stronger assertion, where the outer y -convexity
of f is not required.

Proposition 4.3. If Isc f is outer y-convex, then f possesses the properties (M,) and
(1), and f is absolutely stable with respect to them.

Proof. If x* is a y-infimizer of f, then it is a y-minimizer of the outer y-convex function
Isc f (Proposition 4.1), which implies that it is a global minimizer of Isc f (Proposition
4.2). Hence, by Proposition 4.1, x* is a global infimizer of f, i.e., f possesses the
property ().

If x* is a y -minimizer of f, then it is a y -minimizer of Isc f, too. Moreover, this fact
also yields f(x*) = Iscf(x*). Since Isc f is outer y-convex, Proposition 4.2 implies
that x* is a global minimizer of Isc f. Therefore,

fGx®) =Iscf(x*) <lscf(x) < f(x) forall x € D.

Hence, f possesses the property (M, ).

For all continuous linear functional § € X*, we have Isc(f + §) = Iscf + &, which
is outer y-convex (due to Proposition 3.1). Following, f + & possesses (M, ) and (I,,),
i.e., f is absolutely stable with respect to them. [ |

Propositions 4.2 and 4.3 ensure that any function f : D € X — Risabsolutely stable
with respect to (M) and (1) if f or Iscf is outer y-convex. This type of functions
can be considered as the most general one having this property, because under some
additional assumptions, this absolute stability is sufficient for the outer y-convexity of
f orlscf, as the following assertions show.

Proposition 4.4. Let f : [a, b] C R — R be lower semi-continuous. Then f is outer
y-convex if and only if f + & possesses the property (M) for every linear functional &
on R.

Proof. By Theorem 3.1 in [8], a lower semi-continuous function f : [a,b] C R - R
is y-convex like if and only if, for every linear functional £ on R, each y-minimizer of
f + & is a global minimizer. (The notion of y-minimizer in [8] is a bit different from the
one here, but the assertion remains true with the same proof.) Therefore, Proposition 3.3
implies the assertion. [ |
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Proposition 4.5. Let f : [a, b] C R — R be bounded from below. Then Isc f is outer
y-convex if and only if f + & possesses the property (I,,) for every linear functional &
on R.

Proof. Since f is bounded from below, the function Isc f only attains its values in IR.
Therefore, we can apply Proposition 4.4 for 1sc f, which yields that 1sc f is outer y-convex
if and only if Isc f + & possesses the property (M,,) for every linear functional £ on R.
Since Isc f + & = Isc(f + &), Proposition 4.1 yields that Isc f + £ fulfills (3,) if and
only if f + & satisfies (I,). This completes our proof. [ ]

To conclude this section, let us consider the case y = 0, i.e., local minimizers and
local infimizers instead of y-minimizers or y-infimizers.

Proposition 4.6. Let f : D € X — R If f orIscf is convex then, for all continuous
linear functional & € X*, f + & possesses the following properties:

(M) each local minimizer is a global minimizer

and

(I) each local infimizer is a global infimizer.

Proof. It suffices to show that the convexity of lsc f implies the properties (M) and (1)
of f. The rest follows from the fact that, if f is convex, then so are Isc f and f + £.
Assume now that Isc f is convex and x* € D is a local minimizer or infimizer of f,
ie., there exists £ > 0 such that f(x*) < f(x) or liminf,_,« f(y) < f(x) for all
x € DN B(x*, ¢). Since Isc f is convex, it must be outer y-convex with y := £/2. For
this y, x* is a y-minimizer or y-infimizer of f, respectively. Therefore, Proposition 4.3
yields that x* is a global minimizer or global infimizer of f, respectively. |

Similar to Propositions 4.4 and 4.5, under some suitable assumptions, the absolute
stability of f with respect to (M) or (1) becomes a sufficient condition for the convexity
of f orlscf, respectively. In fact, Theorem 3.2 in [8] says that a lower semi-continuous
function f : [a,b] C R — R is convex if and only if f + & satisfies (M) for every
linear function £ on IR. Applying this and Proposition 4.1 leads by the same way as in
the proof of Proposition 4.5 to the following:

Proposition 4.7. Let f : [a, b] C R — R be bounded from below. Then Isc f is convex
if and only if, for every linear functional & on R, f + & possesses the property (I).

Note that the assumption of boundedness from below in Propositions 4.5 and 4.7 is
really needed. For instance, let

/(x| =1) ifxel—1,1[

f“%=[o if x| = 1,

D =[-1,1], and y = 1. Then f + & possesses the properties (1,,) and (I) for every
linear functional £ on IR, but Isc f is neither convex nor outer y -convex.
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5 Concluding Remarks
In [4-8], we used the following weaker condition

f(x*) < f(x) forall x € D satisfying ||x — x*|| <y 5.1)

to define y-minimizers of f and also get the property (M,,) for some kinds of roughly
convex functions. If we do so in this paper, the assertion “x* is a y-infimizer of f if it
is a y-minimizer of Isc f”” in Proposition 4.1 does not hold anymore. For instance, let

0 if x| <1
f“)—[1—x21ﬂn>1
and y = 1. ThenIscf = f and x* = 0 is a y-minimizer in the sense of (5.1) but not
a y-infimizer. Nevertheless, all other assertions in Sec. 4 remain true without changing
their proof.

The quantity ¢ > O in the definition of y-minimizer is really needed in order for
the outer y-convex functions to possess (I,). In fact, the function f(x) = [x] (where
[x] := max{z € Z : z < x}) is outer y-convex for y = 1, and each x* € Z satisfies
x* — 1 = liminfy_, ,» f(y) < f(x) forall x € [x* — 1, x* + 1], but x* cannot be a
global infimizer of f.

As pointed out in Sec. 4 of [8], we can define another kind of roughly convex functions
as follows: For all xg, x; € D, there exist A; € [0, 1] such that

(1 —A)xo + Ajx1 — x|l <y and
FA =X )xo+ A x1) < (1 —Ay) fxo) + Ai f(x1)

for i = 0, 1. Such a kind of roughly convex functions is weaker than outer y-convex
functions; nevertheless they also possess (M). But in general, these functions cannot
satisfy (I) as the following example shows. The function

o ifx €] —o0, —1[U]1, +o0[

f@y=[1+mﬂiﬂﬂ51
fulfills the above condition for y := 1.5, and x* = 1 is a y-infimizer of f, but it cannot
be a global infimizer.
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