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Abstract. By analogy with thewell-known abelian group concept, we define a ring A tg be slender
if every ring homomorphism zrv + A depends only on finitely many components of zt' , the direct
product of ltg copies of z. The relationships between this notion, slenderness for abelian groups,
and ultraconnected rings are explored. A topological characterization of slenderness for rings is
also obtained.

1.. Introduction

The class of slender abelian groups is an interesting and well-studied class and has
topological as well as purely algebraic characterizations. The characteristic property of
a slender group G thatevery homomorphism from a direct product into G be determined
by its effect on finitely many components has obvious analogs for other kinds of algebraic
structures, so it seems worthwhile to seek out versions of slenderness in other such
settings. A fair amount of work has been done on slender modules (see, e.g., [12,
151 and the references therein). A related concept has been investigated by Bcirger and
Rajagopalanl2l and subsequently by Henriksen and Smith t101. A ring A with identity
is said to be ultraconnected 1f every unital homomorphism from the direct product ZN
of hls copies of the integers to A depends on a single component.

We introduce a concept of slenderness for rings based on the requirement that
every homomorphism from ZN be determined by its effect on finitely many ei, where
er - (1,0, 0, 0, ...) , e2 : (0, 1, 0, 0, ...) , etc. This is a stronger condition than is
obtained by the requirement that f (ei) - 0 for all but finitely many values of I (in
contrast to the abelian group case). Non-unital rings are thus drawn into the picture,
but slenderness is only really interesting when there are homomorphisms from ZN to
a ring, so the ring needs some non-zero idempotents. Rings, whose additive groups
are slender, are slender rings and ultraconnected rings are slender. These are, however,
not the only sources of slender rings. We obtain many examples of slender rings
and some characterizations of slenderness for rings and compare these with known
characterizations of slender abelian groups. We also shed a little light on the structure of
ultraconnected rings.
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Our notation is fairly standard: N, Z, Q, R, C represent the natural numbers,
integers, rationals, reals, and complex numbers with or without structure, "group" always
means "abelian group", the conventions of [7] are generally adhered to, all rings are
associative, but no identity is assumed. It should be noted that elsewhere in the literature,
"slender rings" means "rings which are slender as a module over itself".

2. Results

In what follows, llA; will denote the direct product of a set {Ai : i e /} of rings or
abelian groups, a typical element of IIA; will be called (ai), and ni : fIAi + A; will
denote the 7th projection. When I : N, the set of natural numbers and A; - A for
eachi, FIA; will also be called AN, while the direct sum OA; will also be called 4(ru).
When A has an identity 1, the element of AN which has 1 in position n andO elsewhere
will be called en. FinaTly, in any fI Ai , with any (ai), we associate elements @ deflned
as follows: the ith entry of 4. is a4 and all others are 0. Thus, for rings with identity,

4  - @ ) e i

Definition 1. (Fuchs, see [6]) A torsion-free abelian group G is slender if, for every
homomorphism f ; ZN -> G, we have f (e) : 0 for all but finitely many values of i.

Definition 2.121 A ring Awith identity is ultraconnected if, for every set {Ri : i e N} of
rings with identity and every identity-preserving homomorphism f : IIR; ) A, there
exists an index j such that

f ( ( a ) ) : f @ j )

for all (ai) e fIR;.

A group G is slender if and only if, for every homomorphism f : ZN I G, there
exists a finite subset {it, iz, ..., ir} of N such that

f  ( (a)) - I  f  @,,)  - I  f  (o, ,e i i ) :Do, , f  ( ' , , )
j : l  j : I  j : I

[7, Vol.II, p. 159]. Since a ring is ultraconnected if and only if it satisfies the condition of
Definition 2 with each R; : Z 12, 1.21, it seems reasonable to seek a generalization of
ultraconnectedness based on slenderness which can usefully be applied to rings without
identity, whose elucidation can be assisted by the substantial established theory of slender
groups. Accordingly, we make the following definition.

Definition 3. A ring A is slender if

(i) the additive group of A is torsion-free; and
(i1) for every ring homomorphism f , ZN --> A, there exist iy, iz, ..., in such that

f  ( (a ) ) - I  f@, ) -
j : I

for atl (a) e ZN .

-  
I  a i i f  @i i )
j : l
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Condition (ii) is trivially satisfied when there are no homomorphisms f , ZN + A
and so is interesting only in the presence of idempotents in A. As we shall see later,
in the presence of an identity, slenderness can be charactenzed in terms of unital
homomorphisms. We include (i) in the definition because (ii) is effectively never satisfied
in the presence of additive torsion (see Theorem 3).

Later we shall examine topological aspects of slenderness. For now we note
a characterization with a topological flavor which is an exact counterpart of one
characteri zation of slender groups.

Proposition 1.. The following conditions are equivalent for a torsion-free ring A.

(i) A is slender
(1t) For every homomorphism f : ZN -+ A, there exists n such that

J,Ut 

c Ker(f ) (Zi : Z for each i).

(iii) Every homomorphism f : ZN + A is continuous with respect to the discrete
topology on A and the product of the discrete topologies on ZN .

Proof. Clearly (i)<+(ii).
( i i )<+( i i i )Thisfol lowsfromthefact that{TI i . rZr,  f I>zZr, . . . , f l i r rZ; , . . . } isabasis

of neighborhoods of 0 for the product topology. r

We now consider some examples of slender rings.

Proposition 2. The following conditions are equivalent for a torsion-free ring A with
identity.

