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Abstract. In this paper, two types of convergence of random mapping are defined
and the relation between them is discussed. More results are obtained for the case of
random operators and the case of random mappings based on random integrals.

1. Introduction

Let (X,d) be a complete separable metric space and Y be a separable Banach
space. By definition, a deterministic mapping from X into Y is a rule that
assigns to each element z € X a unique element &z € Y, which is called the
image of ® under z. Due to errors in the measurements and inherent randomness
of the environment, the image ®z is not known exactly. Therefore, instead of
considering ®z as an element of ¥ we have to think of it as a random variable
with valuesin Y.

By a random mapping from X into Y we mean a rule ® that assigns to
each element z € X a unique Y-valued random variable #z. Random mappings
can be regarded as a “random generalization” of deterministic random mappings
and also arise naturally as a generalization of stochastic processes and random
fields. This is one of the basic concepts in the theory of Random Dynamical
System in an infinite dimensional space (see [1] and references therein). If X
is a Banach space, a random mapping is said to be a random operator if the
mapping ¢ — ®z is linear and continuous in probability. Some aspects of random
operators in Banach space were discussed in [8-10,12].

The purpose of the paper is to study the convergence of random mappings
from X into Y. In Sec. 2 we shall define two types of convergence (the conver-
gence in probability and the convergence in law) and discuss the relation between
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them. In Sec. 3 we deal with the convergence of random operators. The main
result of this section is Theorem 3.2 which claims that the limit in law of a
sequence of random operators is again a random operator. At the end of the
paper the convergence of random operators generated by a random integral is
investigated.

2. Convergence of Random Mappings

First let us give some basic definitions and a few examples of random mappings.

Let (92, F,P) be a complete probability space, E a separable Banach space
with the dual space E* and B(E) its Borel o-algebra. A measurable mapping u
from (2, F) into (E,B(E)) is called a E-valued random variable. The set of all
real-valued random variables (r.v.’s for short) and the set of all E-valued random
variables are denoted by Lo(R) and LF (), respectively. We do not distinguish
two E-valued random variables which are equal almost surely. The set LE(Q)
equipped with the topology of convergence in probability becomes a F-space
(complete metric linear space). For p > 1, Lf(Q) stands for the Banach space of
E-valued random variable u with |lu|| = (E[jul|?)*/P < 0o. For each u € L¥(Q)
the law of u is denoted by L(u). The characteristic function of a probability
measure on S denoted by [ is a mapping from E* into C given by

A = /E exp{i(z, y) }du(z).

The characteristic function of an E-valued random variable is defined as the
characteristic function of its law. If the sequence (u,) of LE() converges in
probability to u, then we write P — lim, un, = u. If £L(u,) converges weakly to
L(u) we say that (un) converges to v in law and write £ — lim,, u, = u. Finally,
as usual N and N* stand for the set of non-negative integers and the set of
positive integers, respectively.

Throughout this paper, (X, d) is a separable metric space and Y is a sepa-
rable Banach space with the dual space Y*.

Definition 2.1. A family ® = {®z};ex of Y-valued r.v.’s indezed by the
parameter set X is called ¢ random mapping from X into Y or an Y -valued
random mapping on X. Mathematically, a random mapping ® from X into Y
is simply a mapping ® : X — LY (Q).

If X is a time set (i.e., a subset of the real line R), then @ is called a
Y-valued stochastic process on X. If X is a domain in R*, then & is called a
Y -valued random field on X. Sometimes we refer to X as the parameter set and
to Y as the state space.

We define the finite dimensional distribution of a random mapping as fol-
lows. Let z1,7s,...,zx be elements of X. We define the law of (®zy,...,Pz;)
by

P . (A)=P{w:(®z1,...,%zs) € A}
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for each A € B(Y'*).

The probability measure Pf;v N
distribution of ®.

For a sequence {®,} of random mappings from X into Y,-we introduce two
types of convergence.

on Y* is called the finite dimensional

Definition 2.2.

(1) The sequence {®,} is said to converge in probability if, for each z € X, the
sequence {®,z} converges in probability. In this case we can define a new
random mapping by

®z =P — lim ¢,z.
n—o0

® is called the limit in probability of {®,} and we write

$=P-lim®,.
n

(2) The sequence {®,} is said to converge in law if, for each k € N* and
for each finite set (z1,Ta,... ,2k) in X, the sequence { P2~ . } converges
weakly as n — oo.

