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Abstract. The result that the FitzHugh-Nagumo system has no homoclinic orbits is given. By virtue
of the result, the global asymptotic stability of an equilibrium point of the system is discussed.

1. Introduction

Our purpose in this paper is to consider the existence of the homoclinic orbit of the

FitzHugh-Nagumo system [1, 9], which is obtained by simplifying some nerve model.

The result for the homoclinic orbit of the system will be given and proved in Sec. 2. In

Sec. 3, a sufficient condition for the non-existence of the closed orbit of the system will

be given by using some plane curve. By virtue of these results, the global asymptotic

stability of an equilibrium point of the system will be stated in Sec. 4. Finally, the phase

portrait as an example illustrating our results will be given in Sec. 5.

To explicate the ion mechanism for the excitation and the conduction of nerve, Hodgkin

and Huxley [6] developed the system of four non-linear ordinary differential equations as

a model of nerve conduction in the squid giant axon (Loligo). FitzHugh tll and Nagumo

et al. [9] simplified the system by introducing the two-dimensional model

(  1 3
J f u : u _ a u ) ' + w l l ,  ( F H N )
l t :  p ( a - w - b u ) ,

where the dot (.) denotes differentiation and a, p, b are real constants such that

( C l )  a € l R ,  p > 0 ,  0 < b < 1 .

The variable u corresponds to the potential difference through the axon membrane and u

represents the potassium activation (sodium in activation). The quantity / is the current

through the membrane. The system (FHN) for special values of t has been investigated

by using numerical methods and phase space analysis in [1] or [9].
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The system (FHN) has a unique equilibrium point (xr, yD for each / e IR, where

and
a - x t

J I :  
b

Instead of the parameter ,f, we introduce a new

4  :  x I .  x  :  w  -  4 , a n d y  :  u  -  a / b  + n / b
transformed to the following system:

parameter T. By the transformation
l- pb(w - n), the system (FHN) is

(FNS)

The system (FNS) is called the FitzHugh nerve system and has a unique equilibrium
point E(0, 0). Also, we note that this is a system of the Li6nard type.

2. Non-Existence of Homoclinic Orbits

If the system (FNS) has the orbits whose a- and a;-limit sets are the equilibrium point,
then we say that they are homoclinic orbits of the system. The first result is the following:

Theorem 2.1. The system (FHN) has no homoclinic orbits.

Proof. We prove Theorem 2.1 for the system (FNS) which is equivalent to the system
(FHN). The theorem is proved by dividing into two cases 0 < pb < I and pb > I.

case 1. t0 < pb < 11. Let 4g - JT=V6. Then instead of (c1), we can assume the
condition

( C 2 )  a € l R ,  O < b < I , 0  
1

< P <  
r .

By considering the variational matrix about E, we see easily that,

(i) if ,12 , nf,, then E is a stable focus or node;
(iD if n2 . n3, then E is an unstable focus or node.

Thus, in the cases (i) and (ii), the system (FNS) has no homoclinic orbits.
We set

r(x) -  1* ' r*  +3n)
a n d  

P b . z  )  ^ , )  1
s (x )  -  

T t * t  *3 r7xz  +3 (n2  + ; -  1 )x ) .
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To prove the case

(111) n2 - ,fo,

we need the following lemma for the system (FHS).

Lemma 2 . l .U l l  Supposethereex is tsa6 >Osuchtha t l (x )  >0 for  0  <  l r l  <6 .  I f

I  rx 8(r \  |

. G ) / '  f t o t ' ;  f o '  o < x < 6

are satisfied, then the system (FNS) with q2 - nA has no homoclinic orbits.

Let

u _ - 3 n * J 9 r l 2 + t Z y p b  ) 0 ,
2

where y rs aconstant such that

o  <  y  <  m i n  [ o ( t  
-  P u ) , 3 ]  .

l p b l

Thenwehave0  <  6  <3q .S ince  nz  +Qlb )  -  1>  0 ,weob ta in

I  f -  SG) , ,  3pb f*
I " "' d-f, > ---=------------ l d!

f (x) /o r(6) 
' 

x'(x -l3n) Jo

[ .  ot  -  
3Pb

l o  
'  

x ( x * 3 n )

.  Y P b  , !
6 ( d + 3 n ) -  4

for0 < x < 3. Thus, fromlemma2.l,the system (FNS) withr1z - rlfrhasnohomoclinic
orbits.

