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Abstract. Necessary and sufficient conditions for the stability of the Karush - Kuhn _
T\rcker point set in a general indefinite quadratic p.ogramming problem a^re obtained
iu this paper.

1. Introduction

Given matrices ,4 € IRmx', F € IR"', D € rR'*', with D being symmetric,
and vectors c € IR', b € IR*, d € lR', we consider the following g"oeral indefinitequadratic progrrmming (Qp for brevity) problem ep(D,A,i,"b,F,dy,

{ 
Minimize f (s) ,- lar Da + crx

I subject to o € IR', .4c ) b, Fx )_ d
( 1 . 1 )

D 6 - A T i l - F T A * c = 0 ,

A i > b ,  t  )  0 ,
F E > d ,  - > 0 ,

i l . r (AE - b)+ Er(FE - d) = o.

The set of the Ka.rush-Kuhn-T\rcker points and the set of the solutions ofproblem QP(D,A,c,b,F,d) are denoted, respectively, by S(D, A,c,b,f,d) and
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sol (D, A, c,b, F,d).It is well known [5] that sol (D, A, c,b, F,d) g S(D, A, c,b, F, d)

and, moreover, every local solution of (1.1) is a Karush-Kuhn-T\rcker point.

If s = h,,d= 0, and F is the unit matrix in IR'x', then problem (1.1) has

the following cononicol form:

(1 .2 )

For simplicity of notation, in the case of the canonical problem, we write

S(D,A,c,b) instead of S(D,A,c,b,F,d),  and sol (D, A,c,b) instead of

sol (D, A,c,b,P, d). The upper semicontinuity of the multifunction

p ' - >  S ( p ' ) ,  p ' = ( D ' , A ' , c ' , b ' )  €  R 3 " "  x  l R m x n  x  I R ' x  I R - ,  ( 1 ' 3 )

where Rfit" C IR'** denotes the subspace of all the symmetric matrices of order

n, has been studied in [10] and [12]. This property can be interpreted as the

stability of the Karush-Kuhn-Tucker point set S(D,A,c,b) with respect to the

change in the problem para,meters. In this paper we are interested in finding out

how ihe results in [10] and [12] can be extended to the case of problem (1.1).

Namely, we wish to obtain some necessary and sufficient conditions for the upper

semicontinuity of the multifunction

p ' * r  s (p"F ,d) ,  p '= (D"A"c"b ' )  €  Rf r ' "  x  lRmxn x  IRn x  IR* ,  (1 .4 )

which include the corresponding results of [10] and [12] as a special case' As in

the canonical problem, the obtained results can be interpreted as the necessary

and sufficient conditions for the stability of the Karush-Kuhn-T\-rcker point set

S(D,A,c,b,Fd) with respect to the change in the problem parameters'

Our proofs are based on several observations concerning the system of equal-

ities and inequalities defining the Karush-Kuhn-T\rcker point set' We wish to

stress that the proofs in [10] and [12] cannot be applied directly to the case of
problem (1.1). This is because, unlike the case of the canonical problem (1.2)'

a(4 d) may fail to be a cone with nonempty interior and the vertex 0. In order

to deal with the general problem (1.1) we have to use some new arguments.

However, the proof schemes proposed in [12] and [10] also work for the case of

problem (1.1).
The paper is organized as follows. In Sec. 2 we will establish two necessary

conditions for the u,s.c. property of the multifunction (1.4). Theorem 2.1 can

be used for the case where A(4d) is a polyhedral cone with a vertex 00' where

cs € IRn is an arbitra.rily given vector. Theorem 2.2 works for the case where

A(4 d) is an arbitrary polyhedral set, but the conclusion is weaker than that of

Theorem 2.1. Several suficient conditions for the upper semicontinuity of the

multifunction (1.a) are given in Sec. 3. The obtained results are then compared

with the corresponding ones in [10], and two illustrative s)camples with non-

convex QP problems are considered'
The reader is referred to [12] for a detailed review on the research on stability

of quadratic programs. To our knowledge, up to now t1l- t7] and [9] are among

f Minimize f (x) := lxr Da + cr r

I subject to c € IR', .Ac ) b, c ) 0
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the key references in the field. Some recent results on continuity properties of
the solution map and the local-solution map in indefinite quadratic prograrnming
can be found in [8] and [tt].

l lM l l  =max{ l lMo l l  :  c  €  lR ' ,  l l r l l  =  t } ,
l l ( r , r , u ) l l  =  l l c l l + l l r l l l + l l u l l  v ( x , u , u )  e  R "  x  I R -  x  I R " .

