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Abstract. By analogy with the well-known abelian group concept, we define a ring A to be slender
if every ring homomorphism z" — A depends only on finitely many components of zN, the direct
product of 8¢ copies of z. The relationships between this notion, slenderness for abelian groups,
and ultraconnected rings are explored. A topological characterization of slenderness for rings is
also obtained.

1. Introduction

The class of slender abelian groups is an interesting and well-studied class and has
topological as well as purely algebraic characterizations. The characteristic property of
a slender group G that every homomorphism from a direct product into G be determined
by its effect on finitely many components has obvious analogs for other kinds of algebraic
structures, so it seems worthwhile to seek out versions of slenderness in other such
settings. A fair amount of work has been done on slender modules (see, e.g., [12,
15] and the references therein). A related concept has been investigated by Borger and
Rajagopalan [2] and subsequently by Henriksen and Smith [10]. A ring A with identity
is said to be ultraconnected if every unital homomorphism from the direct product ZV
of Ro copies of the integers to A depends on a single component.

We introduce a concept of slenderness for rings based on the requirement that
every homomorphism from Z" be determined by its effect on finitely many e;, where
e; = (1,0,0,0,...), e2 = (0,1,0,0,...), etc. This is a stronger condition than is
obtained by the requirement that f (¢;) = O for all but finitely many values of i (in
contrast to the abelian group case). Non-unital rings are thus drawn into the picture,
but slenderness is only really interesting when there are homomorphisms from Z¥ to
a ring, so the ring needs some non-zero idempotents. Rings, whose additive groups
are slender, are slender rings and ultraconnected rings are slender. These are, however,
not the only sources of slender rings. We obtain many examples of slender rings
and some characterizations of slenderness for rings and compare these with known
characterizations of slender abelian groups. We also shed a little light on the structure of
ultraconnected rings.



346 B.J. Gardner

Our notation is fairly standard: N, Z, Q, IR, C represent the natural numbers,
integers, rationals, reals, and complex numbers with or without structure, “group” always
means “abelian group”, the conventions of [7] are generally adhered to, all rings are
associative, but no identity is assumed. It should be noted that elsewhere in the literature,
“slender rings” means “rings which are slender as a module over itself”.

2. Results

In what follows, I1A; will denote the direct product of a set {A; : i € I} of rings or
abelian groups, a typical element of ITA; will be called (a;), and 7; : ITA; — A; will
denote the jth projection. When I = N, the set of natural numbers and A; = A for
each i, TTA; will also be called A™, while the direct sum ®A; will also be called A.
When A has an identity 1, the element of AN which has 1 in position 7 and 0 elsewhere
will be called e, . Finally, in any ITA;, with any (a;), we associate elements @; defined
as follows: the ith entry of @; is a; and all others are 0. Thus, for rings with identity,
a; = (ai)e.

Definition 1. (Fuchs, see [6]) A torsion-free abelian group G is slender if, for every
homomorphism f : Z¥ — G, we have f(e;) = 0 for all but finitely many values of i.

Definition 2. [2] A ring A with identity is ultraconnected if, for every set (R; : i € N} of
rings with identity and every identity-preserving homomorphism f : IIR; — A, there
exists an index j such that
f (@) = f @)
for all (a;) € TIR;.
A group G is slender if and only if, for every homomorphism f : ZY — G, there
exists a finite subset {i1, iz, ..., i»} of N such that

fan=> @)=Y flae) =) a,f(e)
j=1 =il j=1

[7, Vol. 11, p. 159]. Since aring is ultraconnected if and only if it satisfies the condition of
Definition 2 with each R; = Z [2, 1.2], it seems reasonable to seek a generalization of
ultraconnectedness based on slenderness which can usefully be applied to rings without
identity, whose elucidation can be assisted by the substantial established theory of slender
groups. Accordingly, we make the following definition.

Definition 3. A ring A is slender if

(1) the additive group of A is torsion-free; and
(ii) for every ring homomorphism f : ZN — A, there exist iy, iy, ..., iy, such that

f@n=y f@)=Y_f(@ye)=> a,fle)
=1

j=1 j=1 .

for all (a;) € ZV.
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Condition (ii) is trivially satisfied when there are no homomorphisms f : ZV — A
and so is interesting only in the presence of idempotents in A. As we shall see later,
in the presence of an identity, slenderness can be characterized in terms of unital
homomorphisms. We include (i) in the definition because (ii) is effectively never satisfied
in the presence of additive torsion (see Theorem 3).

Later we shall examine topological aspects of slenderness. For now we note
a characterization with a topological flavor which is an exact counterpart of one
characterization of slender groups.

Proposition 1. The following conditions are equivalent for a torsion-free ring A.

() A is slender.
(ii) For every homomorphism f : ZN — A, there exists n such that

[1%: < Ker(f) (Zi = Z for eachi).

i>n

(iii) Every homomorphism f : Z¥ — A is continuous with respect to the discrete
topology on A and the product of the discrete topologies on AP

Proof. Clearly (i)<-(ii).
(i)« (iii) This follows from the fact that {I1;-.1Z;, [1;~27Z;, ..., [1;>,Z;, ...} is abasis
of neighborhoods of 0 for the product topology. [

We now consider some examples of slender rings.