(D A is slender and has no idempotents 10,l.
(ii) A is ultraconnected.

Proof. (i)+(ii) Let f ; VN + A be a unital ring homomorphism. Then there exist
it, i2,..., l, such that f ((a)) - E'Ltf @,,) for all (a).lnparticular,

r t :  f  Qz i l : f , f  @r , )
j : l

and we can clearly assume f (ei), f (er), . . . , f (ei) t' 0, and thus, f (ei,) : . . . :

f (ei): 1. But 1f h # iz,then€ifiz: 0, so f (ei)f @rr) :0. Weconclude thatn : I.
But then A is ultraconnected.

(ii)+(i) By l2l, 1.4, 0, and 1 are the only idempotents in A, so every non-zero
homomorphism g ; ZN + A is unital, and hence, for some ,1, we have g((a;)) : g@j)
for all (a;). Thus, A is slender. r

Proposition 3. If the additive group of A is slender then A is slenden
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Proof. Everyringhomomorphism f , ZN + Ais also an abelian grouphomomorphism.
I

Now, Z is a slender group, and all direct sums of slender groups are slender. Thus,
for instance, if A is a ring with a slender additive group, then all matrix rings over A
(including various rings of infinite matrices) and all semigroup rings A[S] are slender.
In particular, integral semigroup rings are slender.

The semigroup ring examples can be extended by the use of the result, proved below
(Corollary 1) that the class of slender rings is closed under extensions.

Note that we already have enough information to show that, for rings with identity, slen-
derness is more general than ultraconnectedness (e.g., V, @ Z is slender by Proposition
3) while slenderness is not a purely additive property (e.g., Q and IR are ultraconnected
[2], whence slender, but their additive groups are not slender).

We now consider some further properties of slender rings, including closure properties
for the class of such rings. The first result is obvious but useful.

Proposition 4. Subrings of slender rings are slender

The following lemma will also prove useful.

Lemma l. Let Abe aring, f : ZN --> A ahomomorphism, {it, iz, ..., ir} afinite subset
of N.Define 7 , Z* --> A by setting

7(@)) : f ((a)) - D, f @t) for au (a).
i : l

Then I tt o homomorphism.

Proof. It is notationally convenient, and involves no loss of generality, to assume that
{ i t ,  iz ,  . . . ,  i r }  -  {1,  2,  . . . ,  n} .  Now, for  (a;) ,  (b)  e ZN ,  wehave

7<<o,>> 7r@)) : f ((a)) f ((b)) - f ((a))y r 6)
i : l

-D,f @)f ((b,)) + D, ,rrf 6)
j : l  k , j : l

- \ - ^
f ((ai)) f  ((biD - 

|  f  ((aiD f (bi)
j : l

- I f @i)f ((b;)) +
j : l

f @)f 6i)

f ((a)(b)) -f, rrr",ri) -f, r^(b)) + i ,^r,,
j : l  j : l  k , j : I

I
k ,  j : r
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- r ((a)(b)) -i r@, -D, r6D. i r6D)
j : l  j : l  j : l

- F(a)(b)).

Addition is easier. r

Proposition 5. If J < A and if J, A/J are both slendet then so is A.

Proof. Let f : ZN --> Abe ahomomorphism and let g : A --> A/ J be the natural map.
Then there exist 11 , iz, ..., in e N such that, for all (a) e ZN , wehave

sf (@)):f .sf @t).
j : I

fet / : ZN + A be as in Lemma 1. Then the image of 7 is in "/, so there exist
kr,kz,...,k* e N such that 7(a)) : ET:t7@0) for every (a;). But 7@n,>: 0 if
fu e {it, i2, ..., in} and f @r) : f @r) otherwise. Hence,

f ( ( a ) ) - 7< .d ) * t  f@ i , )
j : l

3 r , ^  
n

-L  f@n)+D f@i , )
I - - l  i : l

-  
I  { f  @ , )  :  r  e  { i 1 ,  i 2 ,  . . . ,  i n ,  k r ,  k z '  . . . ,  k * } l  .  I

Corollary l. If A has an ideal J containing no non-zero idempotents and if A/J is
slenden then A is slender

Corollary 2. If R is slender, then the following are slender:

(i) Rlxl;
(iD RlSlfor any monoid S without idempotents apart from its identity;
(iii) Rttxll.

Proposition 6. Direct surns of slender rings are slenden

Proof. For finite direct sums, this follows from Proposition 5 by induction. But if

{Ai : i e 1} is a set of slender rings and f : ZN -+ OA; a homomorphism, then
there is af in i te set  { i r , i2, . . . ,  i r }  suchthat / (1)  .  Ahs^ Ai ,  O " '@ Ai,  andthus, the
image of / is contained in this subring. The result follows. t

From Propositions 4 and 6, we obtain

Proposition 7. Finite subdirect products of slender rings are slenden

Since clearly ZN isnot slender and V,is,finiteness cannot be removed in Proposition 7.
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Proposition 8. If A is a union of a chain of ideals each of which is a slender ring, then
A is slender

Proof. Let A - l)Jx, where Ux z ), € A) is a chain of ideals which are slender. For
every homomorphism f , ZN + A,we have f(1) e Juforsome p e Landtheresult
follows from the slenderness of Jr. r

The next result establishes a connection between slenderness for rings and the original
definition of slender groups.

Proposition 9. If A is slender, then, for every homomorphism f : ZN --+ A, we have
f (e") : 0 for all but finitely many n.

