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Abstract. In this paper, two types of convergence of random mapping are defined
and the relation between them is discussed. More results are obtained for the case of

random operators and the case of random mappings based on raudom integrals.

1. Introduction

Let (X, d) be a complete separable metric space and Y be a separable Banach
space. By definition, a deterministic mapping from x into Y is a rule that

assigns to each element E e X a unique element &x € Y, which is called the
image of O under o. Due to errors in the measurements and inherent ra"ndomness
of the environment, the image Or is not known exactly. Therefore, instead of
considering Oo as an element of Y we have to think of it as a random variable
with values in Y.

By a random mapping from X into Y we mean a rule iD that assigns to
each element t e X a unique Y-valued random variable Oc. Random mappings
can be regarded as a "random generalization" of deterministic random mappings
a.nd also arise naturally as a generalization of stochastic processes and random
fields. This is one of the basic concepts in the theory of Random Dynamical
System in an infinite dimensional space (see [1] and references therein). If X
is a Banach space, a random mapping is said to be a random operator if the
mapping a F> Qr is linear and continuous in probability. Some aspects of random
operators in Banach space were discussed in [8- 10,12].

The purpose of the paper is to study the convergence of random mappings
from X into Y. In Sec. 2 we shall define two types of convergence (the conver-
gence in probability and the ionvergence in law) and discuss the relation between
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them. In Sec. 3 we deal with the convergence of random operators. The main
result of this section is Theorem 3.2 which claims that the limit in law of a
sequence of random operators is again a random operator. At the end of the
paper the convergence of random operators generated by a random integral is
investigated.

2. Convergence of Random Mappings

First let us give some basic definitions and a few examples of random mappings.
Let (O, F,P)be a complete probabil ity space,.O a separable Banach space

with the dual space E* and 6(E) its Borel o-algebra. A measurable mapping u
from (O,f) into (E,B(E)) is called a .E-valued random variable. The set of all
real-valued random variables (r.v.'s for short) and the set of all .E-valued random
variables a.re denoted by Io(O) and If (O), respectively. We do not distinguish
two E-valued random variables which are equal almost surely. The set Io"(O)
equipped with the topology of convergence in probability becomes a F-space
(complete metric linea,r space). For p > 1, ,f (O) stands for the Banach space of

.E-valued random variable u with llull = (Ellulle)t/n z-oo. For each u € rf(O)
the Iaw of u is denoted by L(u). The characteristic function of a probability

mea^sure on .9 denoted by l, is a mapping from .E* into C given by

The characteristic function of an E-valued random variable is defined as the
characteristic function of its law. If the sequence (u,,) of ffl(O) converges in
probability to u, then we write P - lim,' un = 1.1. II E(u") converges weakly to
L(u) we say that (u,) converges to u in law and write 4 - lim,, un = 1!,. Finally,
as usual N and N* stand for the set of non-negative integers and the set of
positive integers, respectively.

Throughout this paper, (X, d) is a separable metric space and Y is a sepa-
rable Banach space with the dual space Y*.

Definitiou 2.1. A family iD = {iDr}, ex of Y -ualued r.u.ts indeaed by the
parameter set X is called a random mapping t'rom X into Y or an Y -aalued
random mapping on X. Mathernoticallg, a random mapping Q from X into Y
is simply a mapping O : X -+ rf (O).

If X is a time set (i.e., a subset of the real line .R), then O is called a
Y-valued stochastic process on X. If X is a domain in Rft, then iD is called a
Y-valued random field on X. Sometimes we refer to X as the parameter set and
to Y as the state space.

We define the finite dimensional distribution of a random mapping as fol-
I o w s .  L e t  t t , D z t . . . , o k  b e  e l e m e n t s  o f  X .  W e  d e f i n e  t h e  I a w  o f  ( O r t , . . . , O o r )
by

P f , , . . . , , * ( A )  =  P { a , '  :  ( i D c 1 , . . . , i D r 1 )  e , 4 }

t"(a. )  = 
|  
"exv{t ,  

(x,  y *)}d,1r(r) .
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f o r e a c h  A € B ( Y k ) .
The probability measur. P"o,, .,,* otr

distribution of iD.
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Yft is called the finite dimensional

For a sequence {O"} of random mappings from X into Y,'we introduce two
types of convergence.