For any M € IR"x'and q € lR", the set {c € IR" : Mx ) g} is denoted by
A(M,q). For F € IRrx. and .A € IR*x', we abbreviate the set

{(u,r)  € IRm x IR" : .4"u I  FTu= 0, u )  0,  u > 0}

to A[,4, F], and the set

{ ( { , ry )  €  lR*  x  lR"  :  { "u  +r t ru<  0  V(u ,u)  e  A [ .4 ,F ]  \  { (0 ,0 ) } }

to int(A[.4,F])'. (The second set is nothing but the interior of the dual cone to
the first one.)

2. Necessary Conditions for the Stability

Two sufficient conditions for the upper semicontinuity of the multifunction (1.4)
will be obtained in this section.

max{llD' - Dll, l lA' - All, l l",- cl l, l lb,_ bll} < d.

- The following two remarks clarify some points in the assumption and con-
clusion of Theorem 2.1 below.

Remark 2. If A(fld) and A(,4,b) are nonempty then A(40) and A(.4,0),
respectively, are the recession cones of a(4d) and A(,4,b).'By definition,
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S(D,A,0,0,40) is the Ka"rush-Kuhn-T\rcker point set of the following QP
problem:

minimize xTDr subjectto x e IR', .Aa ) 0, Fo 2 0,

whose constraint set is the intersection A(.4,0) n A(4 0).

Theorem 2.t. Assume that the set Skt,F,d), p - (D,A,c,b), is bound,ed, and,
there esists ro € IRn such that Fao - d. If the multifunction Q.$ is upper
semicontinuous at p, then

S(D,  A,0,0,  4  0)  = {0} .

Prool. This proof follows a scheme given iu the proof of Theorem 2.3 in [12]. Sup,
pose, contraxy to our claim, that there is a non-zero vector E e S(D,A,0, 0, 4 0).
By definition, there exists a pair (4, t) € Rm x IRE such that

D E - A T i l - F T D = 0 ,
A E > 0 ,  d ) 0 ,
F t > 0 ,  i > 0 ,
t r T A E + a T F n = 0 .

For everv t € (0' t ' '  * j . t l ' ,^ 
*,",, . .  - !  - -. - r.-

D t =  o 0 +  
| f i ,  

u t =  
l u ,  

u t =  
7 D ,

where cs is given by our assumptions. We claim that there exist matrices Ds €
IR['t', /r € lRmx' and vectors cs € IRn, bt € IR- such that

max{ l lDr  -D l l , l lA ,  - / l l , l l c r -c l l , l l b r  -a l l }  +0  as t - r0 ,

and

D t a t - A T u r - F r u t + c t = 0 ,
A1a1)- fu, ur 2 0,
Fa1 )_ d, us ) 0,

uT (Arr, - bt) + ul1r4 - d) = o.

The matrices D1, Al and the vectors c1, fu will have the following representations

(2 .1)

(2.2)
(2.3)
(2.4)
(2.5)

(2.6)

(2.7)
(2.8)
(2.e)

(2.10)

(2 .1  1 )

(2.r2)

where the matrices Do, Ao and the vectors cs, b6 are to be constructed. First we
observe that, due to (2.a) and (2.6), (2.9) holds automatically. Clea,rlS

Atst - b1= (A+ rAo) (. . ?) 
- (b + rbo)

1
= t(Aoao - bo) + ;AE + AoE + Aas - b,

D t = D t t D s ,  A t = A + t A o
q = c + t q ,  b t = b * t b o ,
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and

u!1Aras - br) + u! (Fa1 - d)
i i T r  I  r  a T ,= 
\-lt@,oxo 

- bo) + ;AE * Asn * Axs- rj * ?1" (* . ;) 
- r]

= ilr(Aoao- bo) + j{*, oo + Dr Fil +{U"z * Axs - b).

