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Abstract. A decomposition method is proposed for reverse convex programs with
a special low rank nonconvex structure. When specialized to linear programs with an
additional reverse convex constraint, this method gives an improved version of the
polyhedral annexation method earlier developed by the first author for reverse convex
programs.

1. Introduction

We are concerned with the problem
min{(c,z)| z € D, ¢(g(z)) <1} (P)

where D is a compact convex set in R, g: X - R™ a continuous mapping on
an open convex set X D D, and ¢ : Y = R a quasiconcave function defined
on a convex set Y in R™ containing g(D), such that

(A1) The recession cone of Y’ contains a polyhedral cone K = {y € R™| y; = 0,
i =p+1,...,m} satisfying

©(y) 2 ¢(y') whenever y,y' €Y, y-y € K.
(A2) g(z) is K-convex, i.e. for any z,z’' € X and a € [0,1] :
glaz + (1= a)z') <k ag(z) + (1 - a)g(z'),

where we write y' <k y to mean that y—y' € K,ie. ¢y <y; 1 =1,...,p), ¥. =
yi (i=p+1,...,m).
(A3) There is a point a € D such that

¢(g(a)) > 1;  {c,a) <min{(c,z)| z € D, p(g(z)) < 1}.
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For any set E C R™ containing 0 denote E* = —E° = {t € R™| (t,y) >
-1Vy € E}. If E is a cone then E* = {t € R™| {t,y) > 0 Vy € E}, so
K*={te R™t >0,i=1,...,p}. Assumption (A2) ensures that for any
t € K* the function z — (t,g(z)) is convex. Clearly (A2) holds if g(z) =
(61(2); - . gm()) With g1(2),... ,g,(z) convex and gpe1(2), .. , g (c)) affine.
Assumption (A3) is innocuous, because it is satisfied whenever the constraint
w(g(z)) <1 is essential, i.e., ’

min{(c,z)| = € D} < min{(c,z)| € D, p(g9(z)) < 1}.

Important special cases of problem (P) that have been previously studied include:
(1) Convex program with an additional convex multiplicative constraint:

min{(c,z)| z € D, [[g:(z) <1} (1.1)
i=1
where g;(x) are convex positive-valued on X D D [4-7] (see also [3]). In
this example, o(y) = [[;Z; v, K = RT.
(2) Linear program with an additional low-dimensional reverse convex con-
straint:

min{(c,z)| z € D, ¥(x1,... ,&m-1) + (d,z) < 1}, (1.2)

where D C R" is a polytope, ¥(z1,... ,Z,-1) is a concave function of m — 1
variables (m < n) (see [3,12]). In this example Y = R™, g;(z) = z; (i =
L...,m=1),gm(z) = (dz), o(y) = ¥(¥1,... ,Ym=1) + ym, K = {y €
RMy;=0,i=1,...,m—1}

(3) Linear program with an additional monotonic reverse convex constraint:

min{{(c,z)| z € D, f(z) <1}, (1.3)

where D C R™ is convex, f(z) is a quasiconcave function for which there
exists an m x n matrix @ of rank m such that f(z') > f(z) whenever
Qiz' 2Qiz (i=1,...,p), Q' =Qiz (i =p+1,... ,m) (see [9], and also
[3,12]). In this case, f(z) = ¢(Qz) where ¢(.) is a quasiconcave function
defined by ¢(y) = f(z) for all z satisfying Qz = y.

Note that problems (1.1) are also special cases of problems (1.3). By reduc-
tion to concave minimization over convex sets, variants of outer approximation
method for solving (1.1) were developed by Thach et al. (7] and Kuno et al. [4, 5].
This method cannot, however, be extended easily to the general problem (P).
Later, in Konno et al. [3] and Tuy [12] proposed a decomposition method based
on polyhedral annexation for solving problems (1.2) and (1.3). The aim of the
present paper is to extend the latter method to problem (P) and to improve
it by a more transparent presentation and a more thorough discussion on im-
plementation issues. In addition, results of computational experiments will be
reported to show the efficiency of this decomposition approach.

The paper is organized into six sections. After the Introduction, in Sec. 2,
we will show how the basic subproblem of transcending the incumbent can be
reduced to the minimization of a quasiconcave monotonic function over a con-
vex set. Based on this reduction, a global optimality criterion will be formulated
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which suggests a decomposition strategy for solving (P). In Sec. 3, we will dis-
cuss some crucial issues regarding the implementation of this decomposition
strategy. In Sec. 4, the detailed algorithm will be described and its convergence
established. In Sec. 5, we will examine the case when D is a polytope and g(z)
is affine. It turns out that, when specialized to this case, the algorithm gives
an improved version of the decomposition method earlier presented in [3] and
(13] for linear programs with an additional monotonic reverse convex contraint.
Finally, in Sec. 5, we will report computational experiments to show the perfor-
mances of the proposed algorithm on randomly generated problems with n up
to 140 and m up to 6.