Deffnition 2.2.
(l) The sequence {iD"} is said to conaerge in probability iJ, for each r e X, the

sequence {S,r} conuerges in probability. In this case we can define o new
random mapping by

6 x = P - j $ O , r .

Q is called the timit in probobility of {A"} and we write

O = P -  r rp", .

(2) The sequence {Q"} is said to conuerge in law if, for each l+ € N* and

for each finite set (x1s r,2,. ..,x1,) in X, the sequence {pr*,i...,,- ) conuerges

weokly as n -) oo.

Theorem 2.3. If the sequence {Qn} conuerges in law, then there etists a ran-

dom mopping Q such thot ,  for  each f in i te  set  (a1,s2, . - .xr )  in  X,  the sequence

{pfi i...,r.) conuerges weakly to Pf,r,...,,r. In this case, Q is called the l imit in

law of the sequence {Q"} and we write

6 = L - t t p * ' . .

Proo f .  For  each f in i te  se t  /  =  t (s r ,g i ) , . . . , (c t ,g i ) )  where  o1 , . . . xn  €  X ,
yi , .  .  .  a i  € Y*, let  Pi  be the law of {(Or1, gi) , '  . ' ,  (Ocr,  y i)} .  BV the assump-
iio.t, ttt. sequence {Pf } converges weakly to some probability measure p,7 on Rk '
It is easy to check that the family {pr} i. consistent. Then by the Kolmogorov's
celebrated theorem, there exists a random function B(r,y') on X x Y* whose
finite dimensional distributions are the family {p7}. Fix s e. X and define the
mapping F,:Y* -r  Is(O) by

F, (a - )  :  B(s ,Y* ) .

We claim the ̂ Ft is linear. Indeed, since {(iD,"z,Ai +Ai),(O"o,9i), (A.s,yil}
converges in law to {F"(ai +yil, F,(ai), F,(yi)}, the characteristic function /(t)
of r,(si +ail - F,(ai) + It(si) is

QU) = l imEexp{t(Qnr,ai  + y;)  -  t (Qna,yi)  -  t \Q.x,si)}  = 1'

This proves that f|(gi +Ail - f '(si) - F,(Ail = 0 a's. Similarls F'(tr9.) :

)F,(y') for each .\ e',R. Hence, f! induces a cylindrical measure I on Y.
Actually, I is a probability measure. Indeed, the characteristic function of I is

i (s.) :  E exp{ir i(s.)}. ( 1 )
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Since (Orro,y') converges in law to F'(y.), we get
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l imEexp{f  (Qnx,y ' l }  = Eexp{ iF ' (y . ) } '  (2)

Suppose E(Q.a) converges weakly to the probability measure p. Then

p@- ) = Iim E exp{i(iD,,o, 9* ) }, (3)

Flom (1)-(3) we obtain l(y.) = p(y.). Hence | = /.r as claimed. By Theorem
4.6.2 in [5] there exists a unique Y-valued random variable denoted by iDc such
that

F , (y ' )  -  (Oc,g . )  fo r  a l l  a '  eY* .

The mapping a + Qx defines a random mapping iD from X into Y. To complete
the proof it remains to prove that the limit of the sequence {pfii...,,. } is nothing
but Pfi,...,",. lndeed

hm (f r* , ) (v i , . . . ,v i )  = l imEexp 
{n D<r, ' r , r ; l }
\  ; - 1

.  

J - -

- .Eexp 
{nErt ' , , r ; t }

- Eexp 
{of t",r,r; l}

= (fr,"-)(vi, ' . . ,vi).
Hence, the sequence {Pfii...,rr} converges weakly to Pror,...,r* . r

Deffnition 2.4. Two rondorn mapping 6 and {t is called equiuolent if they haue
the same finite dimensional distributions, ue.,

Pt*r,.'.,t, = Pf,r,...,r,

for any rL,. . .  , f ix of  X,h €.f f ' '

In this case, we write iD 4 V.
Now we study the relation between two types of convergence. Clea.rly, if

the sequence {O,} converges in probabilitS then it also converges in law. Under
some assumptions, the converse is true if the sequence {O"} is replaced by an
equivalent one.