Proof. lf f ((aiD - Ef:tf @i,), then, for i ( {ir, iz,..., inl, we have f (e) - 0. r

In contrastto the abelian group case, the converse to Proposition 8 is false. This follows
from Proposition 10 below and the fact that the ring of p-adic integers is not slender
(Example 1).A very important charactenzation of slender groups is that due to Nunke
[14]: A torsion-free group G is slender if and only if it has no subgroup isomorphic to
ZN , Q or the p-adic integers (for any prime p). We shall obtain a (less tidy) analog
of this for slender rings in two stages: first an "exclusion characterization" of the rings
satisfying the conclusion of Proposition 9, then a characteizatron of the slender rings
within this class. We can extract a little more information, which may be useful, about
rings with identity satisfying the conclusion of Proposition 9.

Lemma 2. Let A be a ring with identity which is additively torsion-free. If A has a
subring isomorphic to ZN , then it has a subring with identity isomorphic to ZN .

Proof. LetZN c A and let (1e) denote the subgroup (subring) generated by the identity
of A.

S u p p o s e  f i r s t t h a t  Z N  n O e )  +  0 . L e t k _  m i n { n  e Z + : k I a . _  Z N }  a n d l e t
kIe - (n;). Then, for every (m) e ZN , wehave

(n imi )  -  (n ; ) (mi )  :  k Ie (mt )  -  (kmi ) ,

so nimi - kmi for each i. It follows that ni : ft for each i, so that kLe - (n) -
k(L, l ,  1,  . . . )  and thus I t  :  (1,  1,  1,  . . . ) ,  i .e. ,  ZN is a uni ta l  subr ing.

Now, considerthe case ZN I (1a) : 0. Here, the subgroupZN + (1a) is aunital
subring isomorphic to the standard unital extension of ZN . But ZN has an identity so
ZN +  (1a)  :  zN @ (1a)  =  zN @z(nngd i rec tsum)  =zN.  r

Proposition L0. Let A be a ring with identity which is additively torsion-free. The
following conditions are equivalent.

(i) A has no subring isomorphic to ZN .
(ii) A has no unital subring isomorphic to ZN .

(111) Every homomorphismfrom ZN to A takes alt but finitely many ei to 0.
(iv) Every identity-preserving homomorphismfromZN to A takes alt butfinitely many

ei to 0.
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Proof. (i)+(ii) Obvious.
(ii)+(i) Lemma2.
(iii)+(iv) Obvious.
(iv)+(ii) If A had a unital subring isomorphic to ZN , the embedding would take no

ei to 0.
-(iii)4-(i)Let f , ZN + Abe ahomomorphismforwhich f (ei), f (ei), f (ei), ...

(infinitely many terms) are non-zero.lf (mi) is any member of Ker(/), then

ffiii€ii - frj - (mi)ei, e Ker(/) for all i7,

sonti,f @i) : f (mt,eij) :0. Since A is torsion-free, wethus havem;, - 0 for each j.

In particular, Ker(/) AflZi, : 0 so

zN =v1zr,= ( f IZi ,  *Ker( / ) ) /Ke4f)z f  ( f IZi)  c A. I

Corollary 3. (To proof) Int A be an additively torsion-free ring. Then every homomor-
phism f , ZN + A takes all but finitely many ei to 0 if and only if A has no subring
= V r N .

Proposition LL. Let A be a ring which is additively torsion-free and such that for every

homomorphism f ; ZN + A, f (e) :\for all butfinitely many i. Then A is slender if

and only if it has no non-zero subring which is a homomorphic image of ZN 1V@) .

Proof. Suppose A has a subring S + }which is ahomomorphic image of ZN 1Z@. Let
g be the resulting homomorphism

V,N + Vr't 1V@) -+ S c A.

Then S@) : 0 for all j so certainly there is no set {ei, : j : 1,2, ...,n} such that

s(a)) - El:18@i1) and thus A is not slender.
Conversely, suppose A has no non-zero subring which is a homomorphic image of

VN 1V@), and consider arrryJ : ZN + A. Then, for some n, wehave f (e) : 0 for all

i > n. As in Lemma l,let f ((a; )) : f ((a)) - E'l:, f @j) .Then for every k, we have

f (ei - f @i tf k < n

f  (ed -0 1f  k  > n

so there is a surjectionZN lZ(N) + Im(/) c A and thus, Im(/) : 0. This means that

f ((aiD - Ef:tf @), for all (ai) andthus, A is slender. I

Using Propositions 9-11 and Corollary 3, we now obtain

Theorem l. A ring A which is additively torsion-free is slender if and only if it has no

subring isomorphic to ZN or a non-zero homomorphic image of ZN 1V{w) . r

By 3.4 of [2], every non-zero, torsion-free homomorphic image of ZN 1Z{N) has

cardinality 2fto (the punch line of the proof requiring 12.24 of tal) so from Theorem
1. we obtain

35r

7{rol - f
: 0
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Corollary 4. All countable torsion-free rings are slender. a

(Note that the case of Corollary 4 in which the additive group is reduced follows from
Sagiada's result [17] that countable reduced torsion-free groups are slender.)

Contrasting with Proposition 10 and Corollary 3, Proposition 11 does not come in a
purely unital version; specifically, a non-slender unital ring need not have a unital subring
whichisanon-zerohomomorphicimage of ZN 1ZQ'r), e.g.,consider VN 1V@) @Z.The
theorem just proved can however be used to obtain a characterization of unital slender
rings in terms of unital homomorphisms.

