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Abstract. The Fibonacci length of a finitely generated finite group G = (a, b} is the
least integer 1 such that, for the sequences z1 = a,Z2 = b, Zi12 = TiTiy1, (1 2 1) of
the elements of G, Zn+1 = 1 and Tp42 = 2.

The groups Day,, Q2 and the simple groups of order < 105 are the only known groups
that their Fibonacci lengths have been known. In this paper we shall generalize this
notion for the 3-generated groups and whereby we calculate the Fibonacci lengths of
the groups Aut(Djy,) and Aut(Qa~) which involve certain sequences of Tribonacci
numbers.

1. Introduction

Many authors have studied the periodic sequences of elements of finite fields and
groups (for example, see [2,3,5,6,9,10]). Most of these investigations consider
the periodic sequences modulo n. However, Campbell, Doostie and Robertson [6]
considered the periodic sequences for an abstract and finitely presented groups
by defining two parameters LEN and BLEN, computing them for D, ,Q2» and
simple groups of orders less than 10°.

In this paper by generalizing these notions, we study the Fibonacci length
and basic Fibonacci length of Aut(D2,) and Aut(Q.-). By considering a se-
quence of Tribonacci numbers we are able to calculate LEN and BLEN. An
explicit formula for LEN is also determined in one case. Moreover, we show
that if n = porn = 2p (p > 5 is a prime), then LEN = px BLEN, and if
n = 3.2%(k > 2), then LEN = 2x BLEN.

2. Preliminaries

Let G = (z,y) be a finite non-abelian group. Then the sequence
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ay =, a2 =Y, Git+2 = 0iQi4+1, ’LZI (1)

of elements of G is called the Fibonacci orbit, and the least integer n where
Gny1 = 61 and an42 = a2, denoted by LEN(z, ), is called the Fibonacci length
of the generating pair (z,y). The basic Fibonacci orbit of length m is also defined
to be the sequence (1) such that m is the least integer, where 210 = a1 and
020 = a2 for some 6 € Aut(G).

It is proved in [6] that m divides n and there are n/m elements of Aut(G)
that map the Fibonacci orbit into itself.

For a non-abelian and 3-generated group G = (a,b,c), we define the se-
quence

T =a, 272=b, I3 =C, Ti4+3 = TiTi+1Ti+2, 1,21 (2)

of elements of G as the Tribonacci orbit and the least integer n such that z,.; =
@, Tnyz = b, Tny3 = ¢, as the Tribonacci length of the generating triple (a, b, c).
We denote this length by LEN too. The definition of basic Tribonacci length
is similar to the 2-generator case. We use the notation BLEN for basic length
(Fibonacci or Tribonacci). For n-generator groups, (2) may be generalized (see
12)).

We also need some notions of group theory to optain the necessary presen-
tations for Aut(Ds,) and Aut(Q2»). Let G = G(n,m,r), where

G(n,m,r) = (a,bla™ =b™" =1, ™’ =a"), l<r<n-1L1

Then it is easy to see that |G| = md where d is the highest common factor of n
and r™ — 1. We define the following sequences of numbers where r is the integer
in the definition of G :

fo=fi=1, fn:fn—1+fn—2,n22’

so=0, s3=1, sk =52 +rfe-asi_1, k >4,

ti=ta=1, t3=-2, ti=ti-1+tiz+ti-3, 124,

1=1 =2, t3=3, =ttty 124

t'l' =111 S E=32) ty =4, t;’:ti’_1+t;'_2+t;'_3, 12> 4.

Then we have

Lemma 2.1. The elements of the sequence (1) of the group G are of the form:

a1 =a, ap=5b, ar=a’ . b*2 k>2

e A L DN L

where si is reduced modulo n and fy_o is reduced modulo m.

Proof. Let a; = a°* - bfe-2 and aryy = a®*+* . bf*-1, Then

Qkps = Qg * Qg4 = a°F - bfe-2 . gsk+1 . pfe-r

On the other hand, ba = a”b gives that

r¥
W -a® =a"" . B,
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for every non-negative integers z and y. Therefore,

if e
Qg2 = af* . (as,.+;r k 2) . pfe-2 L pfr-1 = as*-2 . pfx, =

Lemma 2.2. For every positive integer t and every k > 2, (ax)t = a® - b5,
where
o =sp(l+ ple-2 g p2fe-2 o4 r(t-l)fk—z)’ B =tfi_s.