Definition 2,5. A random mapping Q is said to be stochastically continuous if
the rnapping O : X -r ,f (O) is continuous.
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Theorem 2.6. Let iQ")p, be a sequence of stochastically continuous rondom
rnappings conuerging in law to the stochastically continuous randotn mapping
Qo. Then there eaist rondom rnappings t[, (n € N) such that, for each n e N,
O^ ! Vn and the sequence {O*}8, conaerges in probobility to Vo.

Proof. Let D = (zx)Zr be the countable set dense in X. For each n € N, define
Yil-valued random variable {, by

€n =  (onz i )= r .

Since O* converges to O6 in law, f,. also converges to f6 in law. By the Skorokhod
theorem [5], there exist Yry-valued random variables rl. = Uln;)f, such that

L(q.) = E(€"), for each n € N,

and
P - limrln = r1s. (5)

Now fix n € .lf. Define a random mapping llrr, from X into Y as follows. At
first, l[r,, is defined on D by

V n z i = 1 n i ,  ( i e N - ) .

We claim that ![,, can be extended over the entire space X. Indeed let a e X
and (21,) be a subsequence of D converging to o. By ( ) we have

P { l l9"ze, -  Vnzki l l  > r}  = P{l lO"zfr  ,  -  onzkt l l  > t} .

Since O is stochastically continuous, (iD,rzp, ) converges in probability to Or,o as
i -+ oo. Hence P - lim; \[,rzp, exists and the limit denoted by ![r,c does not
depend on the choice of the approximating sequence (21,). Now we shall show
that

Q n  I  v n .

Indeed let  o1,. . . ,o1 be elements in X. For each i  = 1,. . . ,k choose a sub-
sequence (z;-) such that zi^, converges to c; as rn -+ 6. Since iDrrz;- -+
Or.r; and Vnz;^ l tlr,ro; in probability as rn -> m, (iDrz1-,... ,Orrz3-) con-
verges in law to (Orror, . . . , iD'or) and (![rrz1- ,... ,Vnzx^) converges in law to
(V,rrr , . . .  ,  ! [ r , rr) .  Flom (4) we obtain

L ( Q n a 1 , . . . ,  O ' o r )  =  L ( V n r 1 , . . . ,  ! P ' c r ) .

In particular, {V,} is also stochastically continuous for each n e N. Now it
remains to prove that the sequence {tl,} converges in probability to tPe. Fix
x € X andlet t > 0 and e ) 0 begiven. Thenthere exists d > 0 suchthat

whenever d(r,a') < 6.

Choose z € D such that d(z,c) < d. Then

(4)

r  { l lvo'  
-  i ror ' l l  r  ;}  .  ;
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p{ l lv"o -  vocl l  >t}  <P{ l l * - '  -  i r "z l l  a i }+-  e { l lv*"-  * r , t t  > i }
+ r  { l tu,o,  

-  voat l  -  ; }  (6)

Since (![rr.o,iPrz) converse in law to (Vsc,i lrsz) and P - l im, Vnz = i[62, w€
have

tr" {i lv"' - v*zl> i} = . {i l*o' - vozil = l},
nmP { l lv*z 

-  vozl l  -  i i  :  oand

Consequently, from (6) we get

iiilP {llv.s - ilosll > ,} < 2P {" 
- t t

n  \ . .

Leting e -) 0, we get

t imP { l lv"c -  vocl l  2 r}  = o.

The theorem is fully proved. r

Deflnition 2.7. Let?t be olomily ol randommappings from X intoY. We
say that 7I is stochasticolly equicontinuous of as if Vt > 0, Ve ) 0, J5 > 0 such
thot for each Q €?l we hoae

P { l loc  -  ooo l l  >  t }  <  .

wheneuer d(x,xs) < 6.
The family ?1 is soid to be stochastically equicontinuous on X if it is stochas-

tically equicontinuous at eoch point a € X.

Theorem 2,8. Let {Q"} be a sequence of random mappings conaerges in law
to a random mapping Q. If the sequence {O"} is stochastically equicontinuous
at xs, then Q is stochastically continuous at xs.

In particulor if the sequence {O"} is stochastically equicontinuous on X,
then the random mapping Q is stochastically continuous.

