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1. Introduction

Let I be an ideal of a Noetherian commutative ring R and M an R-module.
In [3] we introduced the concept of local homology modules H (M) of M with
respect to I, which is defined by H/ (M) = UmTorf®(R/I*; M) (i > 0). Also

t

in [3], we have shown some fundamental properties of local homology modules
when M is Artinian. Since Artinian modules are linearly compact with discrete
topology [11], there is a natural question: How to define a local homology theory
for linearly compact modules? Note that the concept of linearly compact spaces
was first introduced by Lefschetz [9] for vector spaces of infinite dimension and
it was then generalized for modules by Zelinsky [16]. It was also studied by
several authors: H. Leptin, I. G. Macdonald, C. U. Jensen, H. Zéschinger, et al..
The purpose of this note is to give basic results about local homology of linearly
compact modules.

Throughout, the ring R is commutative, Noetherian, and has a topological
structure.

2. Linearly Compact Modules

In this section we recall the concept of linearly compact module by the terminol-
ogy of I. G. Macdonald [11] and some of its basic properties.

Let M be a topological R-module. A nucleus of M is a neighborhood of the
zero element of M, and a nuclear base of M is a base for the nuclei of M. If N
is a submodule of M which contains a nucleus, then N is open (and therefore
closed) in M, and M/N is discrete. M is Hausdorff if and only if the intersection
of all the nuclei of M is 0. M is said to be linearly topologized if M has a nuclear
base M consisting of submodules.

A Hausdorff linearly topologized R-module M is linearly compact if M has
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the following property: If F is a family of closed cosets (i.e., cosets of closed
submodules) in M which has the finite intersection property, then the cosets in
F have a non-empty intersection.
If M is an Artinian R-module, then M is linearly compact and discrete.
We first show that if M is linearly compact, then the functor Tor?(—; M)
transforms an inverse system of finitely generated modules into an inverse system
of linearly compact modules with continuous homomorphisms.

Proposition 2.1. Let {N;} be an inverse system of finitely generated R-modules
and M a linearly compact R-module. Then {Tor®(Ny; M)}: (i > 0) forms an
inverse system of linearly compact R-modules and homomorphisms are continu-
ous.

The following proposition shows that lim can commute to Tor for inverse
systems of linearly compact modules.

Proposition 2.2. If N is a finitely generated R-module and {M;}; an inverse
system of linearly compact R-modules with continuous homomorphisms, then for
all i > 0, {Tor®(IN; M:)} forms an inverse system of linearly compact modules
with cotinuous homomorphisms. Moreover, we have an isomorphism

Torf(NV; UmM;) 2 imTorf (N; My).
¢ t
3. Linearly Compact Local Homology Modules
We first recall the definition of local homology modules in (3, 3.1].

Definition 3.1. Let I be an ideal of R and M an R-module. For alli > 0, the
ith local homology module H} (M) of M with respect to I is defined by

H!(M) = imTor}(R/I*; M).

t

Remarks.
(i) If M is a linearly compact R—module, so is H} (M).
(ii) If the ideal I is generated by r elements z;,...,z, in R, then

H{ (M) = limH:(z(t); M),
t
where H;(z(t); M) is the ith Koszul homology module of M with respect to the
system z(t) = (z},... ,2%).
Let L{(M) be the i-th derived module of the I-adic completion A;(M) =
limM/I*M of M. The following theorem shows that our Definition 3.1 is coin-

t
cidential with the definition of Greenlees and May [6, 2.4] when M is linearly
compact.
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Theorem 3.2. If M is a linearly compact R-module, then, for all i > 0,

HI(M) = L{(M).

The following result is an immediate consequence of Theorem 3.2.

Corollary 3.3. Let
0—M —M-—M'—0

be a short ezact sequence of linearly compact modules. Then we have a long
ezact sequence of local homology modules

.- — H/(M') — H/(M) — HI(M") —
- — H{(M") — H{(M) — H{(M") — 0.

An R-module M is called I-separated if ),
proposition says that the local homology module H; (

I‘M = 0. The following
) is I-separated.

o,

Proposition 3.4. Let M be an R-module. Then, for all i > 0,

(\ItH! (M) =

>0
The following theorem gives us a characterization of I-separated modules.

Theorem 3.5. Let M be a linearly compact R-module. The following statements
are equivalent:
() M is I-separated, i.e., ;50 I'M = 0.
(ii) Ar(M) = M.
(iit) H{(M)= M, H} (M) =0 for all i > 0.

To state the next theorem, we recall notions of co-associated prime ideals
and magnitude of 2 module. A prime ideal p is called co-associated to a non-
zero module M if there is an Artinian homomorphic image L of M with p =
AnnL. We write CoassM for the set of co-associates primes (see [17]). The
magnitude magM of an R-module M is defined by magM = Sup{dimR/p|p €
CoassM} (see [15, 2.1]). Note that for an arbitrary linearly compact module,
magM < dim R/AnnM and there are some examples which show that magM <
dimR/AnnM.

Theorem 3.6. Let M be a linearly compact R-module with magM = d. Then,
for alli>d,
H!(M) =0.
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4. Duality

In this section, (R, m) shall be a local Noetherian ring, m its maximal ideal and
k = R/m its residue field. Suppose now that the topology on R is the m-adic
topology.

We first observe that H?(M) has a natural module structure over the m-
adic completion R of R for all & > 0. The first main result in this section is
the Noetherian property of local homology modules. Note that a Hausdorff
linearly topologized R-module M is called semi-discrete if every submodule of
M is closed.

Theorem 4.1. If M is a semi-discrete linearly compact R-module, then HP(M)
is a Noetherian R-module for all i > 0.

Let D(M) = Homg(M, E(R/m)) be the Matlis dual of M. We have the
following duality between local cohomology modules H}(M) and local homology
modules H] (M).

Theorem 4.2. Let M be an R-module. Then for all ¢ > 0,

H!(D(M)) = D(H}(M)).

1

When (R, m) is a complete local ring we have

Corollary 4.3. Let (R, m) be a complete local ring and M a linearly compact
semi-discrete R-module. Then for all i > 0,

H{(M) = D(H}(D(M))).

1

In the case where R is a complete local ring, the class of linearly compact
semi-discrete R-modules contains all Noetherian R-modules. Therefore, the fol-
lowing consequence is a generalization of a well-known result, which says that
local modules Hi(M) of a Noetherian R-module M are Artinian.

Corollary 4.4. Let (R, m) be a complete local ring and M a linearly compact
semi-discrete R-module. Then, for all i > 0, H},(M) is Artinian.
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