So, by (2.3) and (2.5), if we have

A s i * A r n - b = 0

and

A o r o - b o = 0 ,

then (2.8) and (2.10) will be tulfilled. By (2.2),

(2 .13)

(2.r4)

(2 .15)

(2.16)

D $ t - A T u r - F r u t + c t

- (D + tDs) (xs. ;) 
- 6e. + t,tolrt - Fri + c + tco

= 
l{o, 

- Ara - Fro) t t(Doao+ co) + Dro + DoE - AIa + c,
= t(Doao + co) + Dxs * Doi - A{a + c.

Therefore, if we have
D x s + D o E - A I E + c = g

D o s o * c o = 0 ,

then (2.7) will be fulfilled.

-  L e t  E = ( h , . . . , a n ) T , w h e r e  i i  * O f o r i € . I a n d d ;  = 0 f o r  i f .  I ,  I  g
{1,. . . , n}. Since E I O, .I is nonempty. Fixing_an index io € .f, we define .4e as
the nz x n matrix in which the ioth column is t;l (b - /os ) , and the other columns
consist solely of zeros. Let bo = Aoao. One cin verify immediately that (2.18)
and (2.14) a.re satisfied; hence conditions (2.g) and iz.to; 

"r. 
tulfilled. Flom

what has been said it follows that our claim wil be proved if we can construct a
matrix Po.€ IRfi'" and a vector ca satisfuing-(2.15) and (2.16). Let Do = (di) ,where d;i (L < i, j < n) are defined by the following formulas:

d ; i=E l r  ( l [ i l  .  Das-  c )  v i  e  I ,

d ; o j  = d i ; o = E ; t  ( A T a , -  D a s - c ) .  v j  e  { r , . . . , r } } \ / ,

and d;r' = 0 for other pairs (i,l)t I < i, j < n. Here (A[a_ Dxs_c)p denotes the
,tth component of the vector AT a - Dao - c. It is clei,r that bo i, , symmetric
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matrix, hence Do € R3^". If we define co = -Doco then (2.16) is satisfied. A
direct computation shows that (2.15) is also satisfied.

We have thus constructed matrices Ds,As and vectors cs,bs such that for
nt, ttrt, ut, Dt, At, ct, bt defined by (2.6), (2.11) and (2.L2), conditions (2.2)-
(2.10)  are sat is f ied.  Consequent ly ,  nt  € S(D1,A1,c1,b1,F,d) .  S ince S(p,4d)  is
bounded, there is a bounded open set Q c IR" such that S(p, F,d) C Q. Since
max{llDs - Dll,l lAr- All, l l"r - cll, l lbt - all} -+ 0 as t -+ 0 and the multitunction
p' *> S(p',fld) is u.s.c' at p - (D,A,c,b), x1 € O for all sufficiently small
t. This is impossible because lltrll = llco + e ltll -| oo as t -r 0. The proof is
complete. r

Remark 3. If d, = 0, then A(4d) is a cone with the vertex 0. In order to
verify the assumptions of Theorem 2.1, one can choose oo = 0. In particular,
this is the case of the canonical problem (1.2). Applying Theorem 2.1 we ob-
tain the following necessaxy condition for the upper semicontinuity of the mul-
tifunction (1,3): f S(p), p = (D,A,c,b) is bounded ond if the multifunction
p'  ,+ S(p') ,  p '  = (D',A' ,c ' ,bt) ,  is u.s.c.  at  p,  then S(D,A,0,0) -  

{0}.  Thus,
Theorem 2.1 above extends Theorem 2.3 in [12] to the case where A(F,d) can
be any polyhedral cone in IR', merely the standard cone IR!.

In the sequel, S(D,A) denotes the set of all c € lR" such that there exists
u = u(t) € R* satisfying the following system:

D x - A T u = 0 ,

4 x 2 0 ,  u > 0 ,
u T  A r  : 0 .

Remark 4. Flom the definition it follows that S(D, A) = S(D,.A,0,0,f',0),
w h e r e s = n a n d F = 0 € R t t ^ .

Theorem 2.2. Assume thot A,(F,d) is non-empty ond S(p,4 d), p = (D, A,c,b),
is bounded. If the rnultilunction (1.1) is upper semicontinuous atp, then

s(D,A)  nA(40)  =  {0 } . (2.r7)

Remark 5. Observe that (2.1) implies (2.I7). Indeed, suppose (2.1) holds. The
fact that 0 e S(D,A) n A(40) is obvious. So, if (2.17) does not hold, then
there exists E e S(D,A) n A(4 0), E * 0. Taking a = u(E), d = 0 € IR',
we see at once that the system (2.2) - (2.5) is satisfied. This means that f €
S(D, A,0,0, 40) \ {0i, contrary to (2.1). Note that, in general, (2.17) does not
imply (2.1).

