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1. Introduction

Let I be an ideal of a Noetherian commutative ring ,R and M an -R-module.
In [3] we introduced the concept of. local homology modules H!(M) of M with
respect to.I, which is defined by H!(M) = [anTorf(RlI,;M) (i ) 0). Also

in [3], we have shown some fundamental properties of local homology modules
when M is Artinian. Since Artinian modules are linearly compact with discrete
topology [11], there is a natural question: How to define a local homology theory
for linea^rly compact modules? Note that the concept of linearly compact spaces
was first introduced by Lefschetz [9] for vector spaces of infinite dimension and
it was then generalized for modules by Zelinsky [16]. It was also studied by
several authors: H. Leptin, I. G. Macdonald, C. U. Jensen, H. Ziischinger, et al..
The purpose of this note is to give basic results about local homology of linearly
compact modules.

Throughout, the ring R is commutative, Noetherian, and has a topological
structure.

2. Linearly Compact Modules

In this section we recall the concept of. linearly compact module by the terminol-
ogy of I. G. Macdonald [11] and some of its basic properties.

Let M be a topological .R-module. A. nucleus of. M is a neighborhood of the
zero element of. M, and a nicleor base of M is a base for the nuclei of. M.II N
is a submodule of M which contains a nucleus, then N is open (and therefore
closed) in M, and M lN is discrete. M is Hausdorff if and only if the intersection
of all the nuclei of M is 0. M is said tobe lineorly topologized if M has a uuclear
base M consisting of submodules.

A Hausdorfflinearly topologized ft-module M is linearly compact if M has
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the following property: If f is a family of closed cosets (i.e., cosets of closed
submodules) in M which has the finite intersection property, then the cosets in
f have a non-empty intersection.

If M is an Artinian ft-module, then M is linea,rly compact and discrete.
We first show that rf. M is linea"rly compact, then the functor for!(-;M)

transforms an inverse system of finitely generated modules into an inverse system
of linearly compact modules with continuous homomorphisms.

Proposition 2.1. Let {N1} be on inuerse system of finitely generated R-modules
ond M a linearly compact R-rnod,ule. Then{Torl(Nt;M)h (i > 0) forms an
inaerse system of linearly compact R-modules and, homomorphisrns ore continu-
ous.

The following proposition shows that li:m can commute to Tor for inverse
systems of linearly compact modules.

Proposition 2.2. If N is a finitely generated R-module anrt {M1}2 an inuerse
system of lineorly compoct R-modules with continuous homomorphisms, then for
atl i > 0, {Torf (N;Mt)} forms an inuerse system of lineorly compact modules
withcotinuoushomomryh'*';,'*;;:"#":;;,";,0;."*"*0"*

3. Linearly Compact Local Homology Modules

We first recall the definition of local homology modules in [3, 3.1].

Deflnition 3.L. Let I be an ideol of R and M an R-module. For all i 20, the
ith locat homology module H!(M) of M with respect to I is defined by

H!(M) = lisrTorf(ft lI';M).

Remarks.
(i) If. M is a linearly compact .R-module, so is I/j(M).

(ii) If the ideal .I is generated by r elements o1, . . . , c" in R, then

H ! (M) = lirur/i (e(t); M),
t

where H{g(t);M) is the ith Koszul homology module of M with respect to the
sys tem r ( t )  =  ( * \ , .  .  . , * ' , ) .

Ler LI.(M) be the i-th derived module of the .I-adic completion Iv(M) =

WMlttM of M. The following theorem shows that our Definition 3.1 is coin-

cidential with the definition of Greenlees and May [6, 2.4] when M is linearly
compact.
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Theorem 9.2. A M is o linearly cornpact R-module, then, lor oll i ) 0,

H!(M) * LI ,@).

The following result is an immediate consequence of Theorem 3.2.

Corollary 3,3. Let

be a short eaact sequence ol linearly cornpact nod,ules. Then we haae o long
eaact sequence ol local homology modules

An 8-module M is ca[ed f-separated if f'lt>o It M = 0. The following
proposition says that the local homology module Hi W) is .I-sepa.rated.

Proposition 3.4. Let M be an R-rnod.ule. Then, tor oll i ) 0,

)rn!1u1 = s.
t>0

The following theorem gives us a characterization of .I-separated modules.

Theorem 3,5, Let M be a lineoily compact R-module. The following statements
are equiuolent:
(i) M is l-separated, d.e., flr>o ItM =0.

(ii) Lr(M) = M.
(iii) Ifd(M) = M, H!(M) = 0 for atl i > 0.

To state the next theorem, we recall notions of. co-associated prime ideals
and mognitude of a module. A prime ideal p is called co-associated to a non-
zero module M if there is an Artinian homomorphic image L of. M with p -

Ann.L. We write CoassM for the set of co-associates primes (see [17]). The
magnitude magM of an R-module M is defined by magM = Sup{dim-R lpl p e
CoassM) (see [15, 2.1]). Note that for an arbitrary linea.rly compact module,
magM < dim,R/AnnM and there are some examples which show that magM <
dimR/AnnM

Theorem 3.6. Let M be a linearly cornpact R-rnodule with magM = d. Then,
for al l i> d,,

H!(M) = o.

89
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4. Duality

ln this section, (R, -) shall be a local Noetherian ring, m its maximal ideal and
k = Rlm its residue field. Suppose now that the topology on R is the nr-adic
topology.

We first observe that Hf (M) has a natural module structure over the m-
adic completion .F of r? for all i 2 0. The first drain result in this section is
the Noetherian property of local homology modules. Note that a Hausdorff
linearly topologized E-module M is called semi-discrete if every submodule of
M is closed.

Theorem 4,L. IIM is a semi-discrete linearly compact R-rnodule, then H!(M)
is a Noetherian R-module for all i ) 0.

Let D(M\ = Homn(M,E(Rlm)) be the Matlis dual of M. We have the
following duality between local cohomology modules Hi(M) and local homology
modules H!(M).

Theorem 4.2. Let M be on R-rnodule. Then lor all i 20,

H!(D(M)) = D(H|WD.

When (R, m) is a complete local ring we have

Corollary 4,3. Let (r?, m) be a complete local ring and M a linearly compact
semi-d,iscrete R-module. Then for all i ) 0,

H!(M) = D(H|@WD).

In the case where .B is a complete local ring, the class of linea.rly compact
semi-discrete .R-modules contains all Noetherian .R-modules. Therefore, the fol-
Iowing consequence is a generalization of a well-known result, which says that
local modules Hi(M) of a Noetherian .R-module M are Artinian.

Corollary 4.4. Let (R, -) be a complete local ring ond M o linearlg compoct
semi-discrete R-module. Then, for all i > 0, Hh(M) is Artinian.
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