Vietnam Journal of Mathematics 28:1 (2000) 25-31 )
Vietnam Journal

of
MATHEMATICS
© Springer-Verlag 2000

On Solvability in a Closed Form of
a Class of Singular Integral Equations
with Rotation and a Regular Part

Nguyen Tan Hoa

Department of Mathematics, Gia Lai Teachers’ Training College
Gia Lai, Vietnam

Received October 16, 1998
Revised June 4, 1999

Abstract. In this paper we study the solvability in a closed form of singular integral
equations of certain form. The method in this report is to reduce such equations to
systems of singular integral equations of Cauchy type and then obtain all solutions in
a closed form.

1. Introduction

Let T be a simple regular closed arc on the complex plane C. It is known that
the equation of the form

a(t)e(t) + b(t)(Se)(t) = f(t)

admits an effective solution (in a closed form), where S is a singular integral
operator of Cauchy type in H#(T') (0 < p < 1) (see [5]).

'In (2], Ng. V. Mau considered the problem of solvability in closed form for
singular integral equations of the form

Tn—l—k k
olt) + — / T L pM(r, typl(r)dr = f(2),

i ™ — tn
r

where n, k are non-negative integers, 0 < k < n — 1, and ' is the unit circle on
the complex plane.

Let T={teC:|tj=1}, D* ={2€C:lz| <1}, D-={z€C: |z >
1}. Denote by X the space H*(I') (0 <p <1).

Consider a singular integral equation of the form

n—1—k tk
o0) + = [ T M tiptr)ar = 50, (1)
r
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where ©(t), f(t) € X and M(7,t) is a function satisfying Holder’s condition in
both variables (1,t) e ' xI',0<k<n-1,1<né€N.

In this paper we study solvability in a closed form of singular integral equa-
tions of the form (1).

By algebraic method we reduce Eq. (1) to a system of singular integral
equations of Cauchy type and then obtain all solutions in a closed form.

2. Preliminaries

Let
_1 (o)
(50)0) === [ £00ar,
r
- 1 n—1-k ik (2)
(Sn.k0) (2) =% / W?’(T)d‘r, 0<k<n-1,
'y

(Wo)(t) =p(e1t), 1= exp (%) gj=¢€l (j=1,..,2n).

We have (see [5]) S% = I, W?" = I, where I is the identity operator on X.

Denote
. 1 1
i =§(I+S), Q= 5(1- S),
1 2n
1 2n-1—v yrl+v (s _
P; _2";€jn Wt (j =1,...,2n).

Then we have (see [5])

P2=P1 Q2=Q, PQ=QP=Oa Pin=6iij (i,j:l,...,Zn),

2n 2n
=) P, Wk=) etp,;,
i=1 i=1

X=X*eX = E’a‘lxj,
J=

(3)

where X+ = PX, X~ =QX, X; = P;X (j =1,..,2n), &; is the Kronecker
symbol.

Lemma 1. Let §n,k be of the form (2). Then
gn,k =SSP, — SPuyr (k=0,..,n-1),

where we admit Py = Pay,.
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Proof. From the identity

Tn—l-—ktk 7.2n.—1—l«',tk ,rn—l—ktn+k

7n 4 0 = 20 _ 2n 2N $2n
we obtain (see [2])

Tn—l—ktk

~ 1
(Snkp)(t) = P Ww(T)dT
iy
1 2n 1- ktk n-—l ktn+k
= 7_1‘; T2 — tz" (P(T dT - —/ r2n _ 42n T)dT
Ty
= (SPep)(t) = (SPnsr®)(t)- n

Lemma 2. (2] Let K(7,t) be a function analytic in Dt and continuous on D
with respect to each of its variables. Then

fK(T, (t)dr € X for every p € X.
(2) fK 7,t)pT (T)dT = 0 for every o+ € X+.
r

By the same method as in [2,p.97], using Lemma 2, we can prove the
following result.