Proof. The proof follows by induction on ¢ and using the relation b¥a® = a®"" bY.

B
Lemma 2.3. For every k > 2,t) =1+ Zf;ll t; and for every k > 3,
to2e-2_p = 1 (mod 2%), than-2_y = 0(mod2),
t22k—2_1 = 0 (mod 2k), t122k—2_1 = 1 (mOd 2),
t22k—2 = 0 (mOd 2k), tlzzk_z = 0 (mOd 2).

Proof. For every i > 1, ti!,; —t{ =t} and the first relation follows immediately
for every k > 2. To complete the proof we may use induction on k. ]

We use the following lemma to optain the necessary presentations for Aut(Ds,,)
and Aut(Qsn).

Lemma 2.4.
(i) For every n > 3, Aut(D,,) = Hol(Z,,),
(ii) for every n > 4, Aut(Q2~) = Hol(Zyn-1),

where, Hol(Z,,) is the holomorph of the cyclic group Z,,.
Proof. See [8] and [11], respectively. a

In computing Hol(Z,) we consider two cases for Aut(Z,): cyclic and non-
cyclic. If it is cyclic, then Aut(D2,) is a 2-generated group, otherwise Aut(Ds,)
is 3-generated. The following lemma gives all the possible cases for n and the
respective presentations for Aut(D;,) and Aut(Q2-).

Lemma 2.5. Aut(Z;) =1, Aut(Z,) = Z; and,
(i) Aut(Zp) = Zym) if p > 2 is a prime and n = p*, k > 1, or n = 2m for
every odd positive integer m. (¢ is the Eulerian function).
(ii) Aut(Zn) 2 Zy X Zy(ny2 if either n = 2, k > 3 orn is the product of two
coprime odd numbers.
(iii) Aut(Z,) = Zpw-1 X Zy(m) if n=25.m, k > 2 and m is odd.

Proof. Aut(Z,) is abelian (see for example, 1.5.5. of [7]), and getting generating
sets for Aut(Z,) is possible in each case. n

Lemma 2.6. Let Gi = Aut(Dan) and Gy = Aut(Qsn). Then G; may be
presented by

(i) Ifn=p* k>1orn=2m (m odd), then

Gy = (a,bla™ =1, b*(™ =1, ot =a"), (nn)=1, 2<r<n-1
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(ii) Ifn = 2%, k > 3, or n = my -my where m; and my are coprime odd integers,
then

Gy =(a,bcla® = =c?V2=[b =1, a" =qa7! o = a™h).

(iii) Ifn =2%.m, k > 2, and m > 3 is an odd integer, then
G = (a,b,cla™ = b2 = elm) = b,c)=1,a" =a7! o = a™l).

(iv) Aut(Qs) = Ss and for every k > 4, G2 may be presented by

b

= Py x;
o= P s’=[b,c]=1, =

Gz ={a,b,c|la

Proof. Consider Lemma 2.5 and the corresponding presentations for the semi-
direct products Z, : (Z, x Z;) in the cases (ii)- (iv), and the presentation
of Hol(Z,) in the case (i). i -

Theorem 2.7. If Aut(Z,) is cyclic, then the LEN of Aut(Dsy,) is the least
integer k such that all the conditions sxy1 = 1 (modn), sgy2 = 0(rnodn), fr =
1 (mod ¢(n)), and fr—1 = 0 (mod p(n)) hold.

Proof. In this case,n = p* (p > 3, @ > 1) or n = 2m (m is odd). Then consider
Lemmas 2.6(i) and 2.1. So, k = LEN is the least integer such that a®*+1bf*-1 = g
and a®*+2bf* = b, and the result follows immediately. .