Proposition 2. The following conditions are equivalent for a torsion-free ring A with
identity.

(1) A is slender and has no idempotents # 0, 1.
(ii) A is ultraconnected.

Proof. ()=>(ii) Let f : Z¥ — A be a unital ring homomorphism. Then there exist
i1, 12, ..., ip such that f ((a;)) = E}’;lf(&\,-j) for all (g;). In particular,

la=f(z9) =) flei)
j=1

and we can clearly assume f(e;,), f(ei,), ..., f(ei,) # 0, and thus, f(e;)) = --- =
f(ei,) = 1.Butif iy # is,thene; e;, = 0,50 f(e;) f(e;,) = 0. We conclude thatn = 1.
But then A is ultraconnected.

(i))=(@1) By [2], 1.4, 0, and 1 are the only idempotents in A, so every non-zero
homomorphism g : Z¥ — A is unital, and hence, for some j, we have g((a;)) = g(@;)
for all (a;). Thus, A is slender. [ |

Proposition 3. If the additive group of A is slender, then A is slender.
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Proof. Every ringhomomorphism f : Z¥ — Aisalsoan abelian group homomorphism.
]

Now, Z is a slender group, and all direct sums of slender groups are slender. Thus,
for instance, if A is a ring with a slender additive group, then all matrix rings over A
(including various rings of infinite matrices) and all semigroup rings A[S] are slender.
In particular, integral semigroup rings are slender.

The semigroup ring examples can be extended by the use of the result, proved below
(Corollary 1) that the class of slender rings is closed under extensions.

Note that we already have enough information to show that, for rings with identity, slen-
derness is more general than ultraconnectedness (e.g., Z @ Z is slender by Proposition
3) while slenderness is not a purely additive property (e.g., Q and R are ultraconnected
[2], whence slender, but their additive groups are not slender).

‘We now consider some further properties of slender rings, including closure properties
for the class of such rings. The first result is obvious but useful.

Proposition 4. Subrings of slender rings are slender.
The following lemma will also prove useful.

Lemma 1. Let Abearing, f : ZN — A a homomorphism, (i1, ia, ..., i,} a finite subset
of N. Define f : ZV — A by setting

Fl@) = f(@) =Y f@, forall (a).

=l

Then f is a homomorphism.

Proof. 1t is notationally convenient, and involves no loss of generality, to assume that
(i1, i2, .., in} = {1, 2, ..., n}. Now, for (a;), (b;) € Z¥, we have

FU@) Fb)) = f@)fdd) = @)y f&)

j=I

=Y f@) @+ Y. f@fo;)

=l k,j=1

= FUa) f(B) =Y fa))f &)

j=1

= r@ @+ Y f@foy)

j=1 k. j=1

= fa)®)) =Y f@a)b)) = > f@m)) + Y f@by)

7=1 il k,j=1
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= f(a)(®)) — Z f(@jby) — Z fazby) + Z £ (ajby)

j=1 j=1 Jj=t

= fl@)®)).

Addition is easier. |
Proposition 5. If J < A and if J, A/J are both slender; then so is A.

Proof. Let f : Z¥ — A be a homomorphism and let g : A — A/J be the natural map.
Then there exist i1, i2, ..., in € N such that, for all (a;) € ZV, we have

gf (@) =Y ef@).

j=1

Let f ZN — A be as in Lemma 1. Then the image of f is in J, so there exist
ki,kp, ...,k € N such that f((a,)) = 1f('\kl) for.every (a;). But f(Ake) = 0if
ke € {11, i2, ...,in} and f("kl) = f(ax,) otherw1se Hence,

fl@)) = fl@)+Y_ f@)

j=1
=Y F@)+) f@)
=1 j=1

=Y {f(@) :r € it, iz, ey ins k1, k2 ooy Kim )} - "

Corollary 1. If A has an ideal J containing no non-zero idempotents and if A/J is
slender, then A is slender.
Corollary 2. If R is slender, then the following are slender:

i) RIXI;
(ii) R[S] for any monoid S without idempotents apart from its identity;
(1) R[X]].

Proposition 6. Direct sums of slender rings are slender.

Proof. For finite direct sums, this follows from Proposition 5 by induction. But if
{A; : i € I} is a set of slender rings and f : ZN — @®A; a homomorphism, then
there is a finite set {i1, i2, ..., in} such that f(1) € A;, ® A;, ® --- @ A;, and thus, the
image of f is contained in this subring. The result follows. [ |

From Propositions 4 and 6, we obtain

Proposition 7. Finite subdirect products of slender rings are slender.

Since clearly Z" is not slender and Z is, finiteness cannot be removed in Proposition 7.
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Proposition 8. If A is a union of a chain of ideals each of which is a slender ring, then
A is slender.

Proof. Let A = UJ,, where {J, : A € A} is a chain of ideals which are slender. For
every homomorphism f : ZV¥ — A, we have f(1) € J,, for some 1 € A and the result
follows from the slendemess of J,. |

The next result establishes a connection between slenderness for rings and the original
definition of slender groups.