Lemma 3. Let M(r,t) admit an analytic prolongation in both variables onto
D% and let M(ey7,t) = M(r,e1t) = M(r,t), M(t,t) =0 for 7,t € I'. Suppose

that the function (T — t)~}[M(7,t) — M(t,t)] is continuous on D" with respect
to each of its variables. Then

n—1-k ;k
(1) ¢*(2) = / T—;‘?:—M(‘r, tYo(r)dr € Xt for every p € X.
r
(

2) ¢F(t) =0 for every p € X+,

By the same method as in [2, p. 98], we can prove the following result.
Lemma 4. Suppose that M(e17,t) = M(r,e1t) = M(r,t), M(t,t) = 0 for
7,t €. Then

NPJ' = PjN (] = 1,...,2n), M= N(Pk = n+k)
where

N(r,t) = (1 - t)7HM(T,t) — M(t,t)],

1 Tn—l ktk
M) =3 | Tre
r

(No)(t 7r12 /N(‘T’, p(r)dr.

r

———— M{(7,t)p(7)dT,
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In the sequel, for every function a(t) € X we write

(Kap)(t) = a(t)p(t).

Lemma 5. [3] Let a(t) € X be fired. Then for every k,j € {1,2,...,2n} the
following identities hold

PyK.P; = K,,,P; = PiK,,,,
where
1 2n P
ak;(t) = 5= D_elai alevnt). (4)
v=1

Now we deal with the equation of the form (1).
Rewrite this equation as follows

n—-1-k +k Fn=1—k sk
o)+ 20 [T omar + - [ M ptr)ir = 10, 9
r

oy A4 1 Tkt :
r

where  b(t) = M(t,t), M(r,t) = M(r,t) — M(t,t), M(t,t) =0, teT.
In the sequel, assume that ]7(511-, t) = M(T,slt) = M(T, t).
From Lemmas 1 and 4 we can write (5) in the form
o(t) + b(t)[S(Ps — Pnti) @] () + N (Pk = Pryr)el(t) = £(2), (6)
where  N(r,t) = (r - )= {M(r, t) = B(t, 1)}, We)(t) = — / N(r, t)o(r)dr.

Consider the following system of equations

{ pi(t) +5(t2(S<Pk)( ) = byt Z(S‘Pn+k)( ) + (Nek)(t) = (Pef)(2),
Ptk (t) + b1 () (Ser)(t) — b(E)(SPn+k)(t) = (Nonsi)(t) = (Posr f)(2), -
where (@k,@n+k) € X x X is unknown and E(t) = brx(t), Bl(t) = b nak(t);
brk(t), br.n+k(t) are defined by (4).

By the same algebraic method as in [2, p. 103], using Lemma 5 and (3), we
can prove the following result:

Lemma 6. Equation (6) is solvable in X if and only if the system (7) is solvable
in X x X. Moreover, every solution of (6) is defined by the formula

o(t) = f(t) = b(t)[S(Pe = Pati)P](t) = [N (Pr — Pats)] (1),

where @(t) = (Pkcpk)(t) (Patk@n+k)(t) and (@k, pnsk) is a solution of the
system (7) in X x X.
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In the sequel, assume that 1 —a(t)d(t) # 0, t € T, where a(t) = b(t) + b1 (t),
d(t) = b(t) — b1 (2).

Denote
_ N(r,t)[a(r) - d(t)](T = t) +d(t)[a(r) — a(t)]
(il e = o()dD)(r = 1) !
(Nup /N1 a t T)dT

3. Main Results
Now we can formulate the main results

Theorem 1. Suppose N(7,t) and N1(7,t) are functions which admit an analytic

prolongation in Dt and are continuous on D' with respect to each of their
variables. Then equation (6) admits all solutions in a closed form.

Proof. Due to the results of Lemma 6, it is enough to show that the system
(7) admits all solutions in a closed form.

