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Stability problem of countable systems of differential equations has received much

attention recently. Many interesting results were obtained in [1, 2].lnthis paper we study

stability of systems of linear differential equations on the space of bounded sequences

of real numbers:

l o o :  { x  -  ( x 1  , x 2 , . . . ) :  l l x l l  -  s u p l x ; l  <  o o } .
i e N

1. Consider the system of linear differential equations on the loe- space:

dx_ :  A( t )x ,
clt

where

[ ' t  I  f  an ( t )  anQ)  . l
x - l x 2  l ;  A ( t ) - l o n ( t )  a z z ( t )  I

L , l  L "  " " '  l
For the system (1) we assume the following conditions:

(i) the functions aij : [a, *oo) + IR are continuous (i, i e IN);

(ii) there exists a continuous positive function a(r) on [a, *oo) such that

i t " , , ( t ) l<ot ( t )  ( l  e  IN,  t  e la ,oo) ) .
j : l

( 1 )
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It is well-known that, under the above conditions, system (1) has a unique solution

I11( / )  I
x f t \ : l  * z ( t )  |

L , l
in which xr(t), xzQ),. . . are equi-continuous onfa, *oo) (see [1, p.25D.

In12, p. 1161 it was shown that system (1) has the fundamental matrix

X(t1 - l*i iQ)lf i:r

with

X(td - Idr, (the identity matrix).

In fact, the set of columns of the fundamental matrix X(t):

f  a iG )1
\ ( t ) - l x z11 t1  |

L : l

(j : 1,2, . . . ) is the fundamental system of solutions of (1) .
Denoteby K(t, z) theresolventoperator(Cauchyoperator) of (1). Clearly, K(t,r) -

X  Q)X_I  G) .
Now, the solution x(t) - x(t; to, xo) of (1) with the initial condition x(td _ r0 can

be written as follows:

x(t)  -  K(t , ts)xs.

For each t e la, oo), the matrix X(r) defines the linear operator:

X ( t ) :  l *  +  L *

x o D  x ( t ) - X ( t ) x o .

It is easy to see that 
oo

llx(t)ll - sup I l'ry (r) | ,
ieN 

/_,

where llX(t)ll denotes the norm of the operator X(r), i.e.,

llx (r; ;; - sup ll x (t)xll .
l lx  l l : l

Moreover, the trivial solution x - 0 of (1) is (Lyapunov) stable if and only if the
resolvent operator K (t , td is bounded, i.e., for each 16 e la, q), there exists M - M (to)
such that

l l K ( t , r o ) l l  <  M , t > t s .



Systems of Linear Differential Equations on l* - Space

Definition 1.

(a) A continuous linear operator

L(t) :  l *  + [ .*

y + L @ y  
( t > t o )

is said to be a generalized Lyapunov transformation if it is invertible, L(t) , L-r Q)
are dffirentiable and llL(t)l - xlL-t (r)l - 0, where

xlL (t)l' -,fl,g 
i ln ll z (r) ll

(b) A system of linear differential equations

dx

dt 
: A(t)x (2)

is said to be regular if there is a generalized Lyapunov transformation

L ( t ) : x r - > L ( t ) x

transforming(2) to a system of linear differential equations with a constant matrix B

Theorem l, Suppose (2) is regular and all characteristic exponents (see [3]) of its
solutions are not greater than certain number a € IR, thenfor any e > 0 and /o > 0,
there exists a positive number C such that

l lK ( t  ,u )  l l  < g 
"(a*e)( t - r )  

,et

foral l t  > r  > ts.

Theorem 2. Suppose (2) is regular and all characteristic exponents of its solutions are
less than or equal to -a < 0. Let F (t, x) be afunction belonging to Ctr(R x l*) and
satisfuing the condition

l lF(t , r ) l l  < tb( t ) l lx l l  ,

where (r(t) is afunctionwith Xtl(/)l < 0.
Then the trivial solution ) : 0 of the following system:

dY -  Ae)y *  F(t ,  y)
dt

is stable.

2. In this section we shall study "I-stability of systems of linear differential equations
on L*. Vu Tuan and Dang Dinh Chau [4] have introduced "I-stability, which is recalled
below.
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For each m e N. we set

l k :  { x  -  ( x 1 ,  x 2 ,  . .  .  ,  x m ,  0 ,  .  .  . )  e  l * } .

It is easy to see that l$ is a clqsed subspace of l* with the nonn induced from the
nonn on l*.

Consider the linear operator

P * :  l * + l x

( x t , x 2 , . . . )  +  ( \ , . . . ,  x m ,  0 ,  . . . ) .

Clearly, P* is a projection from l* onto lk , P^(l*) : [k.
For each fixed t, we may consider the fundamental matrix X(r) of system (2) as the

linear operator:
X ( t ) :  t \ + t *

P^x r+ X(t)P*x .

It is not hard to see that

l lX(t) l l*  : :  sup l lX(t)P*xl l  -  sup i . l*, i<t>t.
llP^xll:l ieN fr

Let J : {nt,fl2,...,ni...} be a strictly increasing subsequence of the sequence of
positive integer numbers N.

Definition 2.t41

(a) Thetr iv ia lx:0of system(2) iscal ledl-stablei f , foranye > 0,  t0 > 0andany
rn e J. there exists 6 > 0 such that

,lx(t; ts, P*xo)ll < e

for all t > to and xs € l* ; llP^xsll < 6 (where x(t; ts, P^x1) is the solution of
(2) with initial condition x(ts; ts, Pmxo) : P^xo).

(b) The trivial solution x : 0 of systern (2) is called J-unifurmly stable if, for each
e > 0 and eachlo > 0, there existsd : d(e, /o) > O such that

l lx(t; to, P*xo)ll < e

for all t t to,m e J and xs € l* : l lP*xoll < 6.

Theorem 3. The trivial solution x - 0 of (2) is Lyapunov stable if and only if it is
J-unifurmly stable.
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