Remark 6. If there exists cs such that Fxs - d. Then os € A(4 d) =

{o € R" : Fx 2 d}. In particular, A(fld) I 0. Thus, Theorem 2.2 can be
applied to a larger class of problems than Theorem 2.1. However, Remark 5
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shows that the conclusion of Theorem 2.2 is weaker than that of Theorem 2.1.
One question still unanswered is whether the assumptions of Theorem 2.2 always
imply (2.1).

Proof of Theorem 2.2. Assume that A(4d) is non-empty, S(D, A,c,b,4d) is
bounded and the multifunction S(.,4 d) is u.s.c. at p but (2.17) is violated. Then
there is a non-zero vector E e S(D,.A) n A(40). Hence, there exists a € Rm
such that

D i - A T i l = 0 ,

A E > 0 ,  t > 0 ,

il,T AE = o,

F f > 0 .

Let os be an a.rbitra,ry point of A(4 d). Setting

(2.18)
(2.1e)
(2.20)
(2.2r)

1 1
q = r s * ' ; E t  u r = - i i l

for every t € (0, 1), we claim that there exist matrices Dt € lRfr"", ,4r € Rmxn
rnd vectors cr € lRn, fu € IRn such that muc{llD1 - Dll,llAt - All,llcr - cll,

l h - b l l ) - r 0 a s t + 0 , a n d

D t a t - A T u r - F " 0 + c r = 0 ,

Aps) b1, ur 2 0,

Fnt 2 d,

u! 1Arr, - br) + or (Fx, - d) = o.

lhe matrices D6 Al and vectors Q, b2 a;t€ defined by (2.11) and (2.12), where
)o, Ao, cs, b6 are constructed as in the proof of Theorem 2.1. Arguing similarly
s in the preceding proof, we shall a^rrive at a contradiction. r

i. Sufrcient Conditions for the Stability

lhe following theorem gives three sufrcient conditions for the upper semicon-
inuity of the multifunction (1.4).,These conditions express some requirements
n the behavior of the quadratic iotin rT Dr on the cone A(-4,0) n A(4 0) and
he position of the vector (b,d') relative to the set int (A[,4, F])..

lheorem 3.1. Suppose thot one of the following three poirs of conditions

sol (D,4,0,0, f l  0) = {0},  (b,  d) € int  (A[,4,  F]) .  ,

sol  (-D, /4,0,0,4 0) = {0},  (b,  d) € - int  (A[,4,  F]) .  ,

(3.1)

(3.2)
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and
S(D,A,0,0,40) = {0},  int  (A[A,F]).  = IR- x IR",  (&3]

is satisfied. Then, for any c e R (and olso lor ony b e Rm i/ (3.3) tokes plw],
the multifunctionp'*+ S(p', F,d), p' = (D',A',c',b'), is upper serniconthtws
o t p -  ( D , A , c , b ) .

Proof. On the contrary, suppose that one of the three pairs of conditions (3.1!-
(3.3) is satisfied but, for some c € R' (and also for some b € R- if (3.t)
takes place), the multifunction p' *> S(p',4d) is not u.s.c. at p - (D,A,qbl-
Then there exist an open subset O C IR'containing S(p,F,d), a sequencepr -
(Dr,Ax,cp,b1) converging to p it IRSt'x lRmxn x IRn x IRm, and a sequerne
{ce} such that, for each k, ax e S(px,fld) and ,x ( Q.By the definitic
of Karush-Kuhn-T\rcker point, for each ,t, there exists a pair of multiplian
(ur,ur) € lRm x lR' such that

D x x r - A T u n - F t r r + c k = 0 ,
Aror  2 br ,  uk 2 0,

Fc;, Z d, ur 2 0,
u[(Apcp - br) + u[ lf cp - d) = 0.

If the sequence {(o;,ue,uft)} is bounded, then the sequences {t^}, t
are also bounded. Therefore, without loss of generality, we can
the sequences {cp}, {u1} and {u1} converge, respectively, to some
R', u0 € lR* and o6 € IR', as /c -i m. Letting k -r oo, from (3.a)-(AIL

D x o - A T u - F ? u + c = 0 ,

Aas2b,  uo  2  0 ,

Fxs )_ d, us ) 0,

u[1,l,xs - b) + u{ lrxs - d) = o.