Proof. Given e ) 0 and t > 0. By the stochastic equicontinuity of the sequence

{O"} at cs there exists d ) 0 such that if d(x,xs) ( d. Then

P {ll0"o - O,ooll > t} < e for all n € N' ,

Since (iD,c, O,co) converges in law to (Oo, iDoe), we have

P { l lOr -  Oool l  > t}  S l im,,P { l lO"r -  O"rol l  > t}  < .

whenever d(x,as) < d. This proves the theorem. I

3. Convergence of Random Operators

In this section, we restrict ourselves to an important class of random mappings
called the class of random operators, whose prototypes are stochastic integrals.
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Definition 3.L. Let X be a separable Banach space. A ranilom mopping Q from
X into Y is called a random operator i/ iD(41o1 * \2r2) = )riD(or) + \2Q(x2)
a . s .  V A 1 , ) , 2 € R , Y x 1 , x 2  € X ,  l i m r - a e p { l l r l l  ) e } = 0  V e ) 0 .

Note that the exceptional set can depend on ,\1 , \2, r,1, 12.

In the case of random operators it is interesting that the assertion of Theo-
rem 2.8 holds without the assumption about the stochastic equicontinuity of the
sequence {iDr,}, namely we have the following:

Theorem 3.2. Let {O"} 6e o sequence of rand,om operators conaerges in law to
a random rnapping Q. Then 6 is also a rand,otn operator.

Proof. At first we shall show that 0 : X -r .Df (O) is linear. Let c1, x2 € X.
Because {O"(rt  +rz),Qnt,r ,Qnaz} converges in law to {O(rt  +0rr) ,  iDo1, Oc2},
it follows that, for all e > 0,

P{l l0(er .4 rz) -  iDrr -  Ar2l l  > e} I
h"P{l lo"(ar + 12) -  tbntr  -  6^azl l  )  e} = Q,

i .e . , iD(o1  *x2)=  iDut+ iDr2  a .s .  S imi la r lyO( , \o )  = l0o  a .s .  fo ra l l )€R.  I t
remains to prove that iD : X -+ rf (O) is continuous. At first we claim that for
each o € X, the set (iD"o)f;=, is bounded in Iff(O). Indeed let

V(t ,e)  =  {o  € r f  (o)  '  p{ l lg l l  >  r }  < . }

be aneighborhood ofzero. Since L(Q"x) converges weakly to 4(0c) by Prokho-
rov's theorem, there exists ? > 0 such that Pill$"rll > ?) < e for all n. Let
lrl < i. Then, for each n € N*,

) ? ) < u ,

that means rOnx € V(t,e) as claimed.
By the principle of uniformly boundedness of linear continuous mappings

between two F-spaces [7, Theorem 2.2.1], there exists d > 0 such that if ll"ll < d,
then O,c eV(t,e),  i .e. ,  P{ l lO"r l l  > i }  < e for al l  n.  Consequent ly

r{ l lor l l  > t }  S I im,P{ l lo"r l l  > t }  < e

whenever llrll < 6. This proves that O is stochastically continuous. I

Corollary 3.3. Let i0"-if,, be o sequence of rond,om operotors conuerging in
law. Then there etists o sequence {Vr}*, of rondom operators such that, for
each n, Qn 9 V, ond {V ̂ }f;=r conuerges in probabitity.

Finally we study the convergence of random operators generated by a
random integral. Let (,9,5, pr) be a finite measurable space. A mapping M :

p{ l l r o "o l l  >  f } :  r { l l o " ' l l  r  # }<  
p { l l o ,o l l
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.9 -+ Io(O) is said to be a symmetric Gaussian random measure with the con-
trol measure p if
(1) For each ,4 e 3, M (A) is a real-valued Gaussian random variable with mean

zero and the variance p(A).
(2) For every sequence (.4;) of disjoint sets in S the random variables M(At),

M(Az),... are independent and

t( i  o*) =L*ro*, a.s.
n = l  n = l

The random integral of Banach space valued functions with respect to random
measure M is constructed as follow (see [4, 6]). Let E be a separable Banach
space. For asimplefunction ! : S + E, I = DLr rr)e,, where (.4i) are disjoint
sets. we define

A measurable deterministic function / : S -r E is said to be M-integrable if
there exists simple functions (/") such that /" converges to / in p-measure and
the sequenc. {/s f"dM) converges in probability. If / is M-integrable, then
we put

I t o * - P - t t u [ f ^ a u .
J  S  J S

It was shown that this value does not depend on the choice of the approximat-
ing sequence (/,). Among crucial properties of this stochastic integral is the
following theorem, which will be used later.