Theorem 2.3. If the sequence {®,} converges in law, then there ezists a ran-
dom mapping ® such that, for each finite set (z1,za,...2) in X, the sequence

e ..} converges weakly to PJ. ., . In this case, ® is called the limit in
law of the sequence {®,} and we write

=L -limd,.
n

Proof. For each finite set I = {(z1,¥1),...,(zk,y;)} where z;1,...7% € X,
yl,.. .y € Y*, let PP be the law of {(®z1,47),... ,(®zk,yi)}. By the assump-
tion, the sequence { P}*} converges weakly to some probability measure iy on RE.
It is easy to check that the family {u;} is consistent. Then by the Kolmogorov’s
celebrated theorem, there exists a random function B(z,y*) on X x Y* whose
finite dimensional distributions are the family {u;}. Fix £ € X and define the
mapping F; : Y* — Lo(Q2) by

Fy(y") = B(=z,y")-

We claim the F, is linear. Indeed, since {(®nz,y] + y3), (®nz,ul), (Bnz,¥3)}
converges in law to {F; (v} +y3), Fz(y}), Fz(y3)}, the characteristic function ¢(t)
of Fy(yi +y3) — Fo(yi) + Fx(y3) is

o(t) = lifr‘nEexp{t(@na:,y{ +93) — H{®nz,y7) — t{Paz,y3)} = 1.

This proves that F(y] + y3) — Fz(y7) — Fz(y3) = 0 a.s. Similarly, F;(A\y") =
AF,(y*) for each A € R. Hence, F; induces a cylindrical measure I' on s
Actually, T is a probability measure. Indeed, the characteristic function of I is

L(y*) = E exp{iFs(y")}- (1)
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Since (®,z,y") converges in law to F;(y*), we get

lim B exp{i(®ne,y")} = Eexp{iF;(y")}- (2)
Suppose L£(®,z) converges weakly to the probability measure z. Then

Ay") = lim E exp{i(&nz,y")}. (3)

From (1)-(3) we obtain I'(y*) = ji(y*). Hence T’ = p as claimed. By Theorem
4.6.2 in [5) there exists a unique Y-valued random variable denoted by ®z such
that

F (y*) = (®z,y") forally® eY™.

The mapping z — ®z defines a random mapping ® from X into Y. To complete
the proof it remains to prove that the limit of the sequence { P2» 1} is nothing

but P2 ... Indeed

k
l (P,, ,,,-,‘)(yl,...,yk)—llmEexp{zZ nzj,y;)}

=1

Hence, the sequence {Pfl';_.'“} converges weakly to Pf’h_.,n ; n

Definition 2.4. Two random mapping ® and ¥ is called equivalent if they have
the same finite dimensional distributions, i.e.,

P<I> = P‘I‘

T1y--Tk T3 Tk

for any z1,...,zx of X,k € N*.

In this case, we write & £y

Now we study the relation between two types of convergence. Clearly, if
the sequence {®,} converges in probability, then it also converges in law. Under
some assumptions, the converse is true if the sequence {®,} is replaced by an
equivalent one.

Definition 2.5. A random mapping ® is said to be stochastically continuous if
the mapping ® : X — L} () is continuous.
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Theorem 2.6. Let {®,}32, be a sequence of stochastically continuous random
mappings converging in law to the stochastically continuous random mapping
®g. Then there exist random mappings ¥, (n € N) such that, for each n € N,

&, £ T, and the sequence {$,}52, converges in probability to ¥g.

Proof. Let D = (2;)32, be the countable set dense in X. For each n € N, define
Y ¥-valued random variable ¢, by

€n = (q)nzi)?il .

Since ®,, converges to ®; in law, &, also converges to &, in law. By the Skorokhod
theorem (5], there exist Y ¥-valued random variables 7,, = (7,)$2, such that

L(nn) = L(&,), foreachne N, (4)

and
P —limn, = no. (5)

Now fix n € N. Define a random mapping ¥, from X into Y as follows. At
first, ¥, is defined on D by

Ynzi=1nn,, (1€N").