2. Basic Subproblem and Decomposition Strategy

Let 40 € (—o0, +00] be an upper bound of the optimal value, i.e., 7o > min{{c, z)| z €
D, ¢(g(z)) < 1}. The key subproblem towards solving (P) is the following:

(SPo) Find a feasible solution with an objective function value less than

Yo if there is one (or else prove that no such solution exists, i.e. o is

the global optimal value). (It is agreed that a global optimal value equal

to +00 means that the problem (P) is infeasible.)

An answer to this question can be obtained by solving the following subproblem:

min{yp(g(z))| y = 9(2), z € D, (¢,z) < 70} (Qo)

To see this, assume that the problem is regular, i.e.

(A4) Any feasible solution of (P) is the limit of a sequence of interior feasible
solutions (by interior feasible solution we mean a vector z € intD satisfying

p(g(z)) <1).

Theorem 1. If there is a feasible solution z* to (Qo) with p(g(z')) < 1, then the
point ' € [a,z!] such that p(g(£')) = 1 is a feasible solution to (P) satisfying
(C, él) < Y-

Conversely, under the regularity assumption (A4), if the optimal value of
(Qo) s no less than 1, then 7o is the global optimal value.

Proof. If p(g(z')) < 1, then, since p(g(a)) > 1, the line segment [a,z'} C D
contains a point £} such that ¢(g(£!)) = 1. Since (c,a) < 79, we must have
(¢, 2!) < Y0, 50 %! is a feasible solution with (c, #*) < .

Conversely, if there is z! € D satisfying ¢(g(z!)) < 1,{c,z') < 70, then,
since by (A4) z! = limz” where z¥ € intD, ¢(g(z") < 1, we must have {c, ") <
7o for some v. Hence, the optimal value of (Qg) must be inferior to 1. n
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Now define

Eo={yeY|y=g(z), z€ D,{c,z) <1} CY CR™,
C={yeY| oy >1}

From the assumptions, it is easily seen that the set C' is convex and closed and
that
g(a) € Ey NintC. (2.1)

Furthermore, for every u € K, we have ¢(g(e) + u) > ¢(g(a)) > 1. Hence,
gla)+ K CC. (2.2)
We can now formulate the following criterion.

Theorem 2. We have

1 = min{p(g(z))| = € D, (c,z) < 70}
& Ey CC & [C—g(a)]" C [Eo — g(a)]*. (2.3)

Proof. Clearly 1 is the optimal value of (Qo) if and only if there is no z € D
such that (c,z) < v and p(g(z)) < 1, i.e. if and only if Ey C C. Furthermore,
from convex analysis, Eo C C if and only if [C — g(a)]* C [Eo - g(a)]*, proving
Theorem 2. |

The above criterion suggests the following outer approximation scheme for
solving (SPp). (Recall that v is an upper bound for the objective function value.
Also note that [C — g(a)]* C K* since K C C - g(a).)

Step 0. Construct an initial simplex M; in R™ such that [C —g(a)]* C M; C K*
(see Proposition 1).

Step 1. Check whether My C [Eq — g(a)]* (see Proposition 2). If yes, 7q is the
optimal value.

Step 2. Otherwise, a t* € M is found such that ¢* ¢ [Ey — g(a)]*. Then there is
y! € Ey satisfying (t!,y* —g(a)) < —1,i.e., y' = g(z!) with 2} € D, (c,z!) < 70,
(t!,g(z!) - g(a)) < —1. If p(g(z')) < 1, then by Theorem 1, we can derive a
feasible solution #' with objective function value (c,%!) < 7, and (SPy) is
solved.

Step 3. If p(g(z*)) > 1,i.e. g(z!) € C, then t! ¢ [C~g(a)]* (because (!, g(z!) -
g(a)) < —1), and since [C — g(a)]* is a convex closed set, a linear inequality can
be constructed to cut off t! from [C — g(a)]* (see Proposition 3) and form a
polytope M, smaller than M; but still containing [C — g(a)]*.

Step 4. Return to Step 1, with M, + M,.

Clearly, since My C C — g(a), ie., g(a) + M} C C, the above procedure
amounts to constructing a sequence of expanding polytopes g(a) + My C g(a) +
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M3 C --- C C until a polytope g(a) + M} D E; is obtained (which then implies
Ey C C). Thus the outer approximation procedure for verifying the inclusion
[C — g(a)]* C [Eop — g(a)]* is equivalent to an inner approximation (polyhedral
annexation) for verifying the inclusion Ey C C. To make this conceptual method
implementable the following operations have to be specified:

- Step 0: constructing the initial simplex Mj;

- Step 1: checking that M; C [Eo ~ g(a)]*;

- Step 3: determining the cut that separates t! from [C — g(a)]*.