Theorem 2. Let A be a torsion-free ring with identity. Then A is slender if and only if,
for every unitalhomomorphism f : ZN + A, there exists afinite set {i1, i2, ..., inl such
that f ((ai;; - Ef:r f @i)for ail (a;).

Proof. Suppose A is not slender. If A has a unital subring isomorphic to ZN, then
clearly the embedding map does not satisfy the stated condition. If there is no such
subring, then by Lemma 2 and Theorem 1, A has a subring, B + 0 which is a
homomorphic image of ZN 1Z@). lf A is a unital subring there is a unital homomorphism
ZN + Vu 1V{N) --> B c A which fails to satisfy the stated condition. Otherwise, let
ubethe identity of B and observe that B * (la -z) is aring direct sum. There is a
unital homomorphism flirrZi + B which takes all e;(i > 1) to 0. Also, there is a
unital homomorphism Zt --> (le - z) which takes el to la - z. These combine to give
a unital homomorphism zN --> B O (la - u). But the identity of B O (la - u) is la,
so there is a unital homomolphism g : ZN --> A such that g@) l0 and S@) - 0 for
all other l. But for this I we have g(1 - e) I 0 while all components of 1 - er ate rn
the kernel of g. Again, g fails to satisfy our condition and the theorem is proved. r

The following result is in effect in l2l. A more transparent proof is outlined by
Henriksen and Smith towards the end of their paper [10]. We present this proof in detail
to facilitate the description of Example 1.

Theorem 3. Let A be a finite ring with identity. Then there is a unital homomorphism
f , ZN -+ A such that f (e) - 0 for all i.

Proof. Let O be a non-principal ultrafilter on N. For each (a) e AN ,let

T r : { i  e  N : a t - r l  f o r a l l r e A .

Then {7, : r € A} is a finite partition of N so there is a unique (non-empty) T, € O.
Define g : AN --> A by setting

S((ai)) - that r for which Z, e O.

I f  s(aiD:r  arrds(btD:,r ,where Vs -  { i  :b i  -  s} ,  thenT, n % e O andforal l
i e T, n %, we have ai * bi - r *s, whence

s(@i)(biD -  s((ai  + biD -  r  *  s -  s(@iD + s((b;)) .

Similarly, aibr - rs for all i e T, n V, and

s(@r) + (bt))  -  g((aibi))  :  rs -  s((sr))s(biD.
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Thus, g is a homomorphism. Now the identity of AN is (la ,lt,lt ...) and Wro :

{t : i th component - Iel _ N € O. Thus, SQe,ll ,...) _ la. On the other
hand, { i  :  i  + 1} € O (as {1} 4 O) so g(1,a,0,0, . . . )  _ 0 and simi lar ly
g ( 0 ,  l e , 0 , 0 ,  . . . ) ,  g ( 0 , 0 ,  1 a , 0 , 0 ,  . . . ) ,  . . .  -  0 .

Define f , ZN + A by setting f ((n)) : g((niln)) for all (n). This is the required
homomorphism. I

Example 1. The ring Io of p-adic integers is not slender.

Proof. For each n, we apply the preceding theorem to the rrng Zu". For m > n, we
have ahomomorphismnflZo- ) Zp, given by oh@) : a.Let g* : Z!- + Zo* and,

f^ : ZN + Zo- be the maps of the theorem for each m.
Let(a) bein Z!*  andlet{ i  e N :  a i :7}bein <D (so thatg^((a))  -V).  Now,

considerthecoffesponding (a)inZf"forn 1 7n.If ai - V rnZo* (i.e.,ai : r(modp*)),
then a; : 7 in Zr".Thus,

{ i  :  a i  - v  i n Z o , }  )  { i  : d  - v  i n Z o ^ } ,

so the former set is in O, and hence, g"((at)) : V : TrnF) - nkB*(Z;) (where ai has
an appropriate interpretation in its two appearances). Now, we introduce ZN . From the
above discussion, we have, whenever m ) tt,

f " ( (x))  :  B,((x i lzo"))  :  B"(( i  i ) )  -  n l ,S^(I  i )

- nfr7^((xilzo-D : nkf*(x))

for all (x;), i.e., Tkf^ - f" whenever m 2 n. Thus, there is induced a homomorphism

f , ZN + lPZo" = 1o which must be unital and takes all ei to zero. (This example is
inl2l. We have given it in some detail as we will need the argument later.)

By Proposition 4, any torsion-free ring with a subring isomorphic to I, is nonslender.
Thus, we obtain the following examples of non-slender rings.

(i) The field of p-adic numbers and its algebraic closure.
(ii) The field C of complex numbers. As observed in [2], C is isomorphic to the algebraic

closure of the field of p-adic numbers as both are algebraically closed and have
transcendence degree 2No over Q. For a proof, see pp. 3ll-3I7 of [1 1]. For a proof
that C is isomorphic to the completion (with respect to the p-adic valuation) of the
algebraic closure of the p-adic field, see [16, p.83].This achieves the same effect.

(iii) M2(lR) (as it contains a copy of C).
(iv) The quaternions.
(v) Iplxl.

Since IR is (ultraconnected and hence) slender, Corollary 2 says that IR[X] is slender.
Since C is not slender, it therefore follows that the class of slender rings is not closed
under (torsion-free (semi-) prime) homomorphic images.

