Vietnam Journal of MATHEMATICS © Springer-Verlag 2000

Fibonacci Length of Automorphism Groups Involving Tribonacci Numbers

H. Doostie¹ and C. M. Campbell²

 Mathematics Department, University for Teacher Education 49 Mofateh Ave., Tehran, 15614, Iran
 University of St Andrews, Mathematical Institute, North Haugh, St Andrews, KY16 9SS, Scotland, U.K.

> Received March 6, 1999 Revised November 2, 1999

Abstract. The Fibonacci length of a finitely generated finite group $G = \langle a, b \rangle$ is the least integer n such that, for the sequences $x_1 = a, x_2 = b, x_{i+2} = x_i x_{i+1}, (i \ge 1)$ of the elements of G, $x_{n+1} = x_1$ and $x_{n+2} = x_2$.

The groups D_{2n} , Q_{2^n} and the simple groups of order $\leq 10^5$ are the only known groups that their Fibonacci lengths have been known. In this paper we shall generalize this notion for the 3-generated groups and whereby we calculate the Fibonacci lengths of the groups $\operatorname{Aut}(D_{2n})$ and $\operatorname{Aut}(Q_{2^n})$ which involve certain sequences of Tribonacci numbers.

1. Introduction

Many authors have studied the periodic sequences of elements of finite fields and groups (for example, see [2,3,5,6,9,10]). Most of these investigations consider the periodic sequences modulo n. However, Campbell, Doostie and Robertson [6] considered the periodic sequences for an abstract and finitely presented groups by defining two parameters LEN and BLEN, computing them for D_{2n} , Q_{2n} and simple groups of orders less than 10^6 .

In this paper by generalizing these notions, we study the Fibonacci length and basic Fibonacci length of $\operatorname{Aut}(D_{2n})$ and $\operatorname{Aut}(Q_{2^n})$. By considering a sequence of Tribonacci numbers we are able to calculate LEN and BLEN. An explicit formula for LEN is also determined in one case. Moreover, we show that if n=p or n=2p $(p\geq 5$ is a prime), then LEN $=p\times$ BLEN, and if $n=3.2^k (k\geq 2)$, then LEN $=2\times$ BLEN.

2. Preliminaries

Let $G = \langle x, y \rangle$ be a finite non-abelian group. Then the sequence

$$a_1 = x$$
, $a_2 = y$, $a_{i+2} = a_i a_{i+1}$, $i \ge 1$ (1)

of elements of G is called the Fibonacci orbit, and the least integer n where $a_{n+1}=a_1$ and $a_{n+2}=a_2$, denoted by LEN(x,y), is called the Fibonacci length of the generating pair (x,y). The basic Fibonacci orbit of length m is also defined to be the sequence (1) such that m is the least integer, where $a_1\theta=a_{m+1}$ and $a_2\theta=a_{m+2}$ for some $\theta\in \operatorname{Aut}(G)$.

It is proved in [6] that m divides n and there are n/m elements of Aut(G) that map the Fibonacci orbit into itself.

For a non-abelian and 3-generated group $G=\langle a,b,c\rangle,$ we define the sequence

$$x_1 = a, x_2 = b, x_3 = c, x_{i+3} = x_i x_{i+1} x_{i+2}, i \ge 1$$
 (2)

of elements of G as the Tribonacci orbit and the least integer n such that $x_{n+1} = a, x_{n+2} = b, x_{n+3} = c$, as the Tribonacci length of the generating triple (a, b, c). We denote this length by LEN too. The definition of basic Tribonacci length is similar to the 2-generator case. We use the notation BLEN for basic length (Fibonacci or Tribonacci). For n-generator groups, (2) may be generalized (see [2]).

