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Abstract. In this paper we study the solvability in a closed form of singula^r integral

equations of certain form. The method in this report is to reduce such equations to

systems of singular integral equations of Cauchy type and then obtain all solutions in

a closed form.

1. Iutroduction

Let f be a simple regula.r closed arc on the complex plane C. It is known that

the equation of the form

a(t)e(t) + b(t)(srP) (t) = /(t)

admits an effective solution (in a closed form), where S is a singular integral

operator of Cauchy type in I//'(f) (0 < p < 1) (see [5]).
In [2], Ng.V. Mau considered the problem of solvability in closed form for

singular integral equations of the form

t  t  -n-L-k+k

eQ) + * J #M(r't\eQ)d'' 
= f(t)'

r
where n,k are non-negative integers, 0 < ,t < n - L, and I is the unit circle on

the complex plane.
L e t  f  l { t a C : l t l  = 1 } ,  D *  = { z € C : l z l < 1 } ,  D -  = { z e  C : l z l >

1). Denote by X the space f/p(l) (0 < p < l).
Consider a singula,r integral equation of the form

t  r  -n -L-k  4k

eu)+ ;J  , "+ t ; ;M( r , t )e f t )d r : l ( t ) '  
( 1 )

r
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where g(t), f (t) € X and M(r,t) is a function satisfying Hiilder's condition in
both variables (r,t) € | x l, 0 S fr < n - I, I S n e N.

In this paper we study solvability in a closed form of singular integral equa-
tions of the form (1).

By algebraic method we reduce Eq.(t) to a system of singular integral
equations of Cauchy type and then obtain all solutions in a closed form.

2. Preliminaries

Let

(se)(t) =+ [ 90,,n t , !  r - t

( . i " , r r )  @=*  I#eQ)dr ,  o ( , t (n , -1 ,  Q)
r

(We)Q) =e(ef i ) ,  €r = exp (T),  , ,  = ert  U = L,. . . ,2n).

We have (see [5]) 52 = I,W2n =.[, where.I is the identity operator on X.
Denote

e =f,V +,s), g = | tr  -  s),
't 2n

pi =!,_16?"-t-, wr+, ( j  = l , . . . ,2n).
Z N H .  J

Then we have (see [5])

P2 = P, Q' = Q, PQ = QP = 0, PiPj = 6;iPi (i,J = 1, ...,2n),

2n 2n

/  = I  p i ,  Wk =Dr lp i ,
j= !  ,= l  (3 )

X =X+ @ X- = '.6.*r,
l = t

where X+ - PX, X- = QX, Xi = P1X (J = 1,...,2n), d;i is the Kronecker
symbol.

Lemma L. Let 3,.,* be ol the form (2). Then

3,.,0 = SP* - SPr,+* (& = 0, ..., n - 1),

where we odmit Po = P2n.
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Proof. From the identity

,n- l-ktk _ r2n-r-ktk _ rn-r-ktn*k

Tn + tn 72n - g2n 72n - 12n 
'

we obtain (see [2])

1  1  nn -L - k1k
(S",*p)(t) = 

* J r^T;ek)dr
I

= _ t  
r - 2 n - l - k + k  t  r - n - I - k + n * k

;zJf f ief t )dr- ;Jf f ieQ)dr
r r

= (.9Pe9)(t) - (SP"apQ(t). I

Lemrna 2. l2l Let K(r,t) be a function analytic in D+ and continuous onDr
with respect to eoch of its uoriobles. Then

(1) t  K(r, t )qf t)dr € X+ for eaery I  e X.
r

(2) [ K(r,t)g+ ft)dr = 0 lor euery p+ e X+ .
r

By the same method as in [2, p.97], using Lemma 2, we can prove the
following result.

Lemma 3. Let M(r,t) admit on analytic prolongation in both uariobles onto
D+ and le t  M(ep, t )=  M(r ,e r t )  -  M( r , t ) ,  M( t , t )  =0  to r  r , t  €  l .  Suppose

thot the function (r - t)-LlM(r,t) - M(t,t)l is continuous onT with respect
to each of its uoriables. Then

1 nn-l-k 1k

(1) d+(t) = 
JrffiM(r,t)eft\dr 

e X+ for euery e e x'

(2) O+ (t) = o for euery I e x+ .