By the definition the least integer ¢ is such that a;y; = @10 and a;12 = a»0
hold for some automorphism 6 of a group, we see that k/t is the order of 6 and
the orders of a; and a;4, are equal; similarly the orders of a; and a;,4 are equal.
(t =BLEN, k =LEN). Using this fact, we get

Corollary 2.8. If Aut(Zy) is cyclic, the integer t is the BLEN of Aut(D3,) if
and only if all of the following conditions hold

ser1(rnfe=171) /(rf-171) = 0 (mod n),

s42(r?(Mf — 1) =0 (mod n),

nfe-1 = 0(mod p(n)),
where (r,n) =1 and2<r<n-1

Proof. The result follows by Lemmas 2.6(i) and 2.2. 5

3. Results

Let G = Aut(D3z,). Then using the preliminary results of Sec. 2, we get
Theorem A. Ifn = 2%, k > 3, then LEN = 22¢-2 4nd BLEN = 4.

Theorem B. Ifn = p or n = 2p (for every prime p > 3), then LEN=
px BLEN#fn =3 or n =6, then LEN =6 and BLEN = 3.

Theorem C. If n = 2%.3, k > 2 then LEN = 2x BLEN.
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Corollary A.1. If G = Aut(Qs+), k > 4, then LEN = 224 gnd BLEN = 4.

4. Proofs

Proof of Theorem A. If n = 2% then G is 3-generated and consider 2.6(ii). For
every i > 5, every element a; of the sequence

a1 =a, ay = b, a3 = ¢, ag = abc, a5 = beabe, ag = cabcbeabe, . . .

can be written as follows:
a; = at-'-s.bté-a.cl'l'zz: t;

where {t;} and {t;} are the sequences of numbers defined in Section 2. This
may be proved by induction on i and by considering the relations a2* = 1, b2 =
1,[b,c] = 1, ba = a'b and ca = a~le. It is also obvious that the powers of a,
b and ¢ reduce modulo 2%, 2 and 2%~2, respectively. Now let [ = LEN. Then,
Gi4+1 = @, by = b, and ¢j41 = ¢. Considering 2.3 yields LEN = 22(k-1),

To show that BLEN = 4 we see that for every i > 1,
2% i=1(mod4)
2, i = 2 (mod 4)
9k=2 § = —1(mod4)
ok i=0(mod4).

order(a;) =

2l¢—2 2h—2

because, (abc)? = ac?, (abc) =a -7 = 02" and then, (abc)?" =

a®* =1, ie, a, b, c and abc have orders 2, 2, 2¥=2 and 2*, respectively. Using
induction on 7 we get the orders of elements of the Fibonacci orbit F, ;. as

follows:
gk 9 S EAERpeORpE=gR .

So, BLEN = 4. This completes the proof. ]
Proof of Theorem B. If n = p or n = 2p, G is a 2-generated group. Since
LEN/BLEN is the order of some automorphism of G such that af = a;41 and

b8 = airo (t = BLEN), it is sufficient to find this automorphism which should
be of order p. Define 6 € Aut (Aut(D2,)) as follows:

8 ama 2<r< 1
: ) T )
b— a®b R

8 is of order p, for, af? = a and
b6P = (a27b)9P~1 = a2"((a®"b)4P~?)
= a4r(bep—2) a4r((a2rb)0p—3)
— aGr(bop—S) — o0 — aZ(p-—l)r(a2rb)

=a®"h = b.

I
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Let £k =LEN and m = k/t. For every i > 1, we get a8’ = a;;4; and
b8* = a;s2 (by the action of 6 on the Fibonacci orbit). Since Fy ; = F,g 49, then
afd™ = @410 = af = a and O™ = amiq4020 = b, i.e., 0 is of order m, so k = pt.

If n = 2p we proceed in the similar way and define ¢ € Aut(Aut(Dyp)) as
follows:

[ { (n2p)=1,3<r<p-1
: , , =1, .
¢ 2,.b P S U 3

Then ¢ is also of order p, for ¢(2p) = ¢(p) = p ~ 1. Then k/t = p holds in this
case.

