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Abstract. The Fibonacci length of a finitely generated finite group G = (a,D) is the
least integer n such that, for the sequenceS s1 = arr2 = b,x;+2 = Eiai+Lr (i > 1) of
the elements of G, nn+l = cr and an+lt = 12,
The groups Dzn, Qz^ and the simple groups of order ( 105 are the only known groups
that their Fibonacci lengths have been known. In this paper we shall generalize this
notion for the 3-generated groups and whereby we calculate the Fibonacci lengths of
the groups Aut(D2") and Aut(Q2') which involve certain sequences of Ttibonacci
numbers.

1. Introduction

Many authors have studied the periodic sequences of elements of finite fields and
groups (for example, see [2,3,5,6,9, 10]). Most of these investigations consider
the periodic sequences modulo n. However, Campbell, Doostie and Robertson [6]
considered the periodic sequences for an abstract and finitely presented groups
by defining two parameters LEN and BLEN, computing them for D2n ,Q2" and,
simple groups of orders less than 106.

In this paper by generalizing these notions, we study the Fibonacci length
and basic Fibonacci length of Aut(D2") and Aut(Q2.). By considering a se-
quence of Tribonacci numbers we are able to calculate LEN and BLEN. An
explicit formula for LEN is also determined in one case. Moreover, we show
that if n = p or n = 2p (p 2 5 is a prime), then LEN : px BLEN, and if
n  :  3 .2k(k )  2) ,  then LEN = 2x BLEN.

2. Preliminaries

Let G = (s,y) be a finite non-abelian group. Then the sequence
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g t = a t  a Z = A ,  a i + Z = A i A i + L ,  i > I  ( 1 )

of elements of G is called the Fibonacci orbit, and the least integer n where

an*! : a1 and anit: a2, denoted by LEN(c,y), is cblled the Fibonacci length
of the generating pair (o, y). The basic Fibonacci orbit of length rn is also defined

to be the sequence (1) such that rn is the least integer, where 410 = om+r &rd

a20 = a*q2 for some d e Aut(G).
It is proved in [6] that rn divides n and there arenfm elements of Aut(G)

that map the Fibonacci orbit into itself.
For a non-abelian and 3-generated group G = \a,b,c), we define the se'

quence
x l = a ,  a 2 = b ,  t 3 = c ,  r i + g : r i c i + L a i + 2 ,  i )  I  ( 2 )

of elements of G as the Ttibonacci orbit and the least integer n such that r,'..,.1 =

attn*Z =b,tn+j = c, as the tibonacci length of the generating triple (a,b,c).

We denote this length by LEN too. The definition of basic tibonacci length

is similar to the 2-generator case. We use the notation BLEN for basic length
(Fibonacci or Tlibonacci). For n-generatot groups' (2) may be generalized (see

t2l).
We also need some notions of group theory to optain the necessary presen-

tat ions for Aut(D2')  and Aut(Qr").  Let G = G(n,rn,r) ,  where

G(n ,m, r )  =  (o ,  b lan  =  b-  =  1 ,  ab- '  =  a ' ) ,  1<  r  <  n -  1 .

Then it is easy to see that lGl = md where d is the highest common factor of n
and rm - 1 . We define the following sequences of numbers where r is the integer
in the definition of G :

f o  =  h  =  l ,  f n :  f n - r  t  f n - z :  n > 2 ,
s 2  = 0 ,  s 3  =  1 ,  s k  = s k - 2 + r h - o . s & - I ,  k > 4 ,
t t  = t z  =  l ,  t J  =  - 2 ,  t ; =  t ; - r * t i - z  * t ; - 3 ,  i /  4 ,
t l = ! ,  t ' z = 2 ,  t L = 3 ,  t ' ; = t ' i - t + t ' ; - z i - t ' ; - g ,  i )  4 ,
t ' l  =1 ,  t ' i  =2 ,  t ' i  =  4 ,  t ' !  = t ' l - t * t ' r ' - z+ t '14 ,  i>  4 .

Then we have

Lemrna 2.L. The elements of the sequence (l) of the group G are of the form:

& l = Q ,  a z = b ,  A k = Q t k  ' 6 t * - z t k > 2 ,

where sx is reduced modulo n and !x-z is reduced rnodulo m.

Proof. Let ak = osh ' $tx-z and o1a1 = osr+r ' flt-r ' Then

ak+2 = ak '  &h+t = a"h '  6tx-z '  ore+l bte-r .