Proposition 9. If A is slender, then, for every homomorphism f : ZV¥ — A, we have
f(en) = O for all but finitely many n.

Proof. If f((a;)) = Ejzlf(?z}j), then, fori ¢ {iy, iz, ..., i}, we have f(e;) = 0. [ |

In contrast to the abelian group case, the converse to Proposition 8 is false. This follows
from Proposition 10 below and the fact that the ring of p-adic integers is not slender
(Example 1). A very important characterization of slender groups is that due to Nunke
[14]: A torsion-free group G is slender if and only if it has no subgroup isomorphic to
ZN, Q or the p-adic integers (for any prime p). We shall obtain a (less tidy) analog
of this for slender rings in two stages: first an “exclusion characterization” of the rings
satisfying the conclusion of Proposition 9, then a characterization of the slender rings
within this class. We can extract a little more information, which may be useful, about
rings with identity satisfying the conclusion of Proposition 9.

Lemma 2. Let A be a ring with identity which is additively torsion-free. If A has a
subring isomorphic to 7V, then it has a subring with identity isomorphic to ZV.

Proof. LetZN C A andlet (14) denote the subgroup (subring) generated by the identity
of A.

Suppose first that ZV N (14) # 0. Let k = min{n € Z* : k14 € Z"} and let
k14 = (n;). Then, for every (m;) € Z", we have

(nim;) = (n;)(m;) = kla(m;) = (km;),

so n;m; = km; for each i. It follows that n; = k for each i, so that k14 = (n;) =
k(1,1,1,..)and thus 14 = (1, 1, 1, ...), i.e., ZV is a unital subring.

Now, consider the case ZV N (14) = 0. Here, the subgroup ZY + (1,) is a unital
subring isomorphic to the standard unital extension of Z¥. But Z¥ has an identity so
ZN +(14) = ZN @ (14) = ZN @ Z (ring direct sum) = ZV . [

Proposition 10. Ler A be a ring with identity which is additively torsion-free. The
following conditions are equivalent.

(1) A has no subring isomorphic to ZN .
(il) A has no unital subring isomorphic to Z~ .
(ili) Every homomorphism from Z~ to A takes all but finitely many e; to 0.
(iv) Every identity-preserving homomorphism from Z» to A takes all but finitely many
e to 0.
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Proof. (i)=(ii) Obvious.

(i))=(i) Lemma 2.

(iii)=(iv) Obvious.

(iv)=>(ii) If A had a unital subring isomorphic to Z", the embedding would take no
e; to 0.

—(iii)=>—() Let f : Z¥ — Abeahomomorphism for which f(e;,), f(ei,), f(ei,), -..
(infinitely many terms) are non-zero. If (m;) is any member of Ker(f), then

mjej, = m;, = (m;)e;, € Ker(f) forall i,

som;, f(e;) = f(mje;) = 0. Since A is torsion-free, we thus have m;, = 0 for each j.
_In particular, Ker(f) N I1Z;, = 0 so

ZN = NZ;, = (NZ;, + Ker(f))/Ker(f) = f(IZ;) € A. [

Corollary 3. (To proof) Let A be an additively torsion-free ring. Then every homomor-
phism f : ZN — A takes all but finitely many e; to O if and only if A has no subring
= 7N,

Proposition 11. Let A be a ring which is additively torsion-free and such that for every
homomorphism f : ZN — A, f(e;) = O for all but finitely many i. Then A is slender if
and only if it has no non-zero subring which is a homomorphic image of ZV /Z™).

Proof. Suppose A has a subring S # 0 which is a homomorphic image of Z¥ /Z™). Let
g be the resulting homomorphism

ZN - ZN¥ jZ™  § C A.

Then g(e;) = O for all i so certainly there is no set {¢; : j = 1,2, ..., n} such that
g(a)) =2/, g(@;,) and thus A is not slender.

Conversely, suppose A has no non-zero subring which is a homomorphic image of
ZVN JZ™, and consider any f : Z¥ — A. Then, for some n, we have f(e;) = 0 for all
i >n.AsinLemma 1, let f((a;)) = f((a;)) — E;‘=1f@). Then for every k, we have

~ flex) — flex) ifk<n
fler) = .
flex) —0 ifk >n
=0,
so there is a surjection ZV /Z® — Im(f) € A and thus, Im(f) = 0. This means that
fla)) = 2;?=1f@), for all (a;) and thus, A is slender. ]

Using Propositions 9-11 and Corollary 3, we now obtain

Theorem 1. A ring A which is additively torsion-free is slender if and only if it has no
subring isomorphic to ZN or a non-zero homomorphic image of TN, [ |

By 3.4 of [2], every non-zero, torsion-free homomorphic image of ZN JZ%N) has
cardinality 2% (the punch line of the proof requiring 12.24 of [4]) so from Theorem
1, we obtain
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Corollary 4. All countable torsion-free rings are slender. |

(Note that the case of Corollary 4 in which the additive group is reduced follows from
Sagiada’s result [17] that countable reduced torsion-free groups are slender.)