We also need some notions of group theory to optain the necessary presentations for $Aut(D_{2n})$ and $Aut(Q_{2n})$. Let G = G(n, m, r), where

$$G(n, m, r) = \langle a, b | a^n = b^m = 1, a^{b^{-1}} = a^r \rangle, \quad 1 < r < n - 1.$$

Then it is easy to see that |G| = md where d is the highest common factor of n and $r^m - 1$. We define the following sequences of numbers where r is the integer in the definition of G:

$$\begin{array}{lll} f_0=f_1=1, & f_n=f_{n-1}+f_{n-2}, \ n\geq 2,\\ s_2=0, & s_3=1, & s_k=s_{k-2}+r^{f_{k-4}}.s_{k-1}, \ k\geq 4,\\ t_1=t_2=1, & t_3=-2, & t_i=t_{i-1}+t_{i-2}+t_{i-3}, \ i\geq 4,\\ t_1'=1, & t_2'=2, & t_3'=3, & t_i'=t_{i-1}'+t_{i-2}'+t_{i-3}', \ i\geq 4,\\ t_1''=1, & t_2''=2, & t_3''=4, & t_1''=t_{i-1}''+t_{i-2}''+t_{i-3}'', \ i\geq 4. \end{array}$$

Then we have

Lemma 2.1. The elements of the sequence (1) of the group G are of the form:

$$a_1 = a$$
, $a_2 = b$, $a_k = a^{s_k} \cdot b^{f_{k-2}}$, $k > 2$,

where s_k is reduced modulo n and f_{k-2} is reduced modulo m.

Proof. Let $a_k = a^{s_k} \cdot b^{f_{k-2}}$ and $a_{k+1} = a^{s_{k+1}} \cdot b^{f_{k-1}}$. Then

$$a_{k+2} = a_k \cdot a_{k+1} = a^{s_k} \cdot b^{f_{k-2}} \cdot a^{s_{k+1}} \cdot b^{f_{k-1}}$$
.

On the other hand, $ba = a^r b$ gives that

$$b^y \cdot a^x = a^{x \cdot r^y} \cdot b^y,$$

for every non-negative integers x and y. Therefore,

$$a_{k+2} = a^{s_k} \cdot (a^{s_{k+1}r^{f_{k-2}}}) \cdot b^{f_{k-2}} \cdot b^{f_{k-1}} = a^{s_{k-2}} \cdot b^{f_k}.$$

Lemma 2.2. For every positive integer t and every $k \geq 2$, $(a_k)^t = a^{\alpha} \cdot b^{\beta}$, where

$$\alpha = s_k(1 + r^{f_{k-2}} + r^{2f_{k-2}} + \dots + r^{(t-1)f_{k-2}}), \ \beta = tf_{k-2}.$$

Proof. The proof follows by induction on t and using the relation $b^y a^x = a^{xr^y} b^y$.

Lemma 2.3. For every $k \geq 2$, $t''_k = 1 + \sum_{i=1}^{k-1} t'_i$ and for every $k \geq 3$, $t_{2^{2k-2}-2} \equiv 1 \pmod{2^k}$, $t'_{2^{2k-2}-2} \equiv 0 \pmod{2}$, $t'_{2^{2k-2}-1} \equiv 1 \pmod{2}$, $t'_{2^{2k-2}-1} \equiv 1 \pmod{2}$, $t'_{2^{2k-2}} \equiv 0 \pmod{2^k}$, $t'_{2^{2k-2}} \equiv 0 \pmod{2}$.

Proof. For every $i \ge 1$, $t''_{i+1} - t''_i = t'_i$ and the first relation follows immediately for every $k \ge 2$. To complete the proof we may use induction on k.

We use the following lemma to optain the necessary presentations for $\operatorname{Aut}(D_{2n})$ and $\operatorname{Aut}(Q_{2n})$.

Lemma 2.4.

- (i) For every $n \geq 3$, $\operatorname{Aut}(D_{2n}) \cong \operatorname{Hol}(Z_n)$,
- (ii) for every $n \geq 4$, $\operatorname{Aut}(Q_{2^n}) \cong \operatorname{Hol}(Z_{2^{n-1}})$,

where, $Hol(Z_n)$ is the holomorph of the cyclic group Z_n .

Proof. See [8] and [11], respectively.