By the same method as in [2, p. 98], we can prove the following result.

Lemma 4. Suppose that M(ep,t)  = M(r,eJ) -  M(r, t ) ,  M(t, t )  = 0 Ior
r , t  e l .  Then

NPi = PiN ( j  = 1,. . . ,2n),  M = N(Pr -  Pn+k),

where

. l f  (2,  t )  = (r  -  t )-LlM(r, t)  -  M(t, t )1,
1 1 nn-l-k 1k

(Md(t) : ; J r"=ft t r(r,t)eQ)d,r,
r

1 f
(Nd(t) = . I  N(r,t)eQ)dr.

Itx J
I
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In the sequel, for every function a(t) e X we write

(K"p)(t)  --  a(t)eQ).

Lemma 5. l3 l  Leta(t)  e X be feed. Then for euery k, i  € {1,2,. . . ,2n) the

following identities hold

PltK"Pi = KorrPi = PkKori,

where
, 2 n

^- . t+\  _ r  \ -  . j - !a@,ap).  (4)v E J \ v t  -  
2 n  L " " +

Now we deal with the equation of the form (1).
Rewrite this equation as foUows

bft\ p ,n-L-k 1k I S ,n-r-k tk :-.
eQ) + ry J #eQ)dr * A J *fiu(r,t)eft)dr 

= l(t), (5)
l r

where b(t) = 71411,1, fr(r,t) = M(r,t) - M(t,q, M(t,t) = 0, t € f.

In the sequel, assume thatfr@g,fi =M(r,e1t) = M1r,t1.
From Lemmas 1 and 4 we can write (5) in the form

eU) + b(t)[S(Ph - P"+r)p](t) +lN(p* - P"+t)p)(t) = /(t),  (6)

where N(r,t) = (r - t)-LlMft,q - MU,t)],(Ne)$) = + [ NQ,t)eft)d,r.
" r {

Consider the following system of equations

I  p*(t) + 6(r)(seft)(r) - 61(t)(sp"+,t)(r) + (Nek)(t) = (Pft l)(t),

I  p"*r(r) + 61(r)(seft)(t) - 6(txse"+*)(t) - (Np"+r)(t) = (P"+e/)(t),
(7)

where (px,gn+x) € X x X is unknown and 61t; = bg(t), Dtlt; = br,,,+r(t);
b*r(t), br,,,+r(t) are defined by (a).

By the same algebraic methbd as in [2, p. 103], using Lemma 5 and (3), we
can prove the following result:

Lemma 6. Equotion (6) is soluable in X if and only if the system (7) is soluoble
in X x X. Moreouer, euery solution of (6) is defined by the formula

p( t )= f ( t ) -  b( r ) [s(Pe -  P"+r)Q)@-lN(po-  p"+r , )Q]( t ) ,

where QQ) = (Pkgk)(t) + (P"+r9"+*)(t; and (9p,9n+x) is a solution of the
system (7) in X x X.
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In-the sequel, assume that I -a(t)d(t) #0,t e I,  wherea(t) = 5(t)+6r(t),
d ( t ) = b ( r )  - h ( r ) .

Denote

Nr(r, r) - N(r '  t)[o(r) -- d(t) l( l  ; . t).+ d(t)[a(r) - a(t)].
t t  - a(t)d(t) l(,  - t) '

(NtdQ) = 
* |  

N1Q,t)eQ)dr.
f

3. Main Results

Now we can formulate the main results

Theorem L, Suppose N(r, t) and N1(r,t) are tunctions which admit an analytic
prolongation in D+ and ore continuous onT with respect to each of their
uordables. Then equation (6) adrnits all solutions in a closed form.

Proof. Due to the results of Lemma 6, it is enough to show that the system
(7) admits all solutions in a closed form.