Contrasting with Proposition 10 and Corollary 3, Proposition 11 does not come in a
purely unital version; specifically, a non-slender unital ring need not have a unital subring
which is a non-zero homomorphic image of ZV /Z™™), e.g., consider Z¥ /Z™) @ Z. The
theorem just proved can however be used to obtain a characterization of unital slender
rings in terms of unital homomorphisms.

Theorem 2. Let A be a torsion-free ring with identity. Then A is slender if and only if,
for every unital homomorphism f : ZN — A, there exists a finite set {i1, ia, ..., in) such

that f((a;)) = X7_, f @) for all (a;).

Proof. Suppose A is not slender. If A has a unital subring isomorphic to Z", then
clearly the embedding map does not satisfy the stated condition. If there is no such
subring, then by Lemma 2 and Theorem 1, A has a subring, B # 0 which is a
homomorphic image of ZV /Z™). If B is a unital subring there is a unital homomorphism
ZN — 7ZNJZ™) — B C A which fails to satisfy the stated condition. Otherwise, let
u be the identity of B and observe that B + (14 — u) is a ring direct sum. There is a
unital homomorphism IT;. Z; — B which takes all e;(i > 1) to 0. Also, there is a
unital homomorphism Z; — (14 — u) which takes | to 14 — u. These combine to give
a unital homomorphism Z" — B @ (14 — u). But the identity of B @ (14 — u) is 14,
so there is a unital homomorphism g : Z" — A such that g(e1) # 0 and g(e;) = O for
all other i. But for this ¢ we have g(1 — e;) # 0 while all components of 1 — e; are in
the kernel of g. Again, g fails to satisfy our condition and the theorem is proved. |

The following result is in effect in [2]. A more transparent proof is outlined by
Henriksen and Smith towards the end of their paper [10]. We present this proof in detail
to facilitate the description of Example 1.

Theorem 3. Let A be a finite ring with identity. Then there is a unital homomorphism
f:ZN — A such that f(e;) =0 forall .

Proof. Let @ be a non-principal ultrafilter on N. For each (a;) € AY, let
T, ={ieN:a =r} forallr € A.

Then {7, : r € A} is a finite partition of N so there is a unique (non-empty) 7, € &.
Define g : A — A by setting

g((a;)) = that r for which 7, € ®.

If g((a;)) = r and g((b;)) = s, where V; = {i : b; = s}, then T, NV, € ® and for all
i € T, N Vs, we have a; + b; = r + 5, whence

g((ai) (b)) = g((ai + b)) =r + 5 = g((a;)) + g((bi)).

Similarly, a;b; = rs foralli € T, N V and

g((ai) + (b)) = g((aibi)) = rs = g((5i))g((b:)).
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Thus, g is a homomorphism. Now the identity of AV is (14, 14, 14, ...) and Wigpr=
{i : ith component = 14} = N € . Thus, g(1a,14,...) = 14. On the other
hand, {i : i # 1} € ® (as {1} ¢ D) so g(14,0,0,...) = O and similarly
g(0,14,0,0,...),£(0,0,14,0,0,..),..=0.

Define f : ZV — A by setting f((n;)) = g((n;14)) for all (n;). This is the required
homomorphism. n

Example 1. The ring I, of p-adic integers is not slender.

Proof. For each n, we apply the preceding theorem to the ring Z,». For m > n, we
have a homomorphism 7} Z» — Zp» given by 7, (@) = @. Let gy, : ZY, — Zy» and
fm : ZN — Z,n be the maps of the theorem for each m.

Let (a;) be in Z, and let {i € N : @ = 7} be in ® (so that g,,((@)) = 7). Now,
consider the corresponding (a;) in Z’{VL forn <m.lfa; =7inZy» (i.e.,a; = r(modp™)),
thena; =7 in Z,». Thus,

i 1@ =FinZp}D{i:a@=rinZypm),

so the former set is in ®, and hence, g,((a;)) =7 = 7], (r) = n,,8m(a;) (Where a; has
an appropriate interpretation in its two appearances). Now, we introduce Z" . From the
above discussion, we have, whenever m > n,

Jn((x)) = gn((xilz,,)) = gn((X1)) = 7, 8m(X:)
= 71 8m ((Xi1z,,)) = 7y, fin ((x:))

for all (x;), i.e., @)} fin = fn whenever m > n. Thus, there is induced a homomorphism
= /S ljr_ann = I, which must be unital and takes all ¢; to zero. (This example is
in [2]. We have given it in some detail as we will need the argument later.)

By Proposition 4, any torsion-free ring with a subring isomorphic to I, is nonslender.
Thus, we obtain the following examples of non-slender rings.

(i) The field of p-adic numbers and its algebraic closure.

(ii) The field C of complex numbers. As observed in [2], C is isomorphic to the algebraic
closure of the field of p-adic numbers as both are algebraically closed and have
transcendence degree 2% over Q. For a proof, see pp. 311-317 of [11]. For a proof
that C is isomorphic to the completion (with respect to the p-adic valuation) of the
algebraic closure of the p-adic field, see [16, p. 83]. This achieves the same effect.

(iii) M>(IR) (as it contains a copy of C).

(iv) The quaternions.

v) L[X].