In computing $\operatorname{Hol}(Z_n)$ we consider two cases for $\operatorname{Aut}(Z_n)$: cyclic and non-cyclic. If it is cyclic, then $\operatorname{Aut}(D_{2n})$ is a 2-generated group, otherwise $\operatorname{Aut}(D_{2n})$ is 3-generated. The following lemma gives all the possible cases for n and the respective presentations for $\operatorname{Aut}(D_{2n})$ and $\operatorname{Aut}(Q_{2n})$.

Lemma 2.5. $Aut(Z_2) = 1$, $Aut(Z_4) = Z_2$ and,

- (i) Aut $(Z_n) \cong Z_{\varphi(n)}$ if p > 2 is a prime and $n = p^k$, $k \ge 1$, or n = 2m for every odd positive integer m. (φ is the Eulerian function).
- (ii) Aut $(Z_n) \cong Z_2 \times Z_{\varphi(n)/2}$ if either $n = 2^k$, $k \geq 3$ or n is the product of two coprime odd numbers.
- (iii) $\operatorname{Aut}(Z_n) \cong Z_{2^{k-1}} \times Z_{\varphi(m)}$ if $n = 2^k . m$, $k \geq 2$ and m is odd.

Proof. Aut (Z_n) is abelian (see for example, 1.5.5. of [7]), and getting generating sets for Aut (Z_n) is possible in each case.

Lemma 2.6. Let $G_1 = \operatorname{Aut}(D_{2n})$ and $G_2 = \operatorname{Aut}(Q_{2^n})$. Then G_1 may be presented by

(i) If $n = p^k$, $k \ge 1$ or n = 2m (m odd), then

$$G_1 = \langle a, b | a^n = 1, b^{\varphi(n)} = 1, a^{b^{-1}} = a^r \rangle, (r, n) = 1, 2 < r < n - 1.$$

(ii) If $n = 2^k$, $k \ge 3$, or $n = m_1 \cdot m_2$ where m_1 and m_2 are coprime odd integers, then

$$G_1 = \langle a, b, c | a^n = b^2 = c^{\varphi(n)/2} = [b, c] = 1, \ a^{b^{-1}} = a^{-1}, \ a^{c^{-1}} = a^{-1} \rangle.$$

(iii) If $n = 2^k . m$, $k \ge 2$, and $m \ge 3$ is an odd integer; then

$$G_1 = \langle a, b, c | a^n = b^{2^{k-1}} = c^{\varphi(m)} = [b, c] = 1, \ a^{b^{-1}} = a^{-1}, \ a^{c^{-1}} = a^{-1} \rangle.$$

(iv) $\operatorname{Aut}(Q_8) = S_3$ and for every $k \geq 4$, G_2 may be presented by

$$G_2 = \langle a, b, c | a^{2^{k-1}} = b^2 = c^{2^{k-3}} = [b, c] = 1, \ a^{b^{-1}} = a^{-1}, \ a^{c^{-1}} = a^{-1} \rangle.$$

Proof. Consider Lemma 2.5 and the corresponding presentations for the semi-direct products $Z_n: (Z_p \times Z_q)$ in the cases (ii)-(iv), and the presentation of $Hol(Z_n)$ in the case (i).

Theorem 2.7. If $\operatorname{Aut}(Z_n)$ is cyclic, then the LEN of $\operatorname{Aut}(D_{2n})$ is the least integer k such that all the conditions $s_{k+1} \equiv 1 \pmod{n}$, $s_{k+2} \equiv 0 \pmod{n}$, $f_k \equiv 1 \pmod{\varphi(n)}$, and $f_{k-1} \equiv 0 \pmod{\varphi(n)}$ hold.

Proof. In this case, $n = p^{\alpha}$ $(p \ge 3, \alpha \ge 1)$ or n = 2m (m is odd). Then consider Lemmas 2.6(i) and 2.1. So, k = LEN is the least integer such that $a^{s_{k+1}}b^{f_{k-1}} = a$ and $a^{s_{k+2}}b^{f_k} = b$, and the result follows immediately.