Case 2. lpb > 11. By considering the variational matrix about E,we have that

(iv) if pb + l or q + 0, E is a stable focus or node.

Thus, in this case the system has no homoclinic orbits. We consider the case

( v )  p b  : 1  a n d  e  : 0 .

From the facts that the function (l l3)x3 +rl*2 + (n2 -f pb - 1)x with pb > 1 is monotone
increasing for all x e lR and xg(x) > 0 (x + O), it follows that the following lemma
holds (see, e.g., [5]).

Lemma 2.2. If pb > l, then the system (FNS) has no non-trivial closed orbits.

Since the corresponding linear system for the case (v) has a pair of pure imaginary
eigenvalues, E is a focus or center. However, by Lemma2.Z, E is not a center. Thus, in
this case, the system has no homoclinic orbits, too.

We have completed the proof of Theorem2.l. r
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Remark. The unique existence and non-existence of the closed orbit of the system (FNS)
have been treated by 14,7,8,10, etc.] However, the result for a homoclinic orbit of the
system has not been given until now.

Let F(x) - f (x) + (n2 - n|)x.We.denote

C -  : { ( x , y )  :  x  > 0 a n d  y  -  F ( x ) }  a n d  C -  - { ( x , y )  :  x  < 0 a n d  y  -  F ( x ) I .

By the above theorem and by checking the direction of the vector (y - F (x), -g(x)),

we have the following:

. The positive (resp., negative) semitrajectory of (FNS) passing through any point on
the curve C+ (resp., C-) meets the negative y-axis.

. The negative (resp., positive) semitrajectory of (FNS) passing through any point on
the curve C+ (resp., C-) meets the positive y-axis.

Therefore, we conclude the following:

Lemma 2.3. All positive semitrajectories of (FNS) near the equilibrium point E keep
on rotating around E.

3. Non-Existence of Closed Orbits

In this section, we shall give a sufficient condition for which the system (FNS) has no
non-trivial closed orbits. Our result is the following:

Theorem 3.1. Assume that the condition

(C3) pb > 1

42 > r1f; and
( c 4 )  .  .  .  A  t l  \  , r  t r  \  .  r l  1 2

n4 - 4qzn'o + nt *r( ; -r)r '  -  o l ; - t )nt  + 4(f-  t ) -  = o,

or

(cs) zln&. (;- t)l' . n'Inz + 3(; - t)l'

is satisfied. Then the system (FNS) has no non-trivial closed orbits.

The pair (n2, nZ) satisfying the condition (C4) or (C5), is shown by the shaded area
in Fig. 1.

Assume that the condition in Theorem 3.1 holds with 4 > 0 (the proof for the case
17 < O is essentially the same).

From Lemma 2.2,the system (FNS) with the condition (C3) has no non-trivial closed
orbits. To prove the case (C4) or (C5), the following result is used.
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Fig. 1.

Lemma 3.l.l2l Izt G(x) - I; g@d€.If the curve (F(x), G(x)) has no intersecting
points with itself, then the system (FNS/ has no non-trivial closed orbits.

We intend to show that the condition (C4) or (C5) implies that the curve (F(x), G(x))
has no intersecting points with itself. Let

t ^

a ( q ) - - 3 n - ' l l < + " 0 - n 2 )
2

Now, we consider the equation

and fl(D - -n -

F ( x ) :  F ( € )  f o r a ( r y )  < 6  <  - n - n o .

This equation has two roots other than x - €. Let u1 _ ur(€) ffid! ns u2_ uzG)

denote these roots. Then we have -n - no < ur < {-3n + JZ1+rlfi 
- a2)l/2 and

0 < uz < -n t 2no (see Fig. 2).
Let

o(6)  -  63  +  zn€2 + t ( r ' -2n20- r ( ;  t ) ) r  -  zn(n '+zn ; *u( ; -  t ) ) .  .

We have the following lemmas for the function O(6).

Lemma 3.2. If A2 > n3, then Q(a(4)) < 0.

Proof. Since F(a(il) - 0 and a(il > -3r1for n' > n3, we have

o(a(ry)) - -3(r3 + r(; -r))"try1 - tr(n' + o(nzo* i 
- tl)

2ot3+ i - r r .

. -3q(nz + 3nZ) < o.
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Fig.2.