Since R is (ultraconnected and hence) slender, Corollary 2 says that R[ X] is slender.
Since C is not slender, it therefore follows that the class of slender rings is not closed
under (torsion-free (semi-) prime) homomorphic images.

It should be possible to refine Proposition 11 and Theorem 1 by obtaining further
information about the kinds of homomorphic images of Z" /Z‘™) which must be present
in a non-slender ring containing no copy of Z" . Dimitrié [5] has observed that as a group
ZN JZ™) contains a copy of Z* . His proof works also for rings, but in that case we can
say a bit more.
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Proposition 12. Let I be anideal of ZV suchthat Z™) C I and Z¥ /I is torsion-free. Let
= {S clNi-ZE &1 } (where we have identified 75 with its obvious copy). Consider
the following conditions.

(i) ZN /I contains no copy of Z" .

(i) If Sy, 2, ..., Su, ... are pairwise disjoint subsets of N, then S; € T for all but finitely
many values of i.

(iii) If S1, S2, ---, Sus ... are pairwise disjoint subset of N, then S; € T for at least one
value of i.

We have the implications (i) = (ii) < (iii).

Proof. We shall use some functional notation for elements of ZV. If S C N, let Xs be
the characteristic function of S(xs(x) = 1ifx € S, 0if x ¢ S). Then Z° (strictly
xsZN) C I if and only if x5 € I.

—(ii)=>—(i) Suppose firstly that N = S; U S, U---U S, U- - - and there are infinitely
many indices i1, iz, ..., in, ... With xs,, X8, -.s X5, --- € 1. Let

A={o e Z" : o is constant on each S;, and o = 0 off us;}.

Then A is a subring of ZV and A = ZV . If« € AN, then for any k, we have x5, o € I.
But o is constant on S;, , so there is an integer m such that x5, « = m xs, . Since xs, @ € I

and ZN /1 is torsion-free, it follows that m = 0. Hence, a(x) = O for all x € §;,, so
o = 0. We now have

ZN = A=A+ D/ICZV/I

More generally, if we have
SiUSU---USU---=TC N,
then defining A’ C ZT by analogy with A above, we obtain

ZN =27t = A =@ +dnzhy)y/anzhycz’ janzh)
Sn@i4 e zYre

—(ii)=>—(iii) If there exist pairwise disjoint S, 52, ..., Sy, ... such that infinitely many
Si, fail to belong to T, then these S;; constitute a collection of subsets violating (iii).
Obviously (ii) = (iii). [ |

IfV € § eT,then xy = xvxs € I soV € T, whileif S,T € T, then
xsur = xs + xr — xsxr € I, so SUT € I'. Hence, {N\S : § € I'} is a filter
and it satisfies the condition:

IfEy, Ey, ..., E,, ... are subsets of N such that E; U E; = N whenever i # j, then
the filter contains at least one (so almost all) E;. (%)

Let W be an ultrafilter, Eq, E3, ..., E,, ... subset of N with E; U E; = N whenever
i # j.Thus, ¥ excludes at most one E;. It follows that any finite intersection of ultrafilters
satisfies (x).



Slenderness for Rings 355

Example 2. Let ® be an intersection of finitely many non-principal ultrafilters
Dy, Py, ..., Pron N, I’ = {N\T : ¢t € ®}. Then P satisfies (x) and I satisfies conditions
(ii) and (iii) of Proposition 12. Moreover, there is an ideal J 2 Z®™) such that Z" /J
contains no copy of Z". Let

J={(x) eZ" :{i : x; =0} € ®}.

Then ZV /J is a subdirect product of the ultrapowers Z¥ /®y, ZV /®,, ..., ZV | ®y.
The latter are prime commutative rings. Suppose ZN /J has orthogonal idempotents
U1, U2, ..., Un, ... . Under each natural map Z¥/J — ZV /®; at most one u; is taken
to the identity and all others to zero. Thus, almost all the u; are in ﬂ;.‘leer(ZN /J —
ZN /®;) = 0. Hence, Z" / J has no subring isomorphic to Z* .

Govaerts, Delanghe, and Impens [8] have shown that when A is a ring of integral
Clifford numbers, every unital A-homomorphism from AY to A is a projection. The
motivation for this comes from work on continuous functions wherein analogous results
can be found for other rings in place of A. We can obtain many examples of rings
behaving like the one treated in [8] by means of a generalization of slenderness.

For a commutative ring A with identity, we define an A-algebra R to be A-slender
if it is additively torsion-free and satisfies the A-algebra homomorphism analog of the
condition in Definition 3. An A-module is slender if it satisfies the A-homomorphism
analog of the condition in Definition 1 (see, e.g., [12]). The following result is reminiscent
of Proposition 2.