By the definition the least integer t is such that $a_{t+1} = a_1\theta$ and $a_{t+2} = a_2\theta$ hold for some automorphism θ of a group, we see that k/t is the order of θ and the orders of a_1 and a_{t+1} are equal; similarly the orders of a_2 and a_{t+2} are equal. (t = BLEN, k = LEN). Using this fact, we get

Corollary 2.8. If $Aut(Z_n)$ is cyclic, the integer t is the BLEN of $Aut(D_{2n})$ if and only if all of the following conditions hold

$$s_{t+1}(r^{nf_{t-1}-1})/(r^{f_{t-1}-1}) \equiv 0 \pmod{n},$$

 $s_{t+2}(r^{\varphi(n)f_t}-1) \equiv 0 \pmod{n},$
 $nf_{t-1} \equiv 0 \pmod{\varphi(n)},$
where $(r,n) = 1$ and $2 \le r \le n-1$.

Proof. The result follows by Lemmas 2.6(i) and 2.2.

3. Results

Let $G = Aut(D_{2n})$. Then using the preliminary results of Sec. 2, we get

Theorem A. If $n = 2^k$, $k \ge 3$, then LEN = 2^{2k-2} and BLEN = 4.

Theorem B. If n = p or n = 2p (for every prime p > 3), then LEN = $p \times BLEN$ if n = 3 or n = 6, then LEN = 6 and BLEN = 3.

Theorem C. If $n = 2^k . 3$, $k \ge 2$ then LEN = $2 \times$ BLEN.

Corollary A.1. If $G = \operatorname{Aut}(Q_{2^k})$, $k \geq 4$, then LEN = 2^{2k-4} and BLEN = 4.

4. Proofs

Proof of Theorem A. If $n=2^k$ then G is 3-generated and consider 2.6(ii). For every $i \geq 5$, every element a_i of the sequence

$$a_1 = a$$
, $a_2 = b$, $a_3 = c$, $a_4 = abc$, $a_5 = bcabc$, $a_6 = cabcbcabc$, ...

can be written as follows:

$$a_i = a^{t_{i-3}} \cdot b^{t'_{i-3}} \cdot c^{1 + \sum_{j=1}^{i-4} t'_j}$$

where $\{t_i\}$ and $\{t_i'\}$ are the sequences of numbers defined in Section 2. This may be proved by induction on i and by considering the relations $a^{2^k} = 1$, $b^2 = 1$, [b,c] = 1, $ba = a^{-1}b$ and $ca = a^{-1}c$. It is also obvious that the powers of a, b and c reduce modulo 2^k , 2 and 2^{k-2} , respectively. Now let l = LEN. Then, $a_{l+1} = a$, $b_{l+1} = b$, and $c_{l+1} = c$. Considering 2.3 yields $\text{LEN} = 2^{2(k-1)}$.

To show that BLEN = 4 we see that for every $i \ge 1$,

order
$$(a_i) = \begin{cases} 2^k, & i \equiv 1 \pmod{4} \\ 2, & i \equiv 2 \pmod{4} \\ 2^{k-2}, & i \equiv -1 \pmod{4} \\ 2^k, & i \equiv 0 \pmod{4}. \end{cases}$$

because, $(abc)^2 = a^2c^2$, $(abc)^{2^{k-2}} = a^{2^{k-2}} \cdot c^{2^{k-2}} = a^{2^{k-2}}$ and then, $(abc)^{2^k} = a^{2^k} = 1$, i.e., a, b, c and abc have orders 2^k , 2, 2^{k-2} and 2^k , respectively. Using induction on i we get the orders of elements of the Fibonacci orbit $F_{a,b,c}$ as follows:

$$2^k$$
, 2 , 2^{k-2} , 2^k , 2^k , 2 , 2^{k-2} , 2^k , ...

So, BLEN = 4. This completes the proof.