To complete the proof, let p = 3. Then by Lemma 2.6(i) we get
Aut(Dg) = (a,b|a® = b% = 1, bab™! = a?),
Aut(D;2) = {a,bla® = b* =1, bab™? = a?),
and the Fibonacci orbits are
a, b, ab, a?, a%b, ab,

and
a, b, ab, a"1b%, a%b®, ab,

respectively. Then LEN = 6 and BLEN = 3 hold for each group. =

Proof of Theorem C. In this case G = Aut(D,,) has a presentation isomorphic
to

Gy = (a,b,ca®* =¥ = =b,d =1, ba=a"1b, ca=a""c).
Consider the sequence
a1 =a, az = b, az = ¢, ag = abe, as = beabe, ...
and define § € Aut (Aut(Ds,y,)) as follows:

a—}a“"”*‘l
k=1
9. b— ag3? . b

c—cC.

Since Fy p,c = Fog 9,6, it is sufficient to show that 62 = 1, i.e., LEN = 2x BLEN.
We have
af? = (a9)6 = (a>2' +1)g = o@D’

However, for every k > 2,
3.2%|(3.2571 +1)% — 1 = 3.2F(1 + 3.2%~2),

Then a6? = a. Similarly, c§* = ¢ and
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b6? = (b6)6 = (0,3.2"'117)9 = (03.2"")9.(179) = g3:2* H)32* ) | a2 i B
= g3:2*(3.2*7%+1) p,

This completes the proof. =

5. Computations

When Aut(Z,) is cyclic we have formulated the results of Theorem 2.7 and
Corollary 2.8, and with a simple procedure, FLAUT (1], it is possible to compute
LEN and BLEN. If Aut(Z,) is not cyclic we have the results of Sec. 3 to get
LEN and BLEN.

In the definition of BLEN we see that there are some automorphisms § such
that order(d) = LEN/BLEN. In the Table 1 we may also consider the order of
such authomorphisms §, where we have called them the special automorphisms.
The exact definition of 8 is also given. Our computations show that 6 is the
identity in some cases.

6. Results and Conclusion

The presentation of Aut(Qqx), & > 4 is similar to that of Aut(Ds,) which
originated from Lemma 2.6(ii). So Corollary A1 may be proved in a similar
way as Theorem A. The following remarks complete and generalize Theorems A
and C.

Remark 1. If n = 2* (k > 3), then 6 € Aut (Aut(D,,)) defined by

a — abe
8:{ b— ac?
¢ — a"2bet
is of order LEN/BLEN = 22k—4,
Proof. The proof follows by using the result of Theorem A. "

Remark 2. For every prime p > 3 and for every integer k > 2, if n = p.2% then
for the group Aut(Dzy), LEN = p(p — 1).2¥ and BLEN = p(p — 1).2¥71.

Proof. We define € Aut (Aut(D2,)) as follows:

k=1
a — q'tr2

g : b — ap-zk-l - b

S

Then we get §2 = 1, and the rest of the proof is similar to the proof of Theorem
C. ) n
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Table 1
G LEN BLEN Special automorphism
Aut(Ds) 5 3 6'.{a—-)a,—1
B “lb—ab
a—at
D 6 3 :
Aut(Ds) ? { b a?
a—a
t(D 30 6 g:
Aut(Dio) { b— adb
a— a"tb?
t(D 6 3 :
Aut(D1z) {b—>a2b3
Aut(D14) 168 24 6: { L
b — a*b
a — abc
Aut(Dse) 16 4 :{ b—a
c—=a"%
Aut(D1s) 24 24 9= idAut(Dm)
Aut(D2o) 24 24 b= id.‘\ut(Dzo)
a—a
66 60 g
Aut(Dzz) i ? { b—atb
a—a’
Aut(Da4) 24 12 9:4{ b— a
c—ec
a—a
Aut(D 312 24 é:
ut(Dzs) { b — a*b
a—=a
Aut(D 168 24 6 :
ut(Das) { b - afb
Aut(D3o) 240 240 6= idAut(Dso)
a = abc
Aut(D33) 64 4 6:< b— ac?
c—a~%
a—a
Aut(D 406 24 0
ut(Dsq) { b ath
Aut(Dss) 24 24 8= ldAut(Dsg)
a—a
Aut(D 456 24 8:
ut(Dss) { b — a*b
a — atl
Aut(Dyo) 80 40 b— al%

(=25
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