Proposition 13. Let A be a commutative ring with an identity, and R an A-algebra. If
R is either

(i) a slender ring; or
(ii) a slender A-module;

then R is A-slender.
Proof. (i) Let f : AY — R be an A-homomorphism. Define g : Z¥ — A" by

setting g((n;)) = (n;14) for all (n;). If R is a slender ring, then there is a suitable set
{i1, i2, ..., in} for which gf ((n;)) = Ej'.‘=1fg(?z}j). Then, for every (a;) € AN, we have

Fl@) = fan @) = f8Uz)@)) = fg(lze) f (@)
=Y fee)f@) =Y felei)@) =y f@,).

j=1 Jj=1 j=1
(ii) is fairly obvious (cf. Proposition 2). i
The next result provides the examples.
Proposition 14. Let A be a commutative ring with identity. If A is A-slender and the

only central idempotents of A are 0 and 14, then every unital A-homomorphism from
AN to A is a projection.
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Thus, for many commutative rings A, the conclusion of [8] is true because of ring, or
even additive group, properties rather than algebra properties. Some examples (without
central idempotents # 0, 1 in all cases) are: countable torsion-free rings (e.g., integral
Clifford algebras) (Corollary 4 or [2]) R [[X]] and R [S] for slender R as in Corollary 2,
R[X] for any R with identity [15, Proposition 2.10]. Although matrix rings over slender
rings need not be slender (see after Example 1), if A is slender as an A-module, then,
for each n, the matrix ring M, (A) is slender as an M,(A)-module {12, Corollary 4]
so M, (A) satisfies the conclusion of Proposition 13. On the other hand, every field of
characteristic O (in fact every infinite field) satisfies the conclusion of Proposition 14
[3] though some such fields, e.g., C (see after Example 1) are not slender rings and no
field K is slender as a vector space. (More generally, a noetherian self-injective ring
cannot be slender as a module over itself.) This result has connections with the problem
of determining when a linear functional defined on a ring of continuous functions is
defined by “evaluation at a point”. See [8] for some pertinent references.

In [8] the authors remark that they know of no infinite indecomposable ring with
identity for which the conclusion of Proposition 13 fails. The ring I, of p-adic integers
is such aring. For, I,/ p"I,, = Z,» for each n and the argument in Example 1 then shows
that there is a non-zero unital homomorphism from / I’,V /1 ,(;N ) to I,.

De Marco and Orsatti [13] have shown that a reduced torsion-free group is slender
if and only if it is not complete with respect to any non-discrete linear metric. We now
seek some kind of analog for slender rings. The result cannot translate straightforwardly
to the ring case, as linear topologies are additively determined and slender rings need
not have slender additive groups. Nor can we simply require the linear metric to one for
which multiplication is continuous. For instance, Z [[X]] is slender (Corollary 2) but is
complete in the (X)-adic metric (and its additive group = Z¥ is not slender).

A linear topology on an abelian group is one for which there is a basis of open
neighborhoods of 0 consisting of subgroups. When this basis is countable, the topology
is quasimetrizable; in addition, when the intersection of the subgroups in the basis is
zero, the topology is metrizable. Let {F1, F2, ..., Fy...} be such a basis in such a case.
Then

{Fi, hNF,...ANFKLN---NE,..}

is also a basis. Thus, we can and will assume that the subgroups in our basis form a
descending chain. An account of this can be found in [18, Chapter II]. Note that, for
metrizable linear topologies, a defining metric d can be assumed to be uniform, i.e., to
satisfy the condition d(x, y) = d(x — y,0) forall x, y.

We shall relate convergence and Cauchy sequences to the basis F; 2 F, D --- D
F, D ... rather than to a metric. A near Cauchy sequence (b,) is one which satisfies the
condition:

by, — byy1 € F,, Vn.

Let (a,) be any Cauchy sequence. Let

o(1) =min{k :a; —a, € Fy forall£,m >k},
0(2) =minfk :o(1) <k and a; —ay € F; forall{,m > k}

and in general

on+1)=min{k:0(m) <k and ag —a,, € F,;1 forall£,m > k}.
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Then as(n) — @ (n+1) € Fy for all n. Hence, (as(n)) is a neat Cauchy sequence. If (a, (n))
converges, then so must the original Cauchy sequence (a, ). Hence, a metrizable linear
topology is complete if and only if every neat Cauchy sequence converges. (This seems
to be a well-established folklore, but the author is not aware of any written account.)
Finally, in what follows, a CLM topology is a complete linear metrizable topology.

Proposition 15. Let H be a subgroup of an abelian group G. If H has a CLM topology,
this can be extended to a CLM topology on G.

Proof. Let B = {By, By, ...} be a countable group basis of neighborhoods of 0 in H.
Then B is a similar basis for a topology in G, so G is metrizable. Now, let {(a,,) be a neat
Cauchy sequence in G. Then a,+1 —a, € B, € H foralln. Now,a; —a; =0¢e€ H
and a, 1 — a; = (@n4+1 — an) + (@, — a1), so by induction, a, — a; € H for all n.
Clearly, (a, — a;) is a Cauchy sequence, so by completeness of H, there exists b € H
with lim(a, — a;) = b. But then b + a; = lima, so G is complete. [ |

The characterization theorem of [13, Sec. 2 and its proof] show that if a torsion-free
group G contains no copy of I, for any p, then in any complete linear metric on G,
the completion (closure) of an infinite cyclic group is discrete. It then follows that G
contains an infinite direct product of infinite cyclic groups. For slender rings we have
to exclude infinite direct products of copies of Z, and therefore are interested in cyclic
groups (subrings) generated by idempotents.