Proof of Theorem B. If n=p or n=2p, G is a 2-generated group. Since LEN/BLEN is the order of some automorphism of G such that $a\theta=a_{t+1}$ and $b\theta=a_{t+2}$ (t=BLEN), it is sufficient to find this automorphism which should be of order p. Define $\theta\in$ Aut (Aut(D_{2p})) as follows:

$$\theta: \left\{ \begin{array}{ll} a \to a \\ b \to a^{2r}b \end{array}, \quad 2 \le r \le p-1, \right.$$

 θ is of order p, for, $a\theta^p = a$ and

$$b\theta^{p} = (a^{2r}b)\theta^{p-1} = a^{2r}((a^{2r}b)\theta^{p-2})$$

$$= a^{4r}(b\theta^{p-2}) = a^{4r}((a^{2r}b)\theta^{p-3})$$

$$= a^{6r}(b\theta^{p-3}) = \dots = a^{2(p-1)r}(a^{2r}b)$$

$$= a^{2pr}b = b.$$

Let k = LEN and m = k/t. For every $i \geq 1$, we get $a\theta^i = a_{it+1}$ and $b\theta^i = a_{it+2}$ (by the action of θ on the Fibonacci orbit). Since $F_{a,b} = F_{a\theta,b\theta}$, then $a\theta^m = a_{mt+1}\theta = a\theta = a$ and $b\theta^m = a_{mt+2}\theta = b$, i.e., θ is of order m, so k = pt.

If n=2p we proceed in the similar way and define $\phi \in Aut(Aut(D_{4p}))$ as

follows:

$$\phi: \left\{ \begin{array}{l} a \to a \\ b \to a^{2r}b \end{array}, \right. (r, 2p) = 1, \ 3 \le r \le p-1.$$

Then ϕ is also of order p, for $\phi(2p) = \phi(p) = p - 1$. Then k/t = p holds in this case.

To complete the proof, let p = 3. Then by Lemma 2.6(i) we get

$$Aut(D_6) = \langle a, b | a^3 = b^2 = 1, bab^{-1} = a^2 \rangle,$$

$$Aut(D_{12}) = \langle a, b | a^5 = b^4 = 1, bab^{-1} = a^4 \rangle,$$

and the Fibonacci orbits are

$$a, b, ab, a^2, a^2b, ab,$$

and

$$a, b, ab, a^{-1}b^2, a^2b^3, ab,$$

respectively. Then LEN = 6 and BLEN = 3 hold for each group.

Proof of Theorem C. In this case $G = Aut(D_{2n})$ has a presentation isomorphic to

$$G_2 = \langle a, b, c | a^{3 \cdot 2^k} = b^{2^{k-1}} = c^2 = [b, c] = 1, ba = a^{-1}b, ca = a^{-1}c \rangle.$$

Consider the sequence

$$a_1 = a$$
, $a_2 = b$, $a_3 = c$, $a_4 = abc$, $a_5 = bcabc$,...

and define $\theta \in \operatorname{Aut} (\operatorname{Aut}(D_{2n}))$ as follows:

$$\theta: \left\{ \begin{array}{l} a \to a^{3 \cdot 2^{k-1} + 1} \\ b \to a^{3 \cdot 2^{k-1}} \cdot b \\ c \to c. \end{array} \right.$$

Since $F_{a,b,c} = F_{a\theta,b\theta,c\theta}$, it is sufficient to show that $\theta^2 = 1$, i.e., LEN = $2 \times$ BLEN. We have

$$a\theta^2 = (a\theta)\theta = (a^{3 \cdot 2^{k-1} + 1})\theta = a^{(3 \cdot 2^{k-1} + 1)^2}.$$

However, for every $k \geq 2$,

$$3.2^{k} | (3.2^{k-1} + 1)^{2} - 1 = 3.2^{k} (1 + 3.2^{k-2}).$$

Then $a\theta^2 = a$. Similarly, $c\theta^2 = c$ and

$$b\theta^2 = (b\theta)\theta = (a^{3 \cdot 2^{k-1}}b)\theta = (a^{3 \cdot 2^{k-1}})\theta \cdot (b\theta) = a^{(3 \cdot 2^{k-1})(3 \cdot 2^{k-1} + 1)} \cdot a^{3 \cdot 2^{k-1}} \cdot b$$
$$= a^{3 \cdot 2^k(3 \cdot 2^{k-2} + 1)} \cdot b.$$

This completes the proof.

