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The stability radius, introduced by Hinrichsen and Pritchart [2], is a measure for the
robustness of a stable system. It is defined as the smallest value p of the norm of real or
complex perturbations de stab tlizing the sy stem.

In this article, we deal with the problem of stability radius for systems described by a
differential algebraic equation of the form:

A X ' ( t ) * B X ( r ) - 9 ,

with constant matrices A and B where the matrix A is degenerate and the pencil {A, B}
is regular.

Let the pencil {A, Bl have the index k, k > 0 and G, H be non-singular matrices such
that

A - G d i a g ( l , , N ) n ;  B - G d i a g ( w ,  I ^ - , ) H ,  e )

where 1, and I*-, are unit matrices in R'xt and p(m-r)x(m-'), respectively. Further,
W € R'*' and N is a k - nilpotent matrix of the Jordan box form.

System (1) is equivalent to

Y' (t)  + wY (t) -  Q,

Z : 0 .  Y e  I R ' .  Z e l R - - '

We know that system (3) is asymptotically stable if and only if the eigenvalues
of the matrix W lie within the positive complex half-plane. On the other hand,
o(A, B) : o(W). Thus, the trivial solution of system (1) is asymptotically stable if
and only if the spectrum of the pencil {A, Bl lies within the negative complex half-plane
C - - { z e C : f f i 2 < 0 } .

(1 )

(3)
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We now study some simple properties of the perturbed system

AX'1t1+ (B * A)X(r) - g, (4)

where A, called disturbance matrix, is inC*x* .
It is seen that the spectrum o(A, B + A) of the pencil {A, B + A} does not converge

to the spectrum o(A, B) of the pencil {A, B} as A + 0. The continuity of the spectrum
takes place only in the index 1 case. More precisely, we have the following theorem.

Theorem l. Suppose the pencil {A, B} has the index k. Then

(a) if k - l, the spectrum o(A, B + A) of the pencil {A, B + A} cotwerges to the
'spectrum 

o(A, B) of the pencil {4, B} as A + 0;
(b) if k>2,thenforanys >0andd > 0, thereexistsadisturbance L,satisfying

l A l  < e

and there ls ).e € o(A, B + A) \ o(A, B) such that lo > 6.

Look again at the perturbed system (4). We suppose that the unperturbed system (1)
is asymptotically stable. We denote by

U : lL, e C-^^ : (3.1) is either irregular or unstable)

the set of "bad" disturbances. Let

d  : -  i n f { l A l  :  A  e U l ,

which is called the complex stability radius of the pencil {A, B}.From Lemma 2, it
follows that if ind( A, B) > 2, thenfor any t > 0, we can choose a disturbance matrix A
such that lAl < e and (3.1) is unstable. This means that d :0 and the problem becomes
trivial. Thus, we study only the case of index 1. It is easy to see that in this case, d is a
positive number.

Taking a sequence (A") in U such that limr-** A, : A and limn-** lAn | : d, we
consider three cases:

(a) The pencil {A, B + A} has the index 1.
In this case, the continuity of the spectrum of the pencil {A, B + A'} shows that there

exists s € iR. and a vector 0 # x e Crn such that

Q ' A + B * A ) x - 0 .

Hence,

d : lal > lc(i.) l-r z ( ,un lc(r)l) 
t

-  
\ r e ; h . '  " ' /

( b ) i n d { A ,  B + L } > 2 .
For any 6 ) 0, we choose A/ such that lA/l < e. Then, in a similar way, we obtain

I  *  e>  la  +  A ' l  >  l c ( r . ) l - r  t  (  r , rn  lG(s ) l ) - t .
\ s e i l R  /
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Because e is arbitrary, then

d : 1 l 1 z ( ' " R t c ( s ) t ) - ' .
\  sel lR

(c) The pencil {A, B + A} is iregular. The proof is similar as in (a).
We now prove the inverse relation. We can show that if ind(A, B) :1, then the map

s -+ lG(s)l attains the maximum over i IR. Let

^rs r_ (*rt*tc(r)l)
\  sei lR

and u e C^ such that

lu l  -  r ;  lG(so) l  -  lG(ss)al .
A corollary of Hahn-Banach theorem shows that there is a linear functional y* defined
onC* such that

ly* l -  1 ;  y*(G(ss)z;  -  lG(s6)u l  -  lc (so)1.
We put

D - - lG(so) l-ru .  y* e C*'*.  (5)

It is clear that

lD l  :  lG(so) l - r  -  (pm lG(s) l ) - ' .

T h e n D e U a n d  
u  r _ l

d s (: :  lct ' ) l )

In order to have a general formula, we prove the following lemma.

Lemma 2. If ind(A, B)
unbounded on iR.

Summing up, we have the following theorem:

Theorem 3, The stability radius of (I) can be calculated by

d :  (  s u p  l G ( s ) l ) - t .
\ se i lR  /

In the case of the index I, the function lG(s)l attains the maximum over iR. and the
matrix D givenby (5) satisfies lDl: d and D eU.

Example 1. Let
/ l  0  0 \  / 2  0  0 r
, l r lA : - [ 0  1  0 l ;  B : : 1 1  1  0 1 .
\ 0 0 0 /  \ o 0 r /

We have ind(A, B) - l; o(A, B) : {-2, -f } c 8-. Therefore, the pencil {A, B} is
asymptotically stable. It is easy to see that d - 2/3 and

/ 0  ?  0 \
n -  l o  - i  o  I

\ 0  -4  0 /
with o(A, B + D) - {-7 /3,0}.
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Example 2. Let
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We have ind(A , B) :2; o(A, B) : t-l/3| C 8-. It is easy to see that

/ #  - #  - * i l \
G(s) - (sA*B)-1  : l r f f i  #  - *+Pl

\-*+ 
"i "{:i{' /

We see that lG(s)l is unbounded on llR. Thus, d :0.
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