Vietnam Journal of Mathematics 28:1 (2000) 87-91

Vietnam Journal of MATHEMATICS © Springer-Verlag 2000

Short Communication

Local Homology for Linearly Compact Modules

Nguyen Tu Cuong and Tran Tuan Nam Institute of Mathematics, P. O. Box 631, Bo Ho, Hanoi, Vietnam

Received April 10, 1999

1. Introduction

Let I be an ideal of a Noetherian commutative ring R and M an R-module. In [3] we introduced the concept of *local homology modules* $H_i^I(M)$ of M with respect to I, which is defined by $H_i^I(M) = \lim_{i \to \infty} \operatorname{Tor}_i^R(R/I^t; M)$ $(i \ge 0)$. Also

in [3], we have shown some fundamental properties of local homology modules when M is Artinian. Since Artinian modules are linearly compact with discrete topology [11], there is a natural question: How to define a local homology theory for linearly compact modules? Note that the concept of linearly compact spaces was first introduced by Lefschetz [9] for vector spaces of infinite dimension and it was then generalized for modules by Zelinsky [16]. It was also studied by several authors: H. Leptin, I. G. Macdonald, C. U. Jensen, H. Zöschinger, et al.. The purpose of this note is to give basic results about local homology of linearly compact modules.

Throughout, the ring R is commutative, Noetherian, and has a topological structure.

2. Linearly Compact Modules

In this section we recall the concept of *linearly compact module* by the terminology of I. G. Macdonald [11] and some of its basic properties.

Let M be a topological R-module. A nucleus of M is a neighborhood of the zero element of M, and a nuclear base of M is a base for the nuclei of M. If N is a submodule of M which contains a nucleus, then N is open (and therefore closed) in M, and M/N is discrete. M is Hausdorff if and only if the intersection of all the nuclei of M is 0. M is said to be *linearly topologized* if M has a nuclear base \mathcal{M} consisting of submodules.

A Hausdorff linearly topologized R-module M is linearly compact if M has

the following property: If \mathcal{F} is a family of closed cosets (i.e., cosets of closed submodules) in M which has the finite intersection property, then the cosets in \mathcal{F} have a non-empty intersection.

If M is an Artinian R-module, then M is linearly compact and discrete.

We first show that if M is linearly compact, then the functor $\operatorname{Tor}_{i}^{R}(-; M)$ transforms an inverse system of finitely generated modules into an inverse system of linearly compact modules with continuous homomorphisms.

Proposition 2.1. Let $\{N_t\}$ be an inverse system of finitely generated R-modules and M a linearly compact R-module. Then $\{\operatorname{Tor}_i^R(N_t; M)\}_t$ $(i \ge 0)$ forms an inverse system of linearly compact R-modules and homomorphisms are continuous.

The following proposition shows that <u>lim</u> can commute to Tor for inverse systems of linearly compact modules.

Proposition 2.2. If N is a finitely generated R-module and $\{M_t\}_t$ an inverse system of linearly compact R-modules with continuous homomorphisms, then for all $i \geq 0$, $\{\operatorname{Tor}_i^R(N; M_t)\}$ forms an inverse system of linearly compact modules with cotinuous homomorphisms. Moreover, we have an isomorphism

 $\operatorname{Tor}_{i}^{R}(N; \underset{t}{\lim} M_{t}) \cong \underset{t}{\lim} \operatorname{Tor}_{i}^{R}(N; M_{t}).$

3. Linearly Compact Local Homology Modules

We first recall the definition of local homology modules in [3, 3.1].

Definition 3.1. Let I be an ideal of R and M an R-module. For all $i \ge 0$, the ith local homology module $H_i^I(M)$ of M with respect to I is defined by

$$H_i^I(M) = \varprojlim \operatorname{Tor}_i^R(R/I^t; M)$$

Remarks.

(i) If M is a linearly compact R-module, so is $H_i^I(M)$.

(ii) If the ideal I is generated by r elements x_1, \ldots, x_r in R, then

$$H_i^I(M) \cong \varprojlim_i H_i(\underline{x}(t); M),$$

where $H_i(\underline{x}(t); M)$ is the *i*th Koszul homology module of M with respect to the system $\underline{x}(t) = (x_1^t, \ldots, x_r^t)$.

Let $L_i^I(M)$ be the *i*-th derived module of the *I*-adic completion $\Lambda_I(M) = \underset{t}{\lim} M/I^t M$ of M. The following theorem shows that our Definition 3.1 is coin-

cidential with the definition of Greenlees and May [6, 2.4] when M is linearly compact.

Local Homology for Linearly Compact Modules

Theorem 3.2. If M is a linearly compact R-module, then, for all $i \ge 0$,

 $H_i^I(M) \cong L_i^I(M).$

The following result is an immediate consequence of Theorem 3.2.

Corollary 3.3. Let

 $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$

be a short exact sequence of linearly compact modules. Then we have a long exact sequence of local homology modules

$$\cdot \longrightarrow H_i^I(M') \longrightarrow H_i^I(M) \longrightarrow H_i^I(M'') \longrightarrow$$

$$\cdots \longrightarrow H^I_0(M') \longrightarrow H^I_0(M) \longrightarrow H^I_0(M'') \longrightarrow 0.$$

An *R*-module *M* is called *I*-separated if $\bigcap_{t>0} I^t M = 0$. The following proposition says that the local homology module $H_i^I(M)$ is *I*-separated.