Lemma 3.3. Assume that the condition [C5] is satisfied. Then O(f (ry)) < 0.

Proof. From A' (F@D: 0, we have

o(floD - -+(n'o.; - t)o@ - +n(n' + n2o +oti - t l)

From a property of the curye (F(x), G(x)),we shall show that, if F (u) : F (uz) fot
a(D < E < -n -  eo, thenG(u) -  G(zr)  < 0.

From F (u) : F (uz), we have

u22 + u1u2 t ul - -3{n@z + u) + rf - nil.

Thus, we obtain

G(u) - G(u) : #(uz 
- u){(uz + ut)@Z+u?) + an@Z * uruz + u?)

. 1
+ 6 ( n " +  b - I ) ( u z * u ) 1 .

Since ul andu2 uta solutions of the eqriation F(x) - F(E), we obtain

u t  *  u z  -  - Q n  *  I  a n d  i l ! , t 2  : 3 r f  - g n | + 3 n €  +  € 2 .

:  4{(n * , l r4! . ;  - t ) ) (n3 . ;  -  t )  -  n(n '  + n3+o(;- r ) ) }  .  o r

€  - n - l o  / r ( € )
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Thus. we have
u 2 r + u l - 3 r t z  a a n z o - € 2 .

By substituting u2 * q and u2, + ulro G(u) - G(u), we have

G(u)  -  G(u r l  :  * (uz  -z r )o (6 ) .
l z

If the condition (Ca) is satisfied, then from Lemma 3.2, we have O(a(ry)) < 0 and

fr(rD =a( i l .  Since Oisafunct ionof thedegree3 and O(0) < 0,wehave O(f)  < 0
forcY(ry) < 6 < -4 - 40.

If the condition (C5) is satisfied, then from Lemma 3.3, we have <D(f ) < 0 for 6 < 0.
From these facts and uz - ur > 0, if the condition (C4) or (C5) is satisfied, we

conclude that G(u) < G(u) < G(6) for u(r) < 6 < -rl - 4s. This means that the
system (FNS) with the condition (C4) or (C5) has no non-trivial closed orbits. r

Remark 3.1. The condition (C4) or (C5) is the same as that of [10]. However, the proof
of Theorem 3.1 is easier than [10].

4. Global Asymptotic Stability

We say that the equilibrium point E is globally asymptotically stable if E is stable and
if every orbit of the system (FNS) tends to E. By virtue of Theorem 3.1, we obtain the
following:

Theorem 4.1. Assume the condition (C3) or (C4) or (C5) in Theorem 3.1 is satisfied.
Thenthe equilibriumpointE (0, 0) of the system(FNS) is globally asymptotically stable.

Proof. We see from the uniqueness of orbits for the initial value problem and the
Poincard-Bendixon theorem that, if the system (FNS) satisfies the following conditions:

(iv) all orbits are bounded in the future;
(v) no closed orbits exists;

(vi) E is asymptotically stable;

then the unique equilibrium point E is globally asymptotically stable.
We shall check the above conditions to prove Theorem 4.1. Assume that the condition

(C3) or (C4) or (C5) holds.

(iv) From [3], all orbits of the system (FNS) are bounded in the future.
(v) From Theorem 3.1, the system (FNS) has no non-trivial closed orbits.

(vi) Suppose E is not stable. Then, from Lemma 2.3, every positive semitrajectories
of (FNS) starting in the neighborhood of E keeps on rotating around E and going
away from E. Hence, by the fact (iv) and the Poincar6-Bendixon theorem, the
system has a closed orbit. This is a contradiction to the fact (v). Therefore, from
Lemma 2.3, it follows that E is asymptotically stable.

The proof of Theorem 4.L is completed now. r

In [7], we gave a result that the system (FNS) has a unique closed orbit if nz - n3 >
(l/b) - 1. Thus, from the above theorem, we have the following:

341
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Theorem 4.2. The equilibrium point
asymptotically stabte if and onty if r72

5. A Numerical Example

Makoto Hayashi

Fig.3.

of the system (FNS) with r72 - nA is gtobally
(1/b) -  r .

E

We shall present the phase portrait as an example illustrating an application of Theorem
4.2.Letb - 4/5 and p : 1. Then the system satisfies the conditionq2 - n3 = Q lb) -I.

We see that the unique equilibrium point (0, 0) of the system is globally asymptotically
stable as shown in Fig. 3.
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