5. Computations

When $\operatorname{Aut}(Z_n)$ is cyclic we have formulated the results of Theorem 2.7 and Corollary 2.8, and with a simple procedure, FLAUT [1], it is possible to compute LEN and BLEN. If $\operatorname{Aut}(Z_n)$ is not cyclic we have the results of Sec. 3 to get LEN and BLEN.

In the definition of BLEN we see that there are some automorphisms θ such that $\operatorname{order}(\theta) = \operatorname{LEN}/\operatorname{BLEN}$. In the Table 1 we may also consider the order of such authomorphisms θ , where we have called them the special automorphisms. The exact definition of θ is also given. Our computations show that θ is the identity in some cases.

6. Results and Conclusion

The presentation of $Aut(Q_{2^k})$, $k \geq 4$ is similar to that of $Aut(D_{2n})$ which originated from Lemma 2.6(ii). So Corollary A1 may be proved in a similar way as Theorem A. The following remarks complete and generalize Theorems A and C.

Remark 1. If $n = 2^k (k \ge 3)$, then $\theta \in \text{Aut } (\text{Aut}(D_{2n}))$ defined by

$$\theta: \left\{ \begin{array}{l} a \to abc \\ b \to ac^2 \\ c \to a^{-2}bc^4 \end{array} \right.$$

is of order LEN/BLEN = 2^{2k-4} .

Proof. The proof follows by using the result of Theorem A.

Remark 2. For every prime $p \ge 3$ and for every integer $k \ge 2$, if $n = p \cdot 2^k$ then for the group $\operatorname{Aut}(D_{2n})$, $\operatorname{LEN} = p(p-1) \cdot 2^k$ and $\operatorname{BLEN} = p(p-1) \cdot 2^{k-1}$.

Proof. We define $\theta \in \operatorname{Aut} (\operatorname{Aut}(D_{2n}))$ as follows:

$$\theta: \left\{ \begin{array}{l} a \rightarrow a^{1+p.2^{k-1}} \\ b \rightarrow a^{p.2^{k-1}} \cdot b \\ c \rightarrow c. \end{array} \right.$$

Then we get $\theta^2 = 1$, and the rest of the proof is similar to the proof of Theorem C.