These issues will be taken up in the next section.

3. Implementation Issues

Before discussing these issues, note that the above method assumes regularity
of problem (P) (assumption (A4)). For the general case when this assumption
may fail to hold, it is useful to introduce the following concept of approximate
solution.

A feasible solution z. to the problem

min{(c,z)| z € D, ¢(g(z)) <1+ ¢} (Pe)
such that
{¢,ze) < min{{c,z)| z € D, p(g(z)) < 1} 8.1)

is called an e-approzimate optimal solution of (P). Setting
Ce={yeY|oly) 21+e},

it is easily seen that in any case (with or without (A4)) a feasible solution z, of
(P¢) with (c,z.) = 7 will be an e-approximate optimal solution of (P) if

{yly = g(.’L‘), z€D, (c,:z:) < 'YO} c Ce,
or equivalenty, if

[Ce — g(a)]* C [Eo — g(a)]*.

In the sequel, ¢ denotes a small positive number such that (A3) still holds for
(Pe), ie.,

p(g(a)) >1+¢, (c,a) <min{(c,z)| z € D,p(g(z)) <1+e¢).

Now let ¢',i = 1,...,m, be the ith unit vector of R™ and e, = —(er + -+
e™). For every i = 0,p+1,...,m, compute o; = sup{c| g(a) + ae* € C.} (if
this supremum is infinite, let a; be an arbitrary positive number, as large as
convenient). Denote

51 = [aoe®, apy1€Pt, ..., ame™] + conefel, ... ,ef}.
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Proposition 1.
(i) The set My := S} is an m-simplez defined by the inequalities:
t; >0 (2 = 1,...,p), t; > ——l/a,- (’b =p+1, ...,m), 2:7;.1 t; < l/ao, (32)
(i) M, satisfies [C. — g(a)]* C My C K* and its verter set V(M;) consists of
the points E
1

1 1 1 1 1
=y — ) 3 ')_a—'ai=1)"'1 1 3.3
( m), (01 Qi1 - Qi+l am) - (3:3)

where 1/a; =0 fori=1,..,p and B; = — Z;‘nzo,j;éi(l/aj)'

Proof. Clearly 0 € intS;, hence M, is compact. Since S; = —57, (i) follows
from well-known properties of polars of polyhedrons. To prove (ii), observe
from (3.2) that M; C K*; furthermore, since $; C C, — g(a), it follows that
[Ce — gla)]* C ST = M. The last part concerning V(M;) can be checked by
direct computation. =

Proposition 2. For any polytope M such that [C. — g(a)]* C M C K*, we have
M C [Ep — g(a)]* if and only if

min{(t,g(z) — g(a))| z € D, {c,z) <} > -1 VteV(M), (34)

where V(M) denotes the verter set of M.

Proof. Clearly M C [Eo — g(a)]* if and only if min{(t,y)| y € Eo — g(a)} 2
-1Vt € M, ie., if and only if min{(t, g(z) — ())|z€D,(z<7o}>
—1 VYt € M. But, since the function ¢t = min{(¢, g(z) — g(a)}| z E D} is concave,
it follows that min{(t,g(z) — g(a))| z € D} > —1 Vt € M, if and only if
min{(t, g(z) — g(a))| € D} 2 -1Vt € V/(M). "

Note that by virtue of assumption (A2) for each t € V(M), M C K*, the
function ¢ — (t,g(z) — g(a)) is convex, so (3.4) is a convex problem. Now in
step 3, let min{{t!,g(z) — g(a))| £ € D,(c,z) < 1} = (t!,g9(z') — g(a)) < -1
with 2 € D, {(c,z') < 70 and p(g(z?)) 2 1.

Proposition 3. Let6; > 1 be any number such that g(a)+061(g(z')—g(a)) € C-.
Then

(t, 9(a?) - g(a)) < —;};, (t o) - gla)) > —% vte[C-g@] (35)

Therefore, the cut
(t,g(z') — g(a)) > 5 (3.6)
will cut off t* while not excluding any point of [C. — g(a)]”.

Proof. Note that since g(z') € C. while g(a) € intC,, a number 6; > 1 as
described always exists. The first inequality of (3.5) follows from (t%, g(z!) —
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9(a)) < ~land 6, > 1. If t € [C. — g(a)]* then by definition (t,y) > ~1 Wy €
Ce - g(a), which yields the second inequality because 6, (g(z!) — g(a)) € C..