On the other hand, ba = a'b gives that

lx
:tj

".r{

,,,{
. rll.t

b g  .  a '  =  a ' ' ' "  , b g  ,
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for every non-negative integers o and g. Therefore,

ak+2 = alr '  (aax+t 'u- ')  '  6,!x 'z '  6fr-t  -  asr '-z '  bfx. I

Lemma 2,2. For euery positiue integer t and euery le > 2, (ar)t = ao . f ,
where

a  = s r ( 1  a r f u - z  * r 2 f r - z  + . . . +  r ( t - L ) t x - 2 1 ,  0  = t f * _ 2 .

Proof. The proof follows by inductiou on t and using the relation be a' = ozrv 6u .
I

Lemma 2:3. For euery k l-2, t'l = 1 + Df=-rt t'i ond lor euery ft > 3,
t2ztc-z -2 = 1 (mod 2e ) ,
t2zx-z-1= 0 (mod 2k) ,

t2zr-zz0(mod2&),

t '2zr-z -2 = 0 (mod 2),

t '2zr-z -1= 1 (mod 2),

t 'rrr-, = 0 (mod2).

Proof. For every i > 1, tl'+t -t'! = ti and the first relation follows immediately
for every /c 2 2. To complete the proof we may use induction on ,t. I

We use the following lemma to optain the necessary presentations for Aut(D2,)
and Aut(Q2.).

Lernrna 2.4.
(i) For euery n ) 3, Aut(D2") =Hol(Z"),
(ii) lor euery n > 4, Aut(Q2^) =Hol(Z2^-t),

where, Hol(Z") is the holomorph of the cyclic Aroup Zn.

Proof. See [8] and [11], respectively. r

In computingHol(Z") we consider two cases for Aut(Z,): cyclic and non-
cyclic. If it is cyclic, then Aut(D2,,) is a 2-generated group, otherwise Aut(D2*)
is 3-generated. The following lemma gives all the possible cases for n, and the
respective presentations for Aut(D2") *d Aut(Q2").

Lemma 2.5. Afi(22) = 1 , Lut(Ze) = Zz ond,
(i) Aut(Z") ? Zeb\ if p > 2 is a prime and n = ph, k > l, or n = 2rn for

euery odd positiue integer m. (p is the Eulerian function).
(ii) Aut(Z") / 22 x Zqb)/z il either n = 2k, k ) 3 or n is the prod,uct of two

coprime odd numbers.
( i i i )  Au t (Z , )?  Z2r - t  x  Ze1^y  i f  n=2k .m,  k )2  ondm is  od ,d .

Proof. Aut(Z") is abelian (see for example, 1.5.5. of [7]), and getting generating
sets for Aut(Z") is possible in each case. r

Lemma 2.6. Let Gr - Arit(Dz") and Gz = Aut(Qz-). Then G1 may be
presented, bg
(i) If n = pk, k ) 1 or n =2rn (rn odd), then

G 1  =  ( a , b l a "  = L , b v @ )  =  1 ,  a b - '  = a ' ) ,  ( r , n )  =  l ,  2 S r  < n - 1 .
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(i l) If n = 2k, k /3, orn = rmr.rnz uherernl andTn2 are coprime odd integers,
then

G 1  = ( a , b , c l a n  = b 2  = c a b ) / z  = [ b , c ]  = 1 ,  o b - t  = a - t ,  a " - ' = a - L ) .

(i i i) ry n :2k.m, k ) 2, ond rn 2 3 is an odd integer,' then

G 1  = ( a , b , c l a n = b 2 r - ' - " v ( m )  = [ b , c ]  = 1 ,  a b - t  = a - L ,  a " - t  = a - t ) .

(iv) Aut(Qs) = Ss ond for euery le ) 4, G2 may be presented bg

G2  =  (a ,b , c l a ,2 ' - '  =b2  =  c2 ' - "  =  [ b , " ]  
-  1 ,  sb - l  =  e , - r ,  o " - t  =  o - l ) .

Proof. Qonsider Lemma 2.5 and the corresponding presentations for the semi-
direct products Zn: (Zox Z) in the cases (i i)-(iv), and the presentation
of. Hol(Z") in the case (i), r

Theorem 2.7. If Aut(Z") is cyclic, then the LEN o/ Aut(D2") is the leost
integer k such that all the conditions sk+l = 1(modn), sr+z - O(modn), fp =
I  (mod p(n)) ,  ond |x- r  = 0 (mod 9@)) hold.