Table 1

G	LEN	BLEN	Special automorphism
$\operatorname{Aut}(D_6)$	6	3	$\theta' : \begin{cases} a \to a^{-1} \\ b \to a^{-1}b \end{cases}$ $\theta : \begin{cases} a \to a^{-1} \\ b \to a^{2}b \end{cases}$ $\theta : \begin{cases} a \to a \\ b \to a^{4}b \end{cases}$ $\theta : \begin{cases} a \to a^{-1}b^{2} \\ b \to a^{2}b^{3} \end{cases}$ $\begin{cases} a \to a \end{cases}$
$\mathrm{Aut}(D_8)$	6	3	$\theta: \left\{ \begin{array}{l} a \to a^{-1} \\ b \to a^2 b \end{array} \right.$
$\operatorname{Aut}(D_{10})$	30	6	$\theta: \left\{ \begin{array}{l} a \to a \\ b \to a^4 b \end{array} \right.$
$\operatorname{Aut}(D_{12})$	6	3	$ heta:\left\{egin{array}{l} a o a^{-1}b^2\ b o a^2b^3 \end{array} ight.$
$\operatorname{Aut}(D_{14})$	168	24	$\theta: \left\{ \begin{array}{c} h \rightarrow a^4h \end{array} \right.$
$\operatorname{Aut}(D_{16})$	16	4	$ heta: \left\{ egin{array}{l} a ightarrow a \ b ightarrow a \ c ightarrow a^{-2}b \end{array} ight.$
$\operatorname{Aut}(D_{18})$	24	24	$\theta = \mathrm{id}_{\mathrm{Aut}(D_{18})}$
$\operatorname{Aut}(D_{20})$	24	24	$\theta = \mathrm{id}_{\mathrm{Aut}(D_{20})}$
$\operatorname{Aut}(D_{22})$	660	60	$\theta: \left\{ \begin{array}{l} a \to a \\ b \to a^4 b \end{array} \right.$
$\operatorname{Aut}(D_{24})$	24	12	$ heta = \mathrm{id}_{\mathrm{Aut}(D_{18})} \ heta = \mathrm{id}_{\mathrm{Aut}(D_{20})} \ heta : \left\{ egin{array}{l} a ightarrow a \\ b ightarrow a^4 b \end{array} ight. \ heta : \left\{ egin{array}{l} a ightarrow a^7 \\ b ightarrow a^6 b \\ c ightarrow c \end{array} ight.$
$\mathrm{Aut}(D_{26})$	312	24	$egin{aligned} heta : \left\{ egin{aligned} a ightarrow a \ b ightarrow a^4 b \ heta : \left\{ egin{aligned} a ightarrow a \ b ightarrow a^6 b \end{aligned} ight. \end{aligned}$
$\mathrm{Aut}(D_{28})$	168	24	$\theta: \left\{ \begin{array}{l} a \to a \\ b & a^{6}b \end{array} \right.$
$\mathrm{Aut}(D_{30})$	240	240	$\theta = \mathrm{id}_{\mathrm{Aut}(D_{30})}$ $(a \to abc)$
$\operatorname{Aut}(D_{32})$	64	4	$ heta = \operatorname{id}_{\operatorname{Aut}(D_{30})} \ heta : \left\{ egin{array}{l} a ightarrow abc \ b ightarrow ac^2 \ c ightarrow a^{-2}b \ heta : \left\{ egin{array}{l} a ightarrow a \ b ightarrow a^4b \end{array} ight.$
$\operatorname{Aut}(D_{34})$	406	24	$\theta: \left\{ egin{array}{l} a ightarrow a \ b ightarrow a^4b \end{array} \right.$
$\mathrm{Aut}(D_{36})$	24	24	$\theta = \mathrm{id}_{\mathrm{Aut}(D_{36})}$
$\mathrm{Aut}(D_{38})$	456	24	$egin{aligned} & heta & he$
$\mathrm{Aut}(D_{40})$. 80	40	$ heta: \left\{egin{array}{l} b ightarrow a^{10}b \ c ightarrow c \end{array} ight.$

Shou bge

300,000,000

References

- 1. A. Abdolalian and H. Doostie, FLAUT program, private communication (1994).
- H. Aydin, R. Dikici, and G. C. Smith, Wall and Winson revisited, in Applications of Fibonacci Numbers, G. A. Bergum et al. (eds.), Vol. 5, 1993, pp. 61-68.
- H. Aydin and C. G. Smith, Finite p-quotients of some cyclically presented groups, J. London Math. Soc. 49 (1994) 83-92.
- M. J. Beetham and C. M. Campbell, Anote on the Todd-Coxeter coset enumeration algorithm, Proc. Edinburgh Math. Soc. 20 (1976) 73-76.
 - O.J. Brinson, Complete Fibonacci sequences in finite fields, Fibonacci Quarterly 30 (1992) 295-304.
- C. M. Campbell, H. Doostie, and E. F. Robertson, Fibonacci length of generating pairs in groups, in: Applications of Fibonacci Numbers, G. A. Bergum et al. (eds.), Vol. 3, 1990, pp. 27-35.
- D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, Berlin, 1982.
- 8. J.S. Rose, A Course on Group Theory, Cambridge University Press, 1978.
- 9. D.D. Wall, Fibonacci series modulo n, Amer. Math. Monthly 67 (1960) 525-532.
- H. J. Wilcox, Fibonacci sequences of period n in groups, Fibonacci Quarterly 24
 (1986) 356-561.
- H. Zassenhaus, The Theory of Groups, 2nd. ed., New York, Chelsea Pub. Company, 1958.