4. Algorithm and Convergence

The above development leads to the following algorithm for finding an e-approximate
optimal solution of (P), without the regularity assumption.

Algorithm

Step 0. Let Z' be the best feasible point available, v; = (c, ') (set 7' = @,y =
+00 if no feasible solution is available). Construct M; as indicated in Proposition
1. Let Vi = V(M;). Set k = 1.

Step 1. For every t € Vi \ {0} solve the subproblem

min{(t, 9(z) — g(a))| = € D, {c,z) < %} (41)

to obtain the optimal value x(t) and an optimal solution z(t) of it. (If this step
is entered from step 4, it suffices to solve (4.1) only for every new ¢ € V;). Let
t* € argmin{u(t)] t € Vi}. If u(t*) > ~1, then terminate: z* is e-approximate
optimal if v, < +00, or (P) is infeasible otherwise.

Step 2. If p(t*) < —1 and z* := z(t*) satisfies p(g(z*)) < 1, then from z*,
derive a solution Z**! such that o(g(Z*+!)) = 1 + ¢ and (¢, ¥*1) < 75 (see
Remark 2 below). Let vt = (¢, %), Miy1 = My, Vi1 = Vi. Return to step
1withk+~k+1.

Step 3. If p(g(z*)) > 1, compute 6 = sup{6| g(a) + 8(g(z*) — g(a)) € C.} and
define

My = M0 {tl {t,9(c*) — g(a)) > —51';}

Step 4. Compute the vertex set Viy1 of Miy1. Set k < k + 1 and return to step
1.

Remark 1. In Step 4, since My, differs from M) by just one additional linear
constraint, the vertex set Vi1 of M) can be derived from ¥} by using any sub-
routine for on-line vertex enumeration, e.g. the one by Chen - Hansen - Jaumard
(12, Sec. 6.2].

Remark 2. In Step 2, the solution Z¥*! can be taken to be the point £* where
the line segment [a, z*] meets the surface (g(2)) = 1+ ¢ (see Theorem 1), or
any better feasible solution of (P.) obtained for example by performing a local
search from z*.

The convergence of thé above Algorithm can be established on the basis of
the following simplified version of the Basic Outer Approximation Theorem:

Theorem 3. Let G be an arbitrary closed subset of R? with a non-empty inte-
rior, let {u*} be an infinite sequence in R?, and for each k, let It (u) be an affine
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function satisfying
lk(uk) >0, Lu)<0Vued.

If the sequence {u*} is bounded, if w € intG and for every k there ezist vk €
[w,u*] \ intG, such that lx(vF) > 0, then

ub —vF 50 (k> +0).
Proof. See [10] (also [13]). ’ -

Theorem 4. If the Algorithm is infinite it generates an infinite sequence {zF}
of which every accumulation point is an e-approzimate optimal solution.

Proof. Denote 7 = limy (k & +), E={y € Y|y =g(z), z€ D, {¢,z) <7}
and let Z = limZ* (v —» +00). By passing to subsequences if necessary, we can
assume that t* — f (where v stands for k, to simplify the notation). We first
show that step 2 can occur only in finitely many iterations v. Indeed, suppose
the contrary, that ¢(g(z”)) < 1 for all v. Let 2 be the point of [a,z"] where
©(g(2¥)) = 1+ e. Applying the Basic Outer Approximation Theorem to the
set G := {z| = € D,p(g(x)) 2 1 +¢,{c,z) < 7} with a € intG, the sequences
u’ = z¥,v’ = &Y, and the cuts [, (u) = (c,u — £”), we see that 2" — 2" — 0,
hence p(g(Z)) = 1 + ¢, conflicting with the fact ¢(g(z")) < 1 Vv. Thus, step 2
occurs only in finitely many iterations v and without loss of generality, we can
assume that step 3 occurs at every iteration v. This implies 7, = ¥ Vv. Define
1,(t) = (t,—g(z") + g(a)) ~ 1. Then

L) >0, () <0Vte[E - g(a)]. (4.2)

Indeed, the left inequality follows from u(t") = (t*, g(2) —g(a)) < —1, while for
every t € [E—g(a)]*, we have (t,y) > —1Vy € E—g(a), hence (t, g(z") —g(a)) 2
—1, proving the right inequality in (4.2). Furthermore, since E is compact,
[E — g(a)]* has an interior point w. Then clearly w satisfies l,(w) < 0, while
1,(t) > 0, so there exists a point s” € [w, z*] such that I, (s") = 0. By virtue of
the Basic Outer Approximation Theorem applied to G = [E — g(a)]*,w € intG,
the cuts I, (t), and the sequences {t“,s”} we then obtain t" —s” — 0,i.e.,t* =
such that (£, g(Z) — g(a)) = —1. But for every v