Hence, cs € S(p, F,d) C O. On the other hand, since rn f O fa
must have ao ( Q, a contradiction. We have thus shown that rr-

{(r*,u*,trs)} must be unbounded. By considering a subsequence, f
we can assume that ll(oi,u*,ur)ll + oo and, in addition, ll(rr,rr,qI
all &. Since the sequence of vectors

is bounded, it has a convergent subsequence. Without loss of
assume that

(3-$

(np,u1a,up)  (  , r  uk vk

iilmT 
- 

\ilG-, r-lillT' ll('*, "0,,,0)ll 
' ll('n, "*, qfr

(ax ,u r ,ax)  ,  -  -

ff iT 
-> (E,tt,d) € R" x IRm x lRE, Il(e,r;,0)l l = L
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Dividing both sides of (3.a)- (3.6) bv ll(cr, ur, uk)ll, both sides of (3.7) bv ll(ce, u3, o1)112,

and letting /c -r oo, bV (3.8) we obtaia

Di - ATtr, - FTfr =0,

An>0, a > 0,
F t z 0 ,  o ) 0 ,
i l T A E + a T F e = 0 .

(3.e)
(3.10)
(3.11)
(3.12)

(3.14)

(3.15)

we first consider the case where (3.1) is fulfilled. It is evident that (3.9) -

(3.12) imply
Er Dfr = o, AE > 0, Ft > 0. (3.13)

i l r b + E r d < 0 .

consider the sequence {u[b* + u[a7' nv (3'4) and (3'7)'

nT D *sx * c[ a1, = u[fu + u[. a.

If, for each positive integer i, there exists an integer &r such that &i ) i and

u [ , b 1 , , + u f d > 0 , (3.16)

then, by dividing both sides of (3.16) by ll(rt, 'ut,'t,k,)ll and letting i -+ oo' we

have 
&Tb + ar d >- o,

contrary to (3.14). Consequently, there must exist a positive integer io such that

u!u1, + uTd S 0 for everY lc ) is' (3.17)

jfr -) i with lltll = 1.
l l t k  l l

Combining (3.15) with (3.17) gives

nTDxxx + c[r1, SO for everY k ) is. (3 .18)



Dividing both sides of each of the last inequalities by llorll and letting k -+ oo,

one has 
Ai > o, -F't > o. (3'20)

Combining'(3.19) with (3'20)t *g-Tlttt that sol (D ' A'0' 0' 4 0) I {0}' contrarv

to the first condition in (3.i). We have thus proved the theorem for the case
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Dividing both sides of (3.18) by llokll2 and letting k -) oo, we obtain

i rDe  <0 .

Apay ) bp, Fap ) d' .

(3 .1e)

By (3.5) and (3.6),

tLTb+rsrd>0. (3.21)

-> i with ll0ll = 1'

Combining (3.15) with (3'16) gives

a[.Dp.a1r, * cf,c1, ) 0 for all i. (3.22)

Div id ingboths idesof (3 '22)by l | r r . . | |2and le t t ing i - }oo ,weobta in iTDi>0
or, equivalentlY, 

aI?D)fr so. (3.23)

Bv (3.5) and (3'6)'
Aprrp, ) bp, Fx4 )- d' (3.24)

Dividing both sides of each of the inequalities in (3.24) by lltn,ll and letthg

i -) oo' we have 
Ai >- o, Ft > o. (3.2b)

Consider the sequence {u[bx + of,a]. We have (3'15)' If there exists a positive

:n, by dividing both sides of (3'17) by

Itain arb +oTd i 0, contrary to (3'21)'

ne can find an integer k; ) i such that

ounded, then, by dividing both sides of

oe, we have rl"b +Drd = 0, contra'ry to

runded. We can assume that lloill -r m

e {rp/llr;l l} is well defined and bounded,

without loss of generality, we can assume that

0 k

]laii
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Com]'ining (3.23) with (3.2b) yields sol(-D,.4,0,0, F,O) * {0}, contrary to
,he^"!rsJ condition in (3.2). This proves the theorem io t[u'.""i.'*here (3.2) isirlfilled.