System (7) is equivalent to the following system:

{ P1(t) + a(t) (Sv2) (t) + (N92)(t) = g1 (), @)
V2 (t) + d(t) (Se1) (8) + (Ne1)(2) = ga(2),
where

91(t) =(Pef)(t) + (Pt F)(t), 92(t) = (Pif)(t) — (Pasr f)(2),

D1(t) =0k(t) + @ntr(t), Ya(t) = @i (t) = Onyr(t). (9)

Rewrite this system as follows:

{ 1 (t) + (KaSw2)(t) + (N92)(t) = a1 (2),
¥2(t) — (KaSKaSth2) (t) - (KaSN2) (1) = (N KaStha) () - (M24h2) (t) = g3(t),
(10)
where
93(t) = g2(t) — d(t)(Sq1)(t) — Nag1)(2).
To solve System (10), it is enough to solve the equation
¥2(t) ~ (KaSKaSth2) (1) - (KaSN2) (1) — (N K. Sv2) (t) - (M4 () = ga(2).

(11)
By our assumption for N(7,t), according to Lemma, 2, we have

N?=0, SN=N, NS=-N.
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Hence, (11) is equivalent to the following equation:

W2 (t) — (KaSKaSt2)(t) + (KaN'S2)(t) — (NKoS42)(t) = ga(t)

Rewrite this equation as follows:

ba(t) = [1 — d(t)a(®)] ' [(KaSKa — KaKaS — KaN + NKq) (St2) (8)] = g4(t)

where gs(t) = [1 - d(t)a(t)] " gs(t), ie.,
Pa(t) — (M1SY2) () = ga(t).
By our assumption for Ni(7,t), according to Lemma 2, we have
MyF)(t) =0, (My7)() € X7,

where

T = (Py2) (1), 93 () = —(Q¥2)(t).
Hence, from (12), we obtain

¥ (1) = Mvz)(t) = (¥3) (1) = ga(2).
Equation (13) is just a Riemann boundary value problem

¢r(t) - ¢7(t) = ga(?),
where
ot (t) =7 (1) = (M3 ) (8) € X,
o~ (t) := y’)z_(t) e X"
This equation has a unique solution
#7(1) = 394(0) + 5(S90)(0),
#(0) = ~594(6) + 5(S00)2).
From (9), (10), and (14), we obtain
Pa(t) = ¥F — 7 = ¢+ (t) — 47 (t) + (M1g7)(t)
and

[92(2) + w2 (2) — a(t) (Sv2) (t) — (Ne2)(2)],

N =

er(t) =
prek(®) = 3 [0:(0) — a(®) = a(0) (Swa) (1) - (NWwa) 0)].

The theorem is proved.

(12)

(14)
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By a similar argument, we prove a dual statement, namely we have

Theorem 2. Suppose N(r,t) and N1(7,t) are functions which admit an analytic

prolongation in both variables onto D~ and continuous on D with respect to
each of their variables. Then Eq. (6) admits all solutions in a closed form.

Theorem 3. Let N(r,t) admit an analytic prolongation in both variables onto
D™ and let Ny(r,t) admit an analytic prolongation in T and meromophic pro-
longation in t onto D*. Suppose that Nyi(r,t) has all poles in variable t at
points z;(€ DT) of order mj, respectively (j = 1, 2,. ,s) Moreover, N(t,t)

and H =t~ z)] ' N1(1,t) are contivous functions on D' with respect to each
of thezrs variables. Then the equation (6) admits all solutions in a closed form.

Proof. By the assumptions, we obtain the representation (see [2])
Ni(7,t) = [R(®)] "IN (7, 1),

where h(t) = H;=1(t - z;)™, z; € D*, N{(r,t) admits an analytic prolonga-
tion in both variables onto D*. Hence, (12) has the following form:

h(tydy (t) = NI 97)(t) = A()YF (t) + h(t)ga(t),

where

W)t =—/N+ T

Since ¢ (t) = h(t)y7 (t) — (NiT¥s)(t) € X+, 5 (t) € X, the last equa-
tion is a Riemann boundary problem, and from this equation, we can find every
solution of (9) in a closed form. W
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