It should be possible to refine Proposition 11 and Theorem 1 by obtaining further
information about the kinds of homomorphic images of ZN 1Z@) which must be present
in a non-slender ring containing no copy of ZN. Dimitri6 [5] has observed that as a group
Vr't 1V@) contains a copy of ZN . His proof works also for rings, but in that case we can
sav a bit more.



354 B.J. Gardner

Propositi on 12. Let I be an ideal ofZN suchthatZ(N) c I andZN / I is torsion-free. Let
f - {S c N : Zs c Il fuhere we have identifiedZs with its obvious copy). Consider
the follow ing conditions.

(i) Z* /t contains no copy of ZN .
(ii) f Sr , 52, ..., Sn, ... are pairwise disjoint subsets of N, then Si e I for all butfinitely

rnany values of i.
(111) If Sr, 52, ..., Sr,... are pairwise disjoint subset of N, then Si e I for at least one

value of i.

We have the implications (i) + (ii) + (iii).

Proof. We shall use some functional notation for elements of ZN .If S c N, let Xs be
thecharacter ist icfunct ionof S(X5(x):1i f  x e S, 0i f  x f  S).Then Zs (str ict ly

xsZN) c / if and only if x5 e 1.
-( i i )9-( i )  Supposef i rst lythatN: Sr USz U.. .USn U . .  andthereareinf in i te ly

many indices i r ,  i2,  . . . ,  in, . . .  wi th Xs, Xsz, . . . ,  Xsn, . . .  # I  .  Let

A - {o e ZN : o is constant on each S;, and o :0 off U S;, }.

ThenAisasubr ing of  ZN andA = V,N. l f  u e Aal , thenfor urryk,wehave Xs,ou e I .
But cr is constant on S;o , so there is an integer rn such that Xg,oo(, : m Xs,n . Since Xs,ou e I
andZN /I is torsion-free, it follows thatm: 0. Hence, a(x) - 0 for all x e Sjo, So
cY - 0. We now have

z N = A = ( A + I ) / I c z N / 1 .

More generally, if we have

_ T  C  N ,

then defining At c Zr by analogy with A above, we obtain

zN  =z r  =  A ,=  (A ,+e  nz rD /e  nz r )  cz r  / ( t  az r )
= (zr + D/r . zN lr.

-(i i)+-(i i i)Ifthereexistpairwisedisjoint,Sl,,S2,..., Sr,... suchthatinfinitelymany
S;, fail to belong to f, then these ,Srj constitute a collection of subsets violating (iii).
Obviously (ii) =+ (iii). I

f i  V C,S € l, then Xy _ X7XS € 1 so I/ € f, while if S, Z € f, then
Xsur : Xs * Xr - XsXr € .I, so S U Z e f. Hence, {N\S : S e f} is a filter
and it satisfies the condition:

If Et, Ez, ..., En, ... are subsets of N such that Ei U Ei - N whenever i I j, then
the filter contains at least one (so almost all) Ei. (*)

Let V be an ultrafilter, Er, Ez, ..., Er, ... subset of N with Ei U E1 - N whenever
i + j . Thus, V excludes at most one Ei. It follows that any finite intersection of ultrafilters
satisfies (x).
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j : I

(ii) is fairly obvious (cf. Proposition 2).

The next result provides the examples.

J) )

Example 2. Let O be an intersection of finitely many non-principal ultrafllters
<Dl,  02, . . . ,  OkonN,f  -  {N\7 :  /  e <D}.ThenOsat isf ies(*)andf sat isf iescondi t ions
(ii) and (iii) of Proposition 12. Moreover, there is an ideal 1 > V@) such that Z* /t
contains no copy of ZN.Let

/  -  { ( x ; )  e  Z N  :  { i  1 x :  : 0 }  e  o } .

Then ZN / J is a subdirect product of the ultrapowerc ZN /Q1, Z* lQr, ..., Z* /Qo.
The latter are prime commutative rings. Suppose Z* /l has orthogonal idempotents
t t r , r , t z , . . . ,un ! . . .  .  Undereachnatura lmap Z*  / l  +  ZN 1Q;  a tmost  o r rau i  i s taken
to the identity and all others to zero. Thus, almost all the u; are in {:rKe{ZN /t -->

Z,N / A) - 0. Henc e, V"N 1 J has no subring isomorphi c to ZN .

Govaerts, Delanghe, and Impens [8] have shown that when A is a ring of integral
Clifford numbers, every unital A-homomorphism from AN to A is a projection. The
motivation for this comes from work on continuous functions wherein analogous results
can be found for other rings in place of A. We'can obtain many examples of rings
behaving like the one treated in [8] by means of a generalization of slenderness.

For a commutative ring A with identity, we define an A-algebra R to be A-slender
if it is additively torsion-free and satisfies the A-algebra homomorphism analog of the
condition in Definition 3. An A-module is slender if it satisfies the A-homomorphism
analog of the condition in Definition 1 (see, e.g., [12]). The following result is reminiscent
of Proposition2.

Proposition 13. Let A be a commutative ring with an identity, and R an A-algebra. If
R is either

(i) a slender ring; or
(ii) a slender A-module;

then R is A-slender.