Proof. Inthis case, n = pd (p > 3, a > 1) or n = 2rn (mis odd). Then consider
Lemmas 2.6(i) and 2,1. So, ,t = LEN is the least integer such that asx+tbtx-t - o
4r,l qsr+zfitb = b, and the result follows immediately. r

By the definition the least integer t is such that a1a1 = arO and at+z = az|
hold for some automorphism 0 of a group, we see that klt is the order of d and
the orders of ar and osal &r€ equal; similarly the orders of a2 and os.r2 ar€ eeual-
(, =BLEN, ,t = LEN). Using this fact, we get

Corollary 2.8. If Aut(Z") is cyclic, the integer t is the BLEN ol Aut(D2) il
and only il all of the following conditions hold

s1a1 (pnl ' - r  - r )  
I  (v f t - r t )  = 0 (mod n) ,

s42(re@)It  -  1) = 0 (modn),
n l t - r  =0(modp(n) ) ,

where (r,n) = 1 ond 2 I r S n - L

Proof. The result follows by Lemmas 2.6(i) and 2.2.

3. Results

Let G = Aut(D2"). Then using the preliminary results of Sec, 2, we get

Theorem A. If n = 2k, k ) 3, then LEN - 22k-2 onL BLEN = 4.

Theorem B. It n - p or n = 2p (for euery prime p ) 3), then LEN=
px BLENd/rz = 3 or n = 6, then LEN :6 and BLEN = 3.

Theorem Q. I f  n- 2k.3, k22 then LEN- 2x BLEN.
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Corollary L.l, If G = Aut(Qz*), lc > 4, then LEN = 22k-4 ond BLEN = 4.

4. Proofs

Proof of Theorem A.IIn = 2e then G is 3-generated and consider 2.6(ii), For
every i ) 5, every element a; of the sequence

aL = Qt a2 = b, Qt = c, a4 = abc, as = bcabc, aa = cabcbcabcr. ' .

can be written as follows:

a; = st ;-s .6t i -s."1*! t-{  t '

where {t;} and {ti} are the sequences of numbers defined in Section 2. This

may be proved by induction on i and by considering the relations 02* = !, b2 =

l, [b,c] = l,ba = a-rb and ca = a-rc. It is also obvious that the powers of a,
b and c reduce modulo 2k,2 and 2&-2, respectively. Now let I =LEN. Then,
a!+r = a, bt+r = b, and ct+r = c. Considering 2.3 yields LEN = 22(k-t) .

To show that BLEN = 4 we see that for every i ) 1,

i  =  1 ( m o d 4 )

i = 2 ( m o d 4 )

i  =  - 1 ( m o d 4 )

i  = 0 (mod4).

because, (abc)z - a2c2, (abc)2*-' = o'r-" 
""-' 

= a2t-' and then, (abc)2r =

a2r =Lri.e., a, b, c and aDc have orders 2k,212k-2 and 2e, respectively. Using
induction on i we get the orders of elements of the Fibonacci orbit Fo,a," as
follows:

2 k , 2 ,  , 2 k - 2 ,  2 k ,  2 k  , 2 , 2 k - 2 , 2 k , .  .  .

So, BLEN = 4. This completes the proof. I

Proof of Theorern B.Ifn = p or n = 2p, G is a2-generated group. Since
LEN/BLEN is the order of some automorphism of G such that a0 = at+t and
b0 = at+z (t = BLEN), it is sufficient to find this automorphism which should
be of order p. Define 0 € Aut (Aut(D2o)) as follows:

2 1 r 1 p - \ ,

0 is of order p, for, a9P = a and

bTp = (a2, b)gn-r - ' ozr 11a2" b)ee-z)

= on'(b00-2) = on'((o"b)eo-t)

: o6, (b0o-3) : . .. = a2(e-r)r (a2rb)

: g2o16 = 6.

(  a - > a' ' t u - + a 2 ' b '
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Let k =LEN aud m = le lt. For every i ) I, we get a?i = o;1.u1 and
b9t = a;t+z (by the action of d on the Fibonacci orbit). Since fl,o - Foo,ae, then
a9m = qmt+t0 = a0 = a and bem = ant+20 = 6, i.e., d is of order rn, so k = pt.

If n = 2p we proceed iu the similar way and define @ e Aut(Aut(D+p)) as
follows:

o ,  {  ? t  
o , - , ,  

( r , 2 p ) =  1 ,  3  S r  <  p - r .' 
( b -> o'o'b

Then { is also of order p,for Q(2p) = Q@) =p-!. Then,b/t - p holds in this
case.