System (7) is equivalent to the following system:

( , t r( t )  + a(t)(sr!r)( t )  + (Nt$(t)  gt( t) ,
t  '  - " . :  

, ; . : ) ^  , - { ; . :  )  ̂ ,  , - " : : .  
- - )  

.  ( 8 )
lrt'r(t) + d(r)(s/,)(r) + (ff?/l)(r) sr$),

where

st(t)  =(Pkl)( t)  + (P"+r l )U\,  gz(t)  = (Pkl) f t )  -  (P"+r/)( ,) ,

t fu(t)  =gp(t)  *  p"+r(t) ,  ' ,1,2(t)  = pr\)  -  p^+x(t) .  (9)

Rewrite this system as follows:

I l,rAl + (K"s$i(t) + (N$2)(t) = e1(r),
lrt,r{t) - (xos x"stltr)(t) - (xosMrhr)G) - (N K"srhz)1t1- (tt"rl") (t) = e3 (r),

where 
(10)

gr(r) = sz$) - d(r)(sel)(r) - (l/gr)(r) .

To solve System (10), it is enough to solve the equation

,l,z(t) - (xas x"S$z)(t) - (rrS,lf rbz)1t1- (N x"st1t")1t\- (t/2rlz) (r) = e3(i).
(11 )

By our assumption for N(r,t), according to Lemma 2, we have

Jr/2 :0, SN = N, NS - -N .
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Hence, (11) is equivalent to the following equation:

,l'z(t) - (x6Src"stpr)@ + (xotf Srbz)(t) - (Nx"Sttr)(t) = e3(t)

Rewrite this equation as follows:

,hzu) - [r - a1r;o1t;]-1 [(r(dsr(" - KaKos - KaN + NK") (S/r)(t)] = s+Q)

where ss(t) = [r - a1t;a1t;]-tgr(t) ,  i .u.,

,hz(t) - (Mstltz)(t) = sa(t). (12)

By our assumption for N1(r, t), according to Lemma 2, we have

(Nr'|,[)(t) = o, (Nrthz)(r) € x+,

where
,b{G) = Prl'r)(t), ,l'z $) = -(QrlD(t).

Hence, from (12), we obtain

,t[Q) - ( l /rr l , ;)(t) - (/ ;)(t) = ea(t). (13)

Equation (13) is just a Riemann boundary value problem

0+ (t) - S- (t) = sa(t) ,

This equation has a unique solution

t ' 1  1

I  O*tt)  = ;e+(t)+ i(sc+)(t) ,) 4
) r ' l

I d-(t) = - 
rse(t) +;(se4)(,).

From (9), (10), and (14), we obtain

,l'z(t\ = rl,[ -rl,; = O+(t) - O-(t) + (I6d-)(t)

and
1

px$) = 
1ls'tt) + {z(t) - a(t) (stltr) (t1 - (Nt1tr) 1t11,

t _
en+x(t) = 

, ln(t) 
-rhz?) - a(t)(Stltr)(t) - (n/rrr)(t)] '

The theorem is proved.
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By a similar argument, we prove a dual statement, namely we have

Theorem 2. Suppose N(2, l) and Ny(r,t) are functions which admit an analytrc
prolongation in both uariobles onto D- and continuous on D with respect to
each of their uariables. Then ES. (6) admits all solutions in a closed form.

Theorem 3. Let N(r,t) adntit an analytic prolongation in both uariables onto
D+ and let Nt(r,t) odmit on anolytic prolongation in r and meromophic pro-
longation in t onto D+ . Suppose that N1(r,t) has all poles in uariable t at
points zi(e D+) of order mit respectiuely (j = 1,2,...,s). Moreouer, N(r,t)

ondfli-r! - z)ii N1(r,t) are contiuous functions onD* with respect to each
of theiis uoriablds. Then the equation (6) admits all solutions in o closed form.

Proof. By the assumptions, we obtain the representation (see [2])

Nr (r ,  t )  = [h(t) ] -1Nr+(r,  t ) ,

where h(t) = flrl=r{t - zi)^t, zj € D+, Nr+(r,t) admits an analytic prolonga-
tion in both variables onto D+. Hence, (12) has the following form:

h(t)gt(t) - (N{'1,;)(t) = n(t)$t (t) + h(t)sa$),

where

(N{t1t11t1=

Since {+(t)  = h(t)1b{@ - ( t f {+;)( t)  e X+, , t ' ; ( t )  e X-,  the last equa-
tion is a Riemann boundary problem, and from this equation, we can find every
solution of (9) in a closed form.
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