Theorem 4. A torsion-free ring A has a subring isomorphic to ZV if and only if At has
a non-discrete CLM topology and a closed subring B in which

(i) multiplication is continuous; and
(ii) there is a convergent (whence null) sequence of non-zero orthogonal idempotents.

Proof. Let the subring B be as described, and let (u,) be a convergent sequence of
orthogonal idempotents in B. If a = lim u,,, then

2

a =limu, =limu? = a* = limu, limu, | = im u,u,4; = 0.

Clearly, we obtain an injective ring homomorphism f : Z®) — A by defining
f(Zaje;) = Za;u;. Now, let Z have the discrete topology in all its copies, Z¥ the
product topology, and Z") the induced subspace topology.

LetVi 2V, D -.-2V, D .. bea group basis of neighborhoods of 0 in A. Without
loss of generality, we can assume that u, € V,, for all n.

If in Z®) | we have Tcie; = limy_s oo Ebi(")e,-. Then for every m € N, there exists
k € N such that 5™ = ¢;, b{" = ¢3, ..., YY) = ¢, for all n > k. This means that

Zciui = Zbi(n)ui = f(ZCiei s Zb(n) ) (the, Zbi(n)ei)
i>m i>m
= Zc,-u,- = Zbgn)ui & Vm+1

i>m i>m

for all n > k. By invariance of the metric, we have

H{(Laer) = Lo = Jim 3207 = tim 1(367e:).
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so f is continuous and in fact uniformly continuous. But Z¥ is the completion of Z®")
so there is a continuous group homomorphism g : Z¥ — A such that g | ZM) = f. As
f takes its values in B, we have f(x) f(y) = f(xoyo) as x — xg, y = Yo.

Now, Z¥ is actually a topological ring, and Z™) a topological subring. If (r;), (s;) €
ZN | then (r;) = limy— oo X7 rie; and (s;) = limy o0 X _;sie;. Hence,

g (g = g( lim anr,-e,-)g(nlggo isiei)
=1 i=1

-t (L) o35
i=1 i=}

= lim f(;riei)nlggo f(;riei)

n n
= lim E riu; lim g Sili
n—00 n—00 4 I
= 3

i=1
n n
ST )
=1 =il
n
= nli)ngo ;risiui = g((ris;)) = g((ri)(s:))-

Thus, g is a ring homomorphism. If (#;) € Ker(g), then for every j, we have
tiej = (1)e; € Ker(g) N ZM = Ker(f) N Z™ = 0. Thus, Ker(g) = 0 and Z" =
Im(g) < A.

Conversely, suppose (without loss of generality) ZV C A. Then the product on Z" of
the discrete topologies on the copies of Z is a non-discrete CLM topology which extends
to A. But ZV is a topological ring with respect to this topology and, in ZN , we have
lim,—, 0 €5 = 0. ]

Theorem 5. Let R be a torsion-free ring which is the completion of Z in some
non-discrete linear metric topology. Then for some prime p, R has a subring isomorphic
to the ring I, of p-adic integers.

Proof. First, note that as all its subgroups are ideals, Z is a topological ring with
respect to any of its linear topologies. Let {Bi, By, ..., By, ...} be a group basis of
neighborhoods of 0 in Z. Then (as a group and as a ring) we have R = imZ/B,
(where the set of Z/B,, is directed by the embeddings B,, C By,). Now, imZ/B,
is closed in I1Z/B,, where the latter has the product topology from the discrete
topologies in the Z/B,. As the Z/B, are finite, R(= [mZ/B,) is compact. Now
the topology of R is also linear (see, e.g., [7, Vol.I, p.68]). If {V1, V2, ..., Vp, ...}
is a group basis of neighborhoods of 0 in R and x € R\{0}, then there exists
k such that x ¢ Vi. But then x € x + Vy and 0 € U{x ¢ y+ Vi:y+ Vi}.
It follows that R is totally disconnected. Thus, the character group Char(R) of
R is a discrete torsion group and R = Char(Char(R)). But Char(Char(R)) =
Hom(Char(R), R/Z) = Hom(Char(R), II,Z(p>™)) = II,Hom(Char(R), Z(p)).
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Let Char(R) = ®,Gp, where G, is a p-group. Then we have (additively) R =
Char(Char(R)) = II,Hom(®, G, Z(p™)) = II,Hom(G,, Z(p*™)). If some G, were
non-divisible, it would have a cyclic summand (g), whence R would have a summand
= Hom((g), Z(p*°)), also cyclic. But R is torsion-free. We conclude that each G, is
divisible, hence a direct sum of copies of Z(p*°). But then Hom(G ,, Z(p°)) is isomor-
phic to a product of copies of Hom(Z(p™), Z(p*)) = I,. Then Hom(G,, Z(p*>°)) is a
reduced I,,-module in a natural way (a similar argument was used by Harrison [9]). Write
R* = I1,8(,), where Sy = Hom(G,, Z(p*°)). For every p, S(pyI14-pS(q) is divisible
and hence zero. Thus, each S(,) < R and R = I, () as a ring direct product. Now, Z
has an identity, whence so does R and finally so do the S(,). Thus, every non-zero S,)
is a unital 7,-algebra and so contains a subring isomorphic to 7,,, and therefore, so does
R.. [ ]

Theorem 6. A torsion-free ring A for which A™ is reduced is slender if and only if, for
every CLM on A™,

(1) (the closure of) {e) is discrete for all idempotents e; and

(ii) there is no convergent sequence of non-zero orthogonal idempotents.
(Here, {e) means the cyclic subgroup generated by e.)