We claim that ¥,, can be extended over the entire space X. Indeed let z € X
and (zg,) be a subsequence of D converging to z. By (4) we have

P {]|\Ilnzk‘. = \Ilnzkjll > t} = P{||tI>nzkl. - <I>nzkj|| > t}.

Since @ is stochastically continuous, ($n2;) converges in probability to &,z as
i = oo. Hence P — lim; ¥,,2;, exists and the limit denoted by ¥,z does not
depend on the choice of the approximating sequence (zx,). Now we shall show
that
e, 2w,

Indeed let z;,...,z2; be elements in X. For each i = 1,...,k choose a sub-
sequence (z;_ ) such that z;_, converges to z; as m — co. Since &,z; -
®,z; and ¥, z;, — V¥,z; in probability as m — oo, (®,21,,,...,®Pn2k,,) con-
verges in law to (8,21,... ,®nzi) and (¥nzy,,,..., V2, ) converges in law to
(Pnzi1,...,¥szk). From (4) we obtain

L(®nz1,...,Pnzi) = L(Tpzy,. .., T,zy).

In particular, {¥,} is also stochastically continuous for each n € N. Now it
remains to prove that the sequence {¥,} converges in probability to ¥s. Fix
z € X and let ¢ > 0 and € > 0 be given. Then there exists § > 0 such that

G e
P{|I%oz ‘Iloa:||>3}<-2-

whenever d(z,2') < 6.
Choose z € D such that d(z,z) < §. Then
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t t
P{I|¥az - Tozl| 2 t} <P {1¥nz = a2l 2 5} + P {[[¥nz - Bozl| > £ }

t

+ P {|I%0z — Tosl| 2 £ }. (6)
Since (¥,z, ¥,z) converse in law to (Yozx, ¥oz) and P — lim, ¥,z = ¥yz, we
have ¢ g

mP {ll‘I/,,:z: Wzl > §} <P {||‘110:1: — Woz|| > 5},
and ] _ e,
111xlnP{||\Ilnz Toz|| > 3} =g,
Consequently, from (6) we get
TP {[[¥nz — Boal| 2 ¢} < 2P {[[¥oz — ozl > 5} <

Leting € — 0, we get
lifrlnP {l|¥nz - Toz|| > t} = 0.

The theorem is fully proved. -

Definition 2.7. Let H be a family of random mappings from X into Y. We
say that H is stochastically equicontinuous at zo if V¢t > 0, Ve > 0, 36 > 0 such
that for each ® € H we have

P {||®z — ®zol| >t} <€

whenever d(z,zo) < 6.
The family H is said to be stochastically equicontinuous on X if it is stochas-
tically equicontinuous at each point z € X.

Theorem 2.8. Let {®,} be a sequence of random mappings converges in law
to a random mapping ®. If the sequence {®,} is stochastically equicontinuous
at zo, then ® is stochastically continuous at zo.

In particular if the sequence {®,} is stochastically equicontinuous on X,
then the random mapping ® is stochastically continuous.

Proof. Given € > 0 and ¢t > 0. By the stochastic equicontinuity of the sequence
{®,} at zo there exists § > 0 such that if d(z,z0) < §. Then

P{||®nz — ®nzol| >t} <€ forallne N*.
Since (®,,z, ®,z0) converges in law to (®z, ®z¢), we have
P{||®z — ®zo|| > t} < lim, P {]|®nz — ®pzo|| >t} <€

whenever d(z,zo) < 6. This proves the theorem. =

3. Convergence of Random Operators

In this section, we restrict ourselves to an important class of random mappings
called the class of random operators, whose prototypes are stochastic integrals.
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Definition 3.1. Let X be a separable Banach space. A random mapping ® from
X into Y is called a random operator if ®(A\z1 + A2z2) = A1 ®(z1) + A2 ®(z2)
a.s. VA1, A2 € R, Vo1, € X, limg 50 P {{|z|| > €} =0 Ve > 0.

Note that the exceptional set can depend on )\, Xs, 71, 5.

In the case of random operators it is interesting that the assertion of Theo-
rem 2.8 holds without the assumption about the stochastic equicontinuity of the
sequence {®,}, namely we have the following:

Theorem 3.2. Let {®,} be a sequence of random operators converges in law to
a random mapping ®. Then ® is also a random operator.