To complete the proof, let p = 3. Then by Lemma 2.6(i) we get

Aut(D6) = (o, bl o3 = b2 = L, bab-r = a2),

Aut(Drz) = (a, bl a5 = b4 = 1, 6o6-1 - aa),

and the Fibonacci orbits are

a, b, ab, a2, a2b, ab,

and
a, b, ab, a- 'b2, a2b3, ab,

respectively. Then LEN = 6 and BLEN = 3 hold for each group. I

Proof of Theorem C. In this case G = Aut(Dz") has a presentation isomorphic
to

G2 = (a,b,clas'2 '  =b2'- '  = c2 = [b,c]  = l rba = a-Lb, ca= a-rc] .

Consider the sequence

At = At  OZ = b,  Qg = Ct A4 = AbC, AS = bCAbC,,  . ,

and define 0 e Aut (Aut(D2")) as follows:

(  -  r . z r - 1 + 1
I a -> a-''

0 t 1 U + a 3 ' 2 r - '  . b

[ " t " .

Since Fo,6," = Fol,b0,c0t it is sufficient to show that 02 = 1, i.e., LEN = 2x BLEN.
We have

qg2 = (ag)0 - (43'2&- 
I +t )0 = 6G'2*-'+t1" .

However, for every k ) 2,

3'2f t  I  (3.2ft-r  + 1)2 -  I  = 3.2ft(1 +9.2k-\ .

Then a02 = a. Similarly, c02 = c and
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b02 = (bq/ ,  = (as.2k-1b)e = (43.2r- r  )e.Q0) 
-  o(3.2&-1)(3 '2! -1+1) as.zr- '

= a3'2h(9.2h-zat) .b.

This completes the proof.

5. Computations

When Afi(Z") is cyclic we have formulated the results of Theorem 2.7 and
Corolla^ry 2.8, and with a simple procedure, FLAUT [1], it is possible to compute
LEN and BLEN. If. hfi(Z") is not cyclic we have the results of Sec. 3 to get
LEN and BLEN.

In the definition of BLEN we see that there are some automorphisms 0 such
that order(d) = LEN/BLEN. In the Table 1 we may also consider the order of
such authomorphisms 0, where we have called them the special automorphisms.
The exact definition of 0 is also given. Our computations show that d is the

identity in some cases.

6. Results and Conclusion

The presentation of Aut(Q2t), k > 4 is similar to that of Aut(D2") which

originated from Lemma 2.6(ii). So Corollary Al may be proved in a similar
way a{i Theorem A. The following remarks complete and generalize Theorems A
and C.

RemarJ< 1.If n =2k (k 2 3), then 0 e Aut (Aut(D2")) defined by

is of order LEN/BLEN - 22k-a '

Proof. The proof follows by using the result of Theorem A' I

Remark 2. For every prime p 2 3 and for every integer k> 2,if n- p.2k then
for the group Aut(D2,,), LEN = p(p - 1)'2ft and BLEN = p(p - l).2x-t '

Proof. We define 0 € Aut (Aut(Dz")) 6 follows:

Then we get02 = 1, and the rest of the proof is similar to the proof of Theorem

c . r

63
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Table 1

BLEN Special automorphism

(  a - + a - r
d ' : t b - + a - L b

(  a - > a - L
' ' t r + a 2 b

"  { ; : : ^ ,
(  a + a-Lb2

' ' t r + a z b s

"  { ; : : ^ ,
(  a + a b c

0 : 1 b - > a

[ ' - i o-24
0 = id4u61pr.1

0 = id4u31pro;

' , { ; : i ,
(  a - > a 7

0 t 1 b - r a 6 6
(  c + c

"  { ; : : "

t r { ; : : r ,

0 = id4,rg1pr.;

(  a +  a b c

0 : \ b + a c 2

I c + a - 2 b

"  { ; : : ^ ,
0 = id4,rs1pr.;

(  a - > a' '  
t  u ' + a a b
(  a - > a t r

t , 1 O - r a l o b

I c - i c

30

Aut(Do)

Aut(Ds)

Aut(D1s)

Aut(D12)

Aut(D1a)

Aut(Dro)

Aut(Dre)
Aut(Dzo)

Aut(Dzz)

Aut(Dz*)

Aut(Dzo) 3L2

Aut(D2s) 168

Aut(D3s) 240

Aut(D32)

Aut(Dar)

Aut(Dso)

Aut(Dsg)

Aut(Dro)

24168

16

24 24
24 24

660 60

t2

24

24

240

24

406 24

24 24

456 24

64

40
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