Proof. (1)Let f ; AN + R be an A-homomorphism. Define g : ZN + A" by
setting S(@)) : (nile) for all (ni).If R is a slender ring, then there is a suitable set

{it, iz, ..., in]1 for which Sf (@)) - I1!:rf S@i). Then, for every @) e AN, we have

f ((a)) - f (ran(ai)) - f @Qz-)(ai)): fsQz-)f ((ai))
n n n

- I fs@i) f((a))- I f @@i)@;)) : D f@',1.
j : 7 j : 1

Proposition L4. Let A be a commutative ring with identity. If A is A-slender and the
only central idempotents of A are 0 and Ia, then every unital A-homomorphism from
AN to A is a projection.
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Thus, for many commutative rings A, the conclusion of [8] is true because of ring, or
even additive group, properties rather than algebra properties. Some examples (without
central idempotents f 0, 1 in all cases) are: countable torsion-free rings (e.9., integral
Clifford algebras) (Corollary 4 or,l2l) R ttxll and R [S] for slender R as in Corollary 2,
RtXl for any R with identity [15, Proposition 2.10]. Although matrix rings over slender
rings need not be slender (see after Example 1), if A is slender as an A-module, then,
for each n, the matrix nng Mn(A) is slender as an M"(A)-module [12, Corollary a]
so Mn(A) satisfles the conclusion of Proposition 13. On the other hand, every field of
characteristic 0 (in fact every infinite field) satisfies the conclusion of Proposition 14

[3] though some such fields, e.g., C (see after Example 1) are not slender rings and no
field K is slender as a vector space. (More generally, a noetherian self-injective ring
cannot be slender as a module over itself.) This result has connections with the problem
of determining when a linear functional defined on a ring of continuous functions is
defined by "evaluation at a point". See [8] for some pertinent references.

In [8] the authors remark that they know of no infinite indecomposable ring with
identity for which the conclusion of Proposition 13 fails. The ring Io of p-adrc integers
is such a ring. For, Ip I p" Ip = V"p, for each n and the argument in Example 1 then shows

that there is a non-zero unital homomorphism from I{ /4N) b Io.
De Marco and Orsatti [13] have shown that a reduced torsion-free group is slender

if and only if it is not complete with respect to any non-discrete linear metric. We now
seek some kind of analog for slender rings. The result cannot translate straightforwardly
to the ring case, as linear topologies are additively determined and slender rings need
not have slender additive groups. Nor can we simply require the linear metric to one for
which multiplication is continuous. For instance, Zltxn is slender (Corollary 2) but is
complete in the (X)-adic metric (and its additive group = ZN is not slender).

A linear topology on an abelian group is one for which there is a basis of open
neighborhoods of 0 consisting of subgroups. When this basis is countable, the topology
is quasimetizable; in addition, when the intersection of the subgroups in the basis is
zero, the topology is metrizable. Let {Ft, Fz, ..., Fn...} be such a basis in such a case.
Then

{ F t ,  F t  O  F z ,  . . . ,  F r  )  F 2  n ' ' '  n  F n ,  . . . }

is also a basis. Thus, we can and will assume that the subgroups in our basis form a
descending chain. An account of this can be found in [18, Chapter II]. Note that, for
metrizable linear topologies, a defining metric d can be assumed to be uniform, i.e., to
satisfy the condition d(x, l) : d(x - y, 0) for all x, y.

We shall relate convergence and Cauchy sequences to the basis Ft ) Fz ) .. . l
Fn ) . . ' rather than to a metric. Aneat Cauchy sequence (b") is one which satisfies the
condition:

bn - bn+t e Fr, Yn.

Let (a") be any Cauchy sequence. Let

o( I )  -  m in{k  1ar  -  am €  Fr  fo r  a l l ( , ,m >  k } ,

o(2) -min{ft : o(l) < k and a4 - a* e F2 forall (.,m > k}

and in general

o ( n *  1 ) :  m i n  { k : o ( n )  < k  a n d  a t -  a m  €  F n + r  f o r a l l  l . , m >  k } .



Slenderness for Rings 357

Then ao@) - ao@*r) e Fn for alln. Hence, (a"@)l is a neat Cauchy sequence. lf (a661)
converges, then so must the original Cauchy sequence (a) . Hence, a metrrzable linear
topology is complete if and only if every neat Cauchy sequence converges. (This seems
to be a well-established folklors, but the author is not aware of any written account.)

Finally, in what follows, a CLM topology is a complete linear metrizable topology.

Proposition 15. Let H be a subgroup of an abelian group G. If H has a CLil[ topology,
this can be extended to a CLM topology on G.

Proof. Let B : {Bt, Bz, ...} be a countable group basis of neighborhoods of 0 in F/.
Then B is a similar basis for a topology in G, so G is metrizable. NoW let (a) be a neat
Cauchy sequence in G. Then an+r - an e Bn C FI for alln. Now, at - at - 0 e H
and anal - al : (ar+t - ar) * (a" - at), so by induction, an - a1 € H for all n.
Clearly, (an - ar) is aCauchy sequence, soby completeness of H,there exists b e H
withlim(an - at) - b. But thenb * a1 -l;rman so G is complete. r

The charactenzation theorem of [13, Sec. 2 and its proofl show that if a torsion-free
group G contains no copy of I, for any p, then in any complete linear metric on G,
the completion (closure) of an inflnite cyclic group is discrete. It then follows that G
contains an infinite direct product of infinite cyclic groups. For slender rings we have
to exclude infinite direct products of copies of Z, and therefore are interested in cyclic
groups (subrings) generated by idempotents.