Proposition 3.4. Let M be an R-module. Then, for all $i \ge 0$,

The by principitor

 $\bigcap_{t>0} I^t H^I_i(M) = 0.$

The following theorem gives us a characterization of I-separated modules.

Theorem 3.5. Let M be a linearly compact R-module. The following statements are equivalent:

(i) M is I-separated, i.e., $\bigcap_{t>0} I^t M = 0$.

(ii) $\Lambda_I(M) \cong M$.

(iii) $H_0^I(M) \cong M, \ H_i^I(M) = 0 \text{ for all } i > 0.$

To state the next theorem, we recall notions of *co-associated* prime ideals and *magnitude* of a module. A prime ideal p is called *co-associated* to a nonzero module M if there is an Artinian homomorphic image L of M with p =AnnL. We write CoassM for the set of co-associates primes (see [17]). The magnitude magM of an R-module M is defined by mag $M = \sup\{\dim R/p \mid p \in$ Coass $M\}$ (see [15, 2.1]). Note that for an arbitrary linearly compact module, mag $M \leq \dim R/AnnM$ and there are some examples which show that magM <dimR/AnnM.

Theorem 3.6. Let M be a linearly compact R-module with magM = d. Then, for all i > d,

$$H_i^I(M) = 0.$$

4. Duality

In this section, (R, m) shall be a local Noetherian ring, m its maximal ideal and k = R/m its residue field. Suppose now that the topology on R is the m-adic topology.

We first observe that $H_i^m(M)$ has a natural module structure over the madic completion \widehat{R} of R for all $i \geq 0$. The first main result in this section is the Noetherian property of local homology modules. Note that a Hausdorff linearly topologized R-module M is called *semi-discrete* if every submodule of M is closed.

Theorem 4.1. If M is a semi-discrete linearly compact R-module, then $H_i^m(M)$ is a Noetherian \widehat{R} -module for all $i \geq 0$.

Let $D(M) = \text{Hom}_R(M, E(R/m))$ be the Matlis dual of M. We have the following duality between local cohomology modules $H_I^i(M)$ and local homology modules $H_I^i(M)$.

Theorem 4.2. Let M be an R-module. Then for all $i \ge 0$,

 $H_i^I(D(M)) \cong D(H_I^i(M)).$

When (R, m) is a complete local ring we have

Corollary 4.3. Let (R, m) be a complete local ring and M a linearly compact semi-discrete R-module. Then for all $i \ge 0$,

$$H_i^I(M) \cong D(H_I^i(D(M))).$$

In the case where R is a complete local ring, the class of linearly compact semi-discrete R-modules contains all Noetherian R-modules. Therefore, the following consequence is a generalization of a well-known result, which says that local modules $H_{i}^{i}(M)$ of a Noetherian R-module M are Artinian.

Corollary 4.4. Let (R, m) be a complete local ring and M a linearly compact semi-discrete R-module. Then, for all $i \geq 0$, $H_m^i(M)$ is Artinian.

References

- L. Alonso Tarrio, A. Jeremias Lopez, and J. Lipman, Local homology and cohomology on schemes, Ann. Scient. Ec. Norm. Sup. 4^c Serie 1 30 (1997) 1-39.
- 2. M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, 1998.

Local Homology for Linearly Compact Modules

- 3. N.T. Cuong and T.T. Nam, The *I*-adic completion and local homology for artinian modules, *Math. Proc. Camb. Phill. Soc.* (to appear).
- 4. N. T. Cuong and T. T. Nam, A local homology theory for linearly compact modules (preprint).
- 5. N.T. Cuong and L.T. Nhan, On linearly compact modules which are representable (preprint).
- J. P. C. Greenlees and J. P. May, Derived functors of *I*-adic completion and local homology, J. Algebra 149 (1992) 438-453.
- A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique-I, Pub. Math. I. H. E. S. 4 (1960).
- 8. C.U. Jensen, Les Foncteurs Dérivés de lim et leurs Applications en Théorie des Modules, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- 9. S. Lefschetz, Algebraic Topology, Colloq. Lect. Amer. Soc. 27 (1942).
- 10. H. Leptin, Linear Kompakte Moduln und Ringe-I, Math. Z. 62 (1955) 241-267.
- 11. I.G. Macdonald, Duality over complete local rings, Topology 1 (1962) 213-235.
- 12. H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986.
- J. Strooker, Homological Questions in Local Algebra, Cambridge University Press, 1990.
- 14. Z. Tang, Local homology theory for Artinian modules, Com. Algebra 22 (5) (1994) 1675-1684.
- 15. S. Yassemi, Magnitute of modules, Com. Algebra 23 (11) (1995) 3993-4008.
- 16. D. Zelinsky, Lirerly compact modules and rings, Amer. J. Math. 75 (1953) 79-90.
- H. Zöschinger, Linear-Kompakte Moduln uber noetherschen Ringen, Arch. Math. 41 (1983) 121-130.