Proof. At first we shall show that ® : X — L¥(Q) is linear. Let z;,z, € X.
Because {®,(z; +22), 8n21, 22} converges in law to {®(z; + ®z,), B2y, Sz, },
it follows that, for all ¢ > 0,

P{||®(z1 + z2) — ®z1 — ®z2|| > €} <
lim,, P{||®n(z1 + 72) — Pnz1 — ®pnz2|| > €} =0,

ie., ®(z1 + z2) = ®z1 + P2z a.s. Similarly ®(Az) = APz as. forall A€ R. It
remains to prove that & : X — LY (Q) is continuous. At first we claim that for
each z € X, the set (®,2)%; is bounded in LY (Q). Indeed let

V(t,e) ={g € LY (Q) : P{llgll >t} < ¢}

be a neighborhood of zero. Since L(®,z) converges weakly to £(®z) by Prokho-
rov’s theorem, there exists T > 0 such that P {||®,z|| > T} < € for all n. Let
Ir] < %. Then, for each n € N*,

¢
P{llr@asll > £} = P{l|#nzll > 15} < P{lI@uz]l > T} <&
that means r®,z € V(t,¢) as claimed.
By the principle of uniformly boundedness of linear continuous mappings
between two F-spaces 7, Theorem 2.2.1], there exists § > 0 such that if ||z}| < 6,
then &,z € V(t,¢), i.e., P{||®nz|| > t} < € for all n. Consequently

P{||®z|| >t} < lim, P {||®nz|| > t} < €
whenever ||z]| < §. This proves that @ is stochastically continuous. ]

Corollary 3.3. Let {$,}22, be a sequence of random operators converging in
law. Then there exists a sequence {¥,}3%, of random operators such that, for

each n, @, £ ¥, and {¥,}%2, converges in probability.

Finally we study the convergence of random operators generated by a
random integral. Let (S,S,p) be a finite measurable space. A mapping M :
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S — Lo(Q) is said to be a symmetric Gaussian random measure with the con-

trol measure y if

(1) Foreach A € S, M(A) is a real-valued Gaussian random variable with mean
zero and the variance u(A4).

(2) For every sequence (A;) of disjoint sets in S the random variables M(4,),
M(Ay),... are independent and

M( O An) = iM(An) a.s.
n=1 n=1 i

The random integral of Banach space valued functions with respect to random
measure M is constructed as follow (see [4, 6]). Let E be a separable Banach
space. For a simple function f: S = E, f = Y} I z;\4,, where (4;) are disjoint
sets, we define

/fdM= zn:l‘{M(A,').
s i=1

A measurable deterministic function f : § — E is said to be M-integrable if
there exists simple functions (f,) such that f, converges to f in y-measure and
the sequence { [ fndM} converges in probability. If f is M-integrable, then
we put

AfdM:P—lim/sfndM.

It was shown that this value does not depend on the choice of the approximat-
ing sequence {f,). Among crucial properties of this stochastic integral is the
following theorem, which will be used later.

Theorem 3.4 [4].
(1) If f is M-integrable then [ fdM is an E-valued centered Gaussian random
variable with the characteristic function

F') = exp{ - [ (F00)Fauto)}

(2) If E is a Banach space of type 2, then each function f € LE(S) is M-
integrable. In this case there exists a constant C depending only on E such
that

E“/sfdMH2 < C/S||f||2du for each f € LE(S).

Recall that a Banach space E is said to be of type 2 if for each sequence
(yn) € E such that Yo llynll* < oo the series Y o0 any, converges a.s.,
where (a,,) is the sequence of independent identical distributive N(0, 1) random
variables.

Theorem 38.5. Let (M), be symmetric Gaussian random measures with the
control measures (un)3%q, respectively on the measurable space (S,S) and let Y
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be a Banach space of type 2. Denoted by Cy[S,Y] the Banach space of bounded
continuous functions on S taking values in Y. Define

&,.f = /S f dM,.

Then
(1) @, is a random mapping from Cp[S,Y] into Y for eachn € N.
(2) If pn converges weakly to pg then ®, converges in law to ®o.