Theorem 4. A torsion-free ring A has a subring isomorphic to ZN if and only if A+ has
a non-discrete CLIVI topology and a closed subring B in which

(i) multiplication is continuous; and
(ii) there is a convergent (whence null) sequence of non-zero orthogonal idempotents.

Proof. Let the subring B be as described, and let (u") be a convergent sequence of
orthogonal idempotents in B. If a - Iimun, then

a : l imL!.n: I imuf, :  a2 : l imur l tmunrr l  -  l im Lr.11ttnq1 :  Q.

Clearly, we obtain an injective ring homomorphism / 
' V@) + A by defining

f (Eaie) - Ea;ui. Now, Iet Z have the discrete topology in all its copies, ZN the
product topology, andZ@) the induced subspace topology.

LetVl ) V2 ) . . . ) Vn ) . . . be a group basis ofneighborhoods ofO in A. Without
loss of generality, we can assume that un e V, for all n.

If in Z@), we have Ec;ei : lirrln-+oo Ebf") e;. Then for every m € N, there exists

k e N such that b\") - rr, b*) : c2, ..., b*) : cmfor all n > k.This means that

Dr,u,- I bl") u, : f (Dr,r,- I u["' r,) : f (Dr,r,- I u!"' r,)
I > m

- I ciui -Du!"'", € vm+r
t > m  t > m

for all n > k. By invariance of the metric, we have

/(I ,,r,) - I c;Lti :,!gg Dul"'", - JjL /(I u!"'r,),
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so / is continuous and in fact uniformly continuous. But ZN is the completion o1V@)

so there is a continuous group homomorphism I : ZN --> Asuch that I I Z@ -,f. As

/ takesits values in B, wehave f (x)f (y) + f (xoye) asx 4 xo, y + y0.

Now, ZN isactually a topological ring, ̂ 6V@) a topological subring. If (r;), (s;) e

ZN , then (r) : limn*os Ef-gie; and (s;) : litrln -+oo E!-piei. Hence,

:  nh t ( f ,r ,r ,) ,W, (Dr,r,)
i : I  i : l

n n

- ' lgD''u' 'qDt'u'
i : l  i : l

n n

: ,4( f  , iu iD ' ,u , )
i : l  i : l

:,ory5 i'"'u'- g((r;s;)) - g((r;)(s;))'
i : L

Thus, g is a ring homomorphism. lf (ti) € Ker(g), then for every 7, we have

tjej : (t)ei e Ker(g) nV@) - Ker(/) nV@) - 0. Thus, Ker(g) - 0 and ZN =

Im(s) c A.
Conversely, suppose (without loss of generality) ZN g A. Then the produc t on ZN of

the discrete topologies on the copies of Zis a non-discrete CLM topology which extends

to A. But ZN is a topological ring with respect to this topology and, in ZN , we have

limn-** €n :0. r

Theorem 5. Let R be a torsion-free ring which is the completion of Z in some

non-discrete linear metric topology. Thenfor some prime p, R has a subring isomorphic

to the ring Io of p-adic integers.

Proof. First, note that as all its subgroups are ideals, Z is a topological ring with

respect to any of its linear topologies. Let {Bt, Bz, ..., Br, ...} be a group basis of

neighborhoods of 0 in Z. Then (as a group and as a ring) we have R = L$V'/B"
(where the set of ZIB* is directed by the embeddings B* c Bn). Now,IEZ/B"
is closed in fIZlB,r, where the latter has the product topology from the discrete

topologies in the Z/8". As the ZlB" are finite, R(= lEZlB") is compact. Now

the topology of  R is also l inear (see, e.g. ,  [7,  Vol . I ,  p.68]) .  I f  {y l  ,V2,. . . ,Vr, . . . }
is a group basis of neighborhoods of 0 in R and .r € R\{0}, then there exists

k s u c h t h a t x  4  V p . B u t  t h e n x  €  x * V r  a n d 0  €  U { x # ! * V r : y * V t } .
It follows that R is totally disconnected. Thus, the character group Char(R) of

R is a discrete torsion group and R = Char(Char(R)). But Char(Char(R)) _

Hom(Char(R),R./Z) = Hom(Char(R), npz@*)) = l loHom(Char(R), Z(p*)).

s((r;))s((s;)) : r(,tL D,r,',) t(,q I',r,)

:,tg t(i ,,r,),!y*t(i ,,r,)
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Let Char(R) _ @oGp, where Go is a p-group. Then we have (additively) R =

Char(Char(R)) = l loHom(@ nGn,Z(p*)) 
= floHom(Gp,Z(p*)). If some Go were

non-divisible, it would have a cyclic summand (g), whence R would have a summand
= Hom((g),2(p*)), also cyclic. But R is torsion-free. We conclude that each Go is
divisible, hence a direct sum of copies of Z(p@). But then Hom(Go, Z(p*)) is isomor-
phic to a product of copies of Hom(Z(p*),2(p*)) = Io. Then Hom(Go, Z(p@)) is a
reduced /o-module in a natural way (a similar argument was used by Harison t9l).Write
R+ - troS(o), where S1ul A Hom(Go, Z(p*)). For every p, S@)ilq+pS(q) is divisible
and hence zero. Thus, each S1o) o R and R - IIpS(p) as a ring direct product. Now, Z
has an identity, whence so does R and finally so do the S1oy. Thus, every non-zero S1o;
is a unital lo-algebra and so contains a subring isomorphic to Io, and therefore, so does
R . r

Theorem 6. A torsion-free ring Afor which A+ is reduced is slender if and only if, for
every CLM on A+,

(i) (the closure ofl (e) is discrete for all idempotents e; and

(ii) there is no corwergent sequence of non-zero orthogonal idempotents.