Note that, in Z [[X1], (1) is indeed discrete in the (X)-adic metric (cf. our earlier
remark).

Proof. First, suppose A is slender. If e is a non-zero idempotent, then the closure of (e)
is a subring which is slender (Proposition 4) and thus has no subring = I, for any p
(Example 1). By Theorem 5, {¢) is closed and discrete.

Assuming there exists a convergent (whence null as in Theorem 4) sequence (u,)
of non-zero orthogonal idempotents, we can also assume that A* has a group basis
Uy 2 Uy 2 --- of neighborhoods of O such that u, € U, for each n. As (u;) is
dense, there exists (1) > 1 such that (u1) N Uz1y = {0}. In the same way, there exists
7(2) > (1) such that (u;1)) N Uz) = {0}). If x € Uz N (u1) @ (uc)), say x =
rul+suzy, r, s € Z,thenruy = x —suq)y € Ur2)+U;q) = Ur) sor = 0 and then
suz(1) = x € Ur), sos = 0. But then x = 0. Proceeding thus we obtain a subsequence
(1, Ur(1)s Uz(2)s --o» Ur(n)s ---) SUCh thatif § = (1) ® (1)) B+ - D (Ur(n)) D - - - , then
the relative topology on S has a basis

SNU1285NUy285NU; 228N Uy, ..., le,
=, (urm)@Wt(z))@“'@(”rw)e"'

(Urp) ® -+ @ (o) B -

A (g YO D

v v

of group neighborhoods of 0. The closure of S is thus isomorphic to Z . (In this part of
the argument, we are imitating [13, p. 159]. But S is a ring so its closure is too. But then
the slender ring A contains a copy of Z" . We have a contradiction, so (ii) holds as well
as (i).
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Now, suppose (i) and (ii) are valid. By (ii) and Theorem 4, A contains no copy of Z» .
If A were to contain a non-zero homomorphic image of Z¥ /Z®) | the latter would be
additively algebraically compact, torsion-free, and reduced, whence a product of p-adic
algebras with identities. But then as in the proof of Theorem 5, A would contain a subring
= I, for some p.

Let e be the identity of a copy of I, € A. As in Proposition 15, the p-adic metric
on this copy of I, extends to a CLM on A™ in which (e) is not discrete. This cannot
happen, so A cannot contain a non-zero homomorphic image of Z¥ /Z®). Hence, by
Theorem 1, A is slender. u

When A is reduced, we have the following analog of Nunke’s characterization [14]
of slender groups.

Corollary 5. (To proof) A torsion-free ring A for which A" is reduced is slender if and
only if it contains no copy of ZV or any I .

Referring to Proposition 1, we obtain

Corollary 6. Let A be a torsion-free ring with identity whose only idempotents are O
and 1 and with A" reduced. The following conditions are equivalent:

() (1) is discrete under any CLM topology on A ;
(i1) A has no subring isomorphic to any I,;
(iii) A is ultraconnected.

No doubt there are generalizations of Theorem 6 and its corollaries in which more
ring-theoretic substitutes can be found for the overtly additive condition of being reduced.
Note however that something is needed—the mere absence of copies of ZV and I » does
not ensure slenderness.

Proposition 16. Let ® be a non-principal ultrafilter on N. Then 7N / ® is not slender,
though it contains no copy of any I, (and, of course, no copy of ZV ).

Proof. As Z/® is prime, its only idempotents are 0 and 1. Thus, if Z /® has a subring
isomorphic to I, the latter must have the same identity as 7N/ ®. Since 1 » has lots of
units, we are finished if we can show that Z¥ /® has +1 as its only units. Let (a;) + ®
be a unit of ZV /®. Then there exists (b;) € ZN such that {i : a;b; = 1} € ®. Hence,
fitaa=1U{i:aq;=—-1} = {i:a,==%1} D {i :a;b; =1} € P, so as P is an
ultrafilter, it contains either {i : a; = 1} or {a : a; = —1}, and accordingly (a;) + ® = 1
or —1. [ ]

Note that this argument also shows that Z/® does not contain any unital subring with
divisible additive group. The fact that Z" /® has only =1 as units also follows (as does
much else) from the fact that Z" / & is a non-standard model of arithmetic [1], but it seems
preferable to give a self-contained argument. Proposition 16 also shows that, in Theorem
6, we cannot replace the condition “A™ is reduced” by the condition “the divisible ideal
of A contains no non-zero idempotents”. Z" /® cannot be reduced, otherwise, it has a
unital subring isomorphic to some I, as in the proof of Theorem 6. On the other hand,
the divisible ideal does not contain the one and only non-zero idempotent.
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