Proof. (1) It follows easily from Theorem 3.4 and Chebyshev’s inequality.
(2) For the proof of this claim we need the following lemma

Lemma 3.6. ([3, Theorem 4.2 Chap. 1)) Let E be a separable Banach space and
(€r)3%, be a sequence of E-valued random variables such that, for eachm € N*,
there exists a sequence (€n,m) of E-valued random variables satisfying

L- li'rlngn,m =&m,

L—-lmé&, = &,

m

11731@19{“5,,,,,. —&all>€}=0 Ve>o0.

Then £ — lim, &, = &.

Let (f;)%, be elements of Cy[S,Y]. Put h = (f1,...,fr) : S = Y*. We
have to show that [ hdMn = ([ f; dMﬂ)i.c=1 converges in law to [ hdMo =
(i dMo):;l- Since u, converges weakly to ug by Prokhorov’s theorem for

each m € N*, we can find a compact set K C S such that sup,cy pn(S) = L <
oo and sup, ¢y n(K¢) < 1/m. Further we can choose a simple function hyp, =

2_i=1Yi Aa, such that sup,eg [lhm(s) — h(s)l| < 1/m, [|hml| = sup,es [lhm(s) <

sup,cg ||A(s)]| = ||h]l and (A;) are po-continuous sets. Put
B = /S b dM = 37 s Mo(4),
i=1

€m = /;hm dMo = Zyi Mo(4;),
i=1

Because p,(4;) = p(4;) as n — oo, we have £ — lim, M, (4;) = My(4;)
(=1,...,k). By the independent of the sequence {M,(4;)}]_,, it follows that
L —lim, £, m = €m. Next, note that Y* is also a Banach space of type 2, so by
Lemma 3.6, we have

Ellém - &2 < G /S hm = BlPdpo < Cym™(L + 4|I1]?), (7)
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E||énm = &l < C1 /S lhm = bll2dpn < Cim™ (L + 4||h|?), (8)

where C; is some constant.

Using Chebyshev’s inequality from (7) and (8), we get

P —lim{m = &,
m
11;31%,, P{llénm —&all > €} =0 Ve>0.

Now the assertion of the theorem follows from Lemma 3.6.

References

10.

11.

12.

13.

14,

15.

16.

L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin - Heidelberg -
New York, 1998.

A. Araujo and E. Gine, The Central Limit Theorem for Real and Banach Valued
Random Variables, John Wiley & Sons, New York, 1980.

P. Billingsley, Convergence of Probability, John Wiley & Sons, New York, 1968.
J. Hoffmann-Jorgensen, Probability in Banach Spaces, Lecture Notes in Math.,
Vol. 598, Springer-Verlag, Berlin, 1977, pp. 1-186.

W. Linde, Probability in Banach Spaces - Stable and Infinitely Divisible Distribu-
tion, John Wiley & Sons, New York, 1986.

J. Rosinski, Random integrals of Banach space valued functions, Studia Math. 78
(1984) 15-38.

S. Rolewicz, Metric Linear Spaces, D. Reidel Publishing Company, Dordrecht,
1980.

A.V. Skorokhod, Random Linear Operators, D. Reidel Publishing Company, Dor-
drecht, 1984.

Dang Hung Thang, Random operator in Banach space, Probab. Math. Statist. 8
(1987) 155-157.

Dang Hung Thang, Gaussian random operators in Banach spaces, Acta Math.
Vietnam. 13 (1988) 79-85.

Dang Hung Thang, A representation theorem for symmetric stable random oper-
ators, Acta Math. Vietnam. 17 (1992) 53-61.

Dang Hung Thang, The adjoint and the composition of random operators on a
Hilbert space, Stochastic and Stochastic Reports 54 (1995) 53-73.

Dang Hung Thang, Series and spectral representations of stable mappings, Stochas-
tic and Stochastic Reports 64 (1998) 33-49.

Dang Hung Thang, Random mappings on infinite dimensional spaces, Stochastic
and Stochastic Reports 64 (1998) 51-73.

W. A. Woyczynski, Geometry and martingales in Banach spaces II, Advances in
Probab. 4 (1978) 265-517.

N.N. Vakhania, V.I. Tarieladze, and S. A Chobannian, Probability Distributions
on Banach Spaces, D. Reidel Publishing Company, Dordrecht, 1987.



