Vietnam Journal of Mathematics 27:4 (1999) 379-382

Vietnam Journal of MATHEMATICS © Springer-Verlag 1999

Short Communication

Stability Radii of Linear Differential Algebraic Equations

Nguyen Huu Du

Department of Mathematics, Hanoi National University 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

Received December 24, 1998

The stability radius, introduced by Hinrichsen and Pritchart [2], is a measure for the robustness of a stable system. It is defined as the smallest value ρ of the norm of real or complex perturbations destabilizing the system.

In this article, we deal with the problem of stability radius for systems described by a differential algebraic equation of the form:

$$AX'(t) + BX(t) = 0,$$
 (1)

with constant matrices A and B where the matrix A is degenerate and the pencil $\{A, B\}$ is regular.

Let the pencil $\{A, B\}$ have the index $k, k \ge 0$ and G, H be non-singular matrices such that

$$A = G \operatorname{diag}(I_r, N)H; \qquad B = G \operatorname{diag}(W, I_{m-r})H, \tag{2}$$

where I_r and I_{m-r} are unit matrices in $\mathbb{R}^{r \times r}$ and $\mathbb{R}^{(m-r) \times (m-r)}$, respectively. Further, $W \in \mathbb{R}^{r \times r}$ and N is a k - nilpotent matrix of the Jordan box form.

System (1) is equivalent to

$$Y'(t) + WY(t) = 0,$$

$$Z \equiv 0, \quad Y \in \mathbb{R}^r, \quad Z \in \mathbb{R}^{m-r}.$$
(3)

We know that system (3) is asymptotically stable if and only if the eigenvalues of the matrix W lie within the positive complex half-plane. On the other hand, $\sigma(A, B) = \sigma(W)$. Thus, the trivial solution of system (1) is asymptotically stable if and only if the spectrum of the pencil $\{A, B\}$ lies within the negative complex half-plane $\mathbb{C}_{-} = \{z \in \mathbb{C} : \Re z \leq 0\}.$ We now study some simple properties of the perturbed system

$$AX'(t) + (B + \Delta)X(t) = 0,$$
(4)

where Δ , called disturbance matrix, is in $\mathbb{C}^{m \times m}$.

It is seen that the spectrum $\sigma(A, B + \Delta)$ of the pencil $\{A, B + \Delta\}$ does not converge to the spectrum $\sigma(A, B)$ of the pencil $\{A, B\}$ as $\Delta \to 0$. The continuity of the spectrum takes place only in the index 1 case. More precisely, we have the following theorem.

Theorem 1. Suppose the pencil {A, B} has the index k. Then

- (a) if k = 1, the spectrum $\sigma(A, B + \Delta)$ of the pencil $\{A, B + \Delta\}$ converges to the spectrum $\sigma(A, B)$ of the pencil $\{A, B\}$ as $\Delta \rightarrow 0$;
- (b) if $k \ge 2$, then for any $\varepsilon > 0$ and $\delta > 0$, there exists a disturbance Δ satisfying

 $|\Delta| < \varepsilon$

and there is $\lambda_0 \in \sigma(A, B + \Delta) \setminus \sigma(A, B)$ such that $\lambda_0 > \delta$.

Look again at the perturbed system (4). We suppose that the unperturbed system (1) is asymptotically stable. We denote by

$$\mathcal{U} = \{\Delta \in \mathbb{C}^{m \times m} : (3.1) \text{ is either irregular or unstable}\}$$

the set of "bad" disturbances. Let

$$d := \inf\{|\Delta| : \Delta \in \mathcal{U}\},\$$

which is called the complex stability radius of the pencil $\{A, B\}$. From Lemma 2, it follows that if $ind(A, B) \ge 2$, then for any $\varepsilon > 0$, we can choose a disturbance matrix Δ such that $|\Delta| < \varepsilon$ and (3.1) is unstable. This means that d = 0 and the problem becomes trivial. Thus, we study only the case of index 1. It is easy to see that in this case, d is a positive number.

Taking a sequence (Δ_n) in \mathcal{U} such that $\lim_{n\to\infty} \Delta_n = \Delta$ and $\lim_{n\to\infty} |\Delta_n| = d$, we consider three cases:

(a) The pencil $\{A, B + \Delta\}$ has the index 1.

In this case, the continuity of the spectrum of the pencil $\{A, B + \Delta'\}$ shows that there exists $s \in i\mathbb{R}$ and a vector $0 \neq x \in \mathbb{C}^m$ such that

$$(\lambda A + B + \Delta)x = 0.$$

Hence,

$$d = |\Delta| \ge |G(\lambda)|^{-1} \ge \left(\sup_{s \in i\mathbb{R}} |G(s)|\right)^{-1}$$

(b) $\operatorname{ind}\{A, B + \Delta\} \ge 2$.