Theorem 3.4 [4].
(l) U t is M-integrable then [, f aU is an E-ualued, centered, Goussian random

uarioble with the charocteristic lunction

F(y-) = 
"*p {  

-  
[ .Nf Q),y\ l2dp4].

r  J S

(2) II E is a Banach space o! type 2, then each lunction I e LFG) ts M-
integrable. In this case there exists a constant C depending only on E such
that

f o r e a c h f e L ? ( S ) .

Recall that a Banach space E is said to be of type 2 if for each sequence
(g") e E such that DLr lly"ll2 < m the series ![, ongrn converges a.s.,
where (a,) is the sequence of independent identical distributive N(0,1) random
variables.

Theorem 3.5. Let (M,.)Lo be symmetric Gaussian rand,om rneasures with the
control rneosures (p,);T-0, respectiaely on the measurable spoce (,S,5) ond let Y

Ir, o, =ir.M(A).

41 1,, aull' s c l,lnpau
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be o Banach spoce of type 2. Denoted by C6lS,Yl the Banoch space of bounded
continuous functions on S taking ualues inY, Define

en! = 
lrf a*,.

Then
(1) O" is a random mopping lrom C6lS,Yl intoY for each n € /V.
(2) It p" conuerges weakly to 1-rs then lh'- conaerges in law to Qs.

Proot. $) It follows easily from Theorem 3.4 and Chebyshev's inequality.
(2) For the proof of this claim we need the following lemma

Lemma 3.6. ([3, Theorem 4.2 Chap. L)) Let E be a seporable Banach space ond
(€")o be a sequence ol E-ualued random uariables such that, lor each m e N' ,
there esists a sequence (€",*) of E-uolued ranrlorn uariables sotisfying

L -lim(n,^ - (^,

l - l i m f ' " = { 6 ,

t '#FP{ l l€" , - -€" l l  >  €}  =o ve > o.

Then L - lim,'€' = €0.

Le t  ( f i ) f= ,  be  e lements  o f  d6 [S,Y] .  Put  h  =  (h , . . . ,1x ) :  5  - r  Y f t .  We
have to show that Is hdM^ = (/s f;dM")i=, converges in law to [, hdMs =

(1, ftaMo)I,=r.Since p,, converges weakly to p6 by Prokhorov's theorem for
each rn € N*, wecanfind acompactset K C S suchthat sup,r61y p"(S) = L <
oo and supneN p"(K") < |lm. F\rrther we can choose a simple function h,r. =

Dl=r yi  )4,  such that sup,.6 l lh*(s) -  h(s) l l  I  1f  rn, l lh* l l  = Sups€s l lh, , , (s) S
supces llt,(r)ll = llhll and (.4i) a.re pg-conthuous sets. Put

f . 'tn,^= |  n^au^= !u,  Mn(A;) ,
Js i=r

f  . '
€,^= |  h^dMo = Dy,  Mo(A;) ,

t ^
t  J  i - r

f
€" = 

JrhdMn,
f

€o = 
JrhdMo'

Because p^(Ai) + p(A;) as n -+ oo, we have 4 - Iim, M"(A;) = Mo(Ai)
(i = 1, . . . , k). By the independent of the sequence {M^(A;)}l=r, it follows that
L -lim,-€n,^ = {*. Next, note that Yft is also a Banach space of type 2, so by
Lemma 3.6, we have

Ell€^ -€oll2 S 
", Irlln^ 

- hll'dpo l Ctm-t( t  +4l lh l l ' ) ,  (z)
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Ell€n,*- €"l l '  S C, I l lh^ - hl l ,dp, I Cpn-t (L+ 4l lhl lr),  (8)
J S

where C1 is some consta,Dt.
Using Chebyshev's inequality from (7) and (8), we get

P - l i m { m : € 0 ,

l im l im ,P { l l € " , -  - € " l l  >  € }  =  0  Ve  )  0 .

Now the assertion of the theorem follows from Lemma 3.6.
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