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1. Introduction

Let f € Lo(R4). Then the integral
Fo) = [ e roa (1)

exists and is called the Laplace transform of f. The Laplace transform occurs
frequently in the applications of mathematics, especially in those branches in-
volving solutions of differential equations and convolution integral equations. If
the image F is known in the complex plane, the original f can be computed by
the Bromwich contour integral [5]
1 d+io0 .
t)= — F(p)eP*dp, d>0. 2

)= 5~ o (p)ePdp, d> (2)
However, if the image F is known only on the positive axis Ry, one should use
the Post-Widder formula instead

() = tim &0 (ﬁ)"+1 Fim (9) (3)

naoce nl t t

Formula (3) itself is an approximation scheme for inverting the Laplace trans-
form when the limit is dropped [1]. Jagerman {3} applied this approximation
scheme to invert the Laplace transform. However, so far the convergence rate
of this approximation scheme has not been studied yet. In this paper we obtain
the convergence rate of the Post-Widder approximate inversion of the Laplace
transform in some function spaces.
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2. Convergence Rate

Let fs) = /0 T et (4)

be the Mellin transform of function f [4]. Applying the Parseval formula for the
Mellin convolution [4]

oo 1 1/2+ic0 .
/0 Hey) f)dy = —— K*()£°(1 = )2="ds, (5)

27t J1/2—i00

valid if k, f € Ly(Ry.), with k(y) = exp(-y), k*(s) = I'(s), we have

0o 1 1/24+i00
F(p) = /0 exp(—pt) f(t)dt = -— T(s)f*(1-s)p~%ds.  (6)

2mi 1/2—ico

From (6), one can prove that

(—l)n o n+l m(n) _ 1 1/24i 1-\(1_3+n) -r ig
(1) ()= RO @

Applying the Plancherel theorem for the Mellin transform [4] we obtain

[5G ()

L2(Ry4)

[Tl =s+n)
= (2m)~! [———n’ - 1] fr(s) (8
(1 +mn) L2(1/2~i00,1/24i00) )
We have . I(1-s+n) o
n—oc (1 +n) A ot
and F(l-s+n) , (1 - Res+n) Res
l Mi+s) " || Ta+m » |5

where constant C does not depend on n and Im s (see [5]). Hence, the right-
hand side of (8) tends to 0 as n — oo, and so does the left-hand side of (8).
Therefore, formula (3) is valid, if the limit is understood in Ly(R4) norm. Con-
sequently, function f(t) when t € (0,T) can be recovered from function F(p) on
any half-line (p, c0). In particular,

P"
JF( )(p)

I£ @ L20,m) = nl_lygo

) (9)

L2(n/T,00)
for all positive T',0 < T < oo.

Lemma. Let ¢ and y be real numbers. Then

r ) ; 2
et oo (£21) m
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as z tends to oo.
Proof. We have [2] IT(z + iy)| < T'(z).

Therefore, the inequality (10) should be proved only for y being small in abso-
lute value in comparison with /z, say, I(1+y?)/z| < 1/2. Using the Stirling’s
asymptotic formula for the gamma function [2]

ru)=\ﬁﬁeﬂzr4ﬂ(1+o(§)),

valid for large |z| in the domain |arg z| < 7, we obtain

Dz +iy) i, _ —iy( . iy)my—l/z 1
~ray e =e 1+——:c 1+0 - (11)
We have

e~ <1 + %) TG (1 + 0(1/9:))

= exp(—iy + (¢ + 14y — 1/2) In(1 + iy/z)) (1 0 G))

= exp(—iy + (¢ + 1y — 1/2)(iy/z + o(yz/xﬂ))(1 s OG))

= exp(@(y2/z>)(1+0(§)) = (1 +0(%)) (1 *OG'))

2
=1+o(1+y). (12)
T
The lemma is thus proved. "

Now, let the real part of s be 1 /2. Remembering that (2]

Fla+z) 4, 1
wx =140 S

fatn-g) ,_ Tla+n-s) ., ,ula+n—1/2) 12
Ma+n) " ~Ta+tn-1/2 Tla+n) "

Szt = (o ) o)

=1+o(f). (13)

we get

n

Using relation (13) and equation (8) we have

() o (3)- 1

% .
< o lis® (M L2(1/2-i00,1/24i00) (14)

L2(Ry)
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If f is twice differentiable, and moreover, t2(d? f(t)/dt?) € Ly(R, ), then
s2f*(s) € L2(1/2 — i00,1/2 + i),

and the norm in the right hand-side of inequality (14) is finite. Since s%/n =
O(s/+/n) when |s?/n| < 1, the relation

Fla+n—2s)

ey n5=1+o(-j—r_l) (15)

is also valid. Hence,
(_l)n n n+1 ( )(n
- FWi—) - f(t ; 100) -
155 ) =10, S TR Ot poimsario
(16)
Therefore, if we weaken the smooth condition on f (one time less differentiable),

then the convergence rate will be of order O(1/+/n) instead of O(1/n). Thus,
we obtain

Theorem.

(a) Let f € L2(Ry) be differentiable and t(df (t)/dt) € Lo(R+). Then [(—1)"/n!]
(n/t)"1F(™(n/t) converges to f(t) in La(Ry) norm with the rate n=1/2,

(b) Let f € Ly(Ry) be twice differentiable and t(d® f(t)/dt?) € Ly(Ry). Then
(=)™ /nY)(n/t)" 1 F™)(n/t) converges to f(t) in La(Ry) norm with the
rate n~!
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