For any $\varepsilon > 0$, we choose Δ' such that $|\Delta'| < \varepsilon$. Then, in a similar way, we obtain

$$d + \varepsilon \ge |\Delta + \Delta'| \ge |G(\lambda)|^{-1} \ge \left(\sup_{s \in i\mathbb{R}} |G(s)|\right)^{-1}$$

Stability Radii of Linear Differential Algebraic Equations

Because ε is arbitrary, then

$$d = |\Delta| \ge \left(\sup_{s \in i \mathbb{R}} |G(s)|\right)^{-1}.$$

(c) The pencil $\{A, B + \Delta\}$ is irregular. The proof is similar as in (a).

We now prove the inverse relation. We can show that if ind(A, B) = 1, then the map $s \rightarrow |G(s)|$ attains the maximum over i **R**. Let

$$s_0 := \left(\underset{s \in i \mathbb{R}}{\operatorname{argmax}} |G(s)| \right)$$

and $u \in C^m$ such that

$$|u| = 1; |G(s_0)| = |G(s_0)u|.$$

A corollary of Hahn-Banach theorem shows that there is a linear functional y^* defined on \mathbb{C}^m such that

 $|y^*| = 1; \quad y^*(G(s_0)u) = |G(s_0)u| = |G(s_0)|.$

We put

 $D = -|G(s_0)|^{-1}u \cdot y^* \in \mathbb{C}^{m \times m}.$ (5)

It is clear that

$$|D| = |G(s_0)|^{-1} = \left(\max_{s \in i\mathbb{R}} |G(s)|\right)^{-1}.$$

Then $D \in \mathcal{U}$ and

$$d \leq \left(\max_{s \in i \mathbb{R}} |G(s)|\right)^{-}$$

In order to have a general formula, we prove the following lemma.

Lemma 2. If $ind(A, B) \geq 2$, then the function $s \rightarrow |G(s)| = |(sA + B)^{-1}|$ is unbounded on $i \mathbb{R}$.

Summing up, we have the following theorem:

Theorem 3. The stability radius of (1) can be calculated by

$$d = \left(\sup_{s \in i\mathbb{R}} |G(s)|\right)^{-1}.$$

In the case of the index 1, the function |G(s)| attains the maximum over i \mathbb{R} and the matrix D given by (5) satisfies |D| = d and $D \in \mathcal{U}$.

Example 1. Let

$$A := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \quad B := \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

We have $\operatorname{ind}(A, B) = 1$; $\sigma(A, B) = \{-2, -1\} \subset \mathbb{C}_-$. Therefore, the pencil $\{A, B\}$ is asymptotically stable. It is easy to see that d = 2/3 and

$$D = \begin{pmatrix} 0 & \frac{2}{3} & 0\\ 0 & -\frac{2}{3} & 0\\ 0 & -\frac{2}{3} & 0 \end{pmatrix}$$

with $\sigma(A, B + D) = \{-7/3, 0\}.$

Robust and Net-Linear C

internet-ingrify unbit. Furnisolit.

Nguyen Huu Du

Example 2. Let

$$A := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}; \quad B := \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

We have ind(A, B) = 2; $\sigma(A, B) = \{-1/3\} \subset \mathbb{C}_-$. It is easy to see that

$$G(s) = (sA + B)^{-1} = \begin{pmatrix} \frac{s+1}{3s+1} & -\frac{1}{3s+1} & -\frac{s^2}{3s+1} \\ \frac{s-1}{(3s+1)} & \frac{2}{3s+1} & -\frac{s(s+1)}{3s+1} \\ -\frac{s+1}{3s+1} & \frac{1}{3s+1} & \frac{s^2+3s+1}{3s+1} \end{pmatrix}.$$

We see that |G(s)| is unbounded on $i\mathbb{R}$. Thus, d = 0.

References

- 1. S.K. Godunov, *Modern Aspects of Linear Algebra*, Nauchnaya Kniga, Novosibirsk, 1997 (Russian).
- 2. D. Hinrichsen and N.K. Son, Stability radii of discrete time systems and symplectic, Int. J. Robust and Non-Linear Control 1 (1991) 79–97.
- 3. R. März, Extra-ordinary differential equation. Attempts to an analysis of differential algebraic systems, Humboldt Universität Zu Berlin, 1997 (preprint 97–8).
- 4. R. März, Criteria for the trivial of differential algebraic equations with small non-linear to be asymptotically stable, Humboldt Universität Zu Berlin, 1997 (preprint 97–13).

Lemma
$$X \in H$$
 and $(A, B) \ge 2$. then the function $Y \rightarrow Y$
intermited on (**R**.

Summing up, we have the following theorem:

Theorem 3. The stability radius of (2) can be culculated in

$$d = \left(\sup_{\substack{x \in I \mid X}} |G(x)|\right)^{-1}$$

In the value of the index l_i the frontian |G(x)| attains the relationship over iR and the matrix D given by (5) mainfies |D| = d and $D \in U$.

Encomple 1. Let

$$\mathbf{X} := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \quad \mathbf{R} := \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix};$$

We have ind(A, B) = 1: $\sigma(A, B) = (-2, -1) \in \mathbb{C}$... Therefore, the panels (A, B) in asymptotically stable. If it easy to see that d = 2/3 and

$$D = \begin{pmatrix} 0 & i & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

with n(A, B + D) = (-7/3, 0).

382