(Here, (e) means the cyclic subgroup generated by e.)

Note that, in Zllxll, (1) is indeed discrete in the (X)-adic metric (cf. our earlier
remark).

Proof. First, suppose A is slender. If e rs a non-zero idempotent, then the closure of (e)
is a subring which is slender (Proposition 4) and thus has no subring = I, for any p
(Example 1). By Theorem 5, \el is closed and discrete.

Assuming there exists a convergent (whence null as in Theorem 4) sequence (un)
of non-zero orthogonal idempotents, we can also assume that A+ has a group basis
Ut ) Uz f of neighborhoods of 0 such thatun € Un for eachn. As (21) is
dense, there exists r (l) > 1 such that (u1) n Urtrl - {0}. In the same way, there exists
r(2) > z(1) such that (urg1) i Ure) - {0}. lf x e Ute) i (ur) O (z,trt), say x -

r u t * s u r ( t ) ,  r , s  e V ' , t h e n r u 1  :  x - s u r T )  e  U r e ) * U t T ) :  U t \ )  s o / '  : 0 a n d t h e n
sure) : x e Ure), So r : 0. Butthenx : 0. Proceeding thus we obtain a subsequence
( u t , u r y ) , u t ( 2 ) , . . . , u t ( n ) , . . . )  s u c h t h a t i f  S  -  ( u t ) O ( z ' t r l ) e . .  . @ ( u r @ )  O . . .  ,  t h e n
the relative topology on ,S has a basis

S f l  U r  )  S n  U r 1 )  )  S n  U r Q )  f  " '  f  S n  U t @ ) , . . . , i . e . ,

S  )  ( u q > )  @  ( u , , , )  e  . .  . @  ( u ' a )  e  .  . .

)  ( u r t > )  e . .  . @  ( u r G ) )  e . . .

f  . ' .  )  ( u r *  )  e . . .  )  . . .

of groupneighborhoodsof 0.Theclosureof Sisthusisomorphic toZN. (Inthispartof
the argument, we are imitating [13, p. 159]. But S is a ring so its closure is too. But then
the slender ring A contains a copy of ZN . We have a contradiction, so (ii) holds as well
as (i).
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Now, suppose (i) and (ii) are valid. By (ii) and Theorem{, A contains no copy of ZN .
If A were to contain a non-zero homomorphic image of ZN 1Z(N), the latter would be
additively algebraically compact, torsion-free, and reduced, whence a product of p-adic
algebras with identities. But then as in the proof of Theorem 5, A would contain a subring
= Io for some p.

Let e be the identity of a copy of Io c A. As in Proposition 15, the p-adic metric
on this copy of 1o extends to a CLM on A+ in which (e) is not discrete. This cannot
happen, so A cannot contain a non-zero homomorphic image of V"N 1Z(N). Hence, by
Theorem 1, A is slender. r

When A+ is reduced, we have the following analog of Nunke's characterizationll4l
of slender groups.

Corollary 5. (To proof) A torsion-free ring Afor which A+ is reduced is slender if and
onty if it contains no copy of ZN or any Iu.

Referring to Proposition 1, we obtain

Corollary 6. Let A be a torsion-free ring with identity whose only idempotents are 0
and I andwith A* reduced. The following conditions are equivalent:

(i) (1) ls discrete under any CLM topology on A+;
(ii) A has no subring isomorphic to any Ip;
(iii) A is ultraconnected.

No doubt there are generalizations of Theorem 6 and its corollaries in which more
ring-theoretic substitutes can be found for the overtly additive condition of being reduced.
Note however that something is needed-the mere absence of copies of ZN and 1o does
not ensure slenderness.

Proposition 16. Let Q be a non-principal ultrafilter on N. Then Z* /O is not slenden
though it contains no copy of any Ip (and, of course, no copy of ZN ).

Proof. AsZIA is prime, its only idempotents are 0 and 1. Thus, if ZN /A has a subring
isomorphic to Ip, the latter must have the same identity as ZN lQ. Since 1o has lots of
units, we are finished if we can show that V,N / Q has *1 as its only units . Let (a) * Q
be a unit of ZN 1O. Then there exists (b) e ZN such that {l : a;b; - 1} e O. Hence,
{ i  : a i -  1 }  U  { i  : a ; -  - 1 }  :  { i  : a i - + 1 }  )  { i  : a i b ;  - 1 7  €  < D ,  s o  a s  O  i s  a n
u l t r a f i l t e r , i t c o n t a i n s e i t h e r { i : a i : 1 } o r { a : a i - - 1 } , a n d a c c o r d i n g l y ( a ) + @ - 1
o r  - 1 .  I

Note that this argument also shows that Z/Q does not contain any unital subring with
divisible additive group. The fact thatV"N /O has only tl as units also follows (as does
much else) from the fact that Z* / O is a non-standard model of arithmetic [ 1 ], but it seems
preferable to give a self-contained argument. Proposition 16 also shows that, in Theorem
6, we cannot replace the condition "A* is reduced" by the condition "the divisible ideal
of A contains no non-zero idempotents". V,N f Q cannot be reduced, otherwise, it has a
unital subring isomorphic to some I o as in the proof of Theorem 6. On the other hand,
the divisible ideal does not contain the one and only non-zero idempotent.
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