Now, let us consider the last case where (3.3) is assumed. Flom (3.g) - (g.12)
v9-have E e S(D,A,0,0,40).By the f i rst  condit ion in (J.2),  f  = 0. Then i tollows from (3.9)- (3.12) that

ATa+ FrD =0,  -  >  0,  -  >  0,  l l (0 ,m,r ) l l  =  1.

in t (A[ ,4 ] ) .  =  {€€ IR- :  ) " f  <  0 v)  €  A[ ,4J\ {0}} .  (3 .26)

]mma 3.1. Suppose that, in problem (1.1), s = n, d = 0, and F is the unitatris in Rnxn. Then the following statements hold:

oof. IL b e int(A[,4])', then, by (9.26),

^ rb<0  fo ra l l  )  €  A t / l \ { 0 } .

: any (u, u) e ItlA,Fl \ iOi, we have

A T u * F ? u = 0 ,  u  ) 0 ,  u ) 0 .

- A T u = u ) 0 ,  u ) 0 ,  u t 0 ,

ce u € AI4 \ {0i. By (3.27), bru * \ru = bru = urb < 0. This shows that
)) e_int(1r[,4'r1;'. statement (ar) has been proved. It is clear that (a3)
rws from (a1).
For proving (o2) and (aa) it sufices to note that, under our assumptions,

so l  (D, ,4 ,0 ,0 )  =  so l  (D, .4 ,0 ,0 ,4  0 )

sol (-D, A, 0,  0) = sol  (-D,,4, 0,  0,  4 0).

(3.27)

is yields
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The following result follows directly from Theorem 3.1 and Lemma 3.1.

Theorem 3.2 (cf. [10, Theorems 2.2 and 2.3)). For the canonical problem (L.21,
the following statements hold:

(at) If sol(D,.4,0,0) : {0} and if D € int(A[o]). then, Jor any c € lR', ,h€
multifunction (1.3) is upper semicontinuous at p t: (D,A,c,b);

(az) If sol(-D,.4,0,0) = {0} and if b e -int(A[o])i then, for ony c e IR', rfte
multi lunction (1.3) is upper semicontinuous at p:: (D,A,c,b).

Flom what has been said we can conclude that Theorem 3.1 extends The-
orerns 2.2 and 2.3 in [10] to the case of the general problem (1.1).

Let us consider two illustrative examples which show that our results can
be applied to some classes of. non-conaer QP problems.

Exanple 1. (cf. [10, Exarnple 3.1]) Consider the problem QP(D,A,c,b,F,d)
where

We have A(.4,0) n A(4 0) = i0),  hence sol (D, A,0,0,4 0) = sol  (D, A,0,0) =
{0}.  Since b e int(A[,4])-  then, by Lemma3.1, (b,0) e int(A[A,.F' ] ) . .  By The
orem 3.1,.the multifunction (1.4) is upper semicontinuous at p:= (D,A,c,b).
(Note that the objective functions /(o) = llz(-x! - rl) and j(r) :
(tlZ)(xl - al) of. the corresponding QP problems are non-convex.)

Exatnple 2. (cf. [10], Example 3.2) Consider the problem QP(D,A,c,b,F,d)
where

An easy computation shows that

S ( D ,  A , 0 , 0 , 4 0 )  =  S ( D , . 4 , 0 ,  0 )  =  { 0 } ,

sol  (-D,.A,0,0) = {0},  and b e - int  (A[,4]) ' .

By Lemma 3.1,

s o l ( - D , . A , 0 , 0 , F , 0 ) = { 0 } , ( b , 0 ) € - i n t ( A [ A , F ] ) - .

Then, by Theorem 3.1, the multifunction (l.a) is upper semicontinuous at p:= .
(D,A,c,b). (Note that the objective function f (x) = (tlZ)(r! - r!) of the ,,
corresponding QP problem is nonconvex.) i

,=  l ; t  -0 , ]  " ' r=  [ l  -0 , ]  , r=  l - ; , - t ]  ,o=( -1) ,  " :  (3)  ,

" =  [ l  l ] ,  o =  ( B ) , , =  ( ; ; )  . o ,

,=  [ l  -1 r ] ,  r=  [0 , - r ] ,  b=  ( - r ) ,  "=  (3 ) ,

"=  [ l  l ] ,  o=  (B) ,  ,=  ( ; ; )  .  o ,
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Several other illustrative examples can be found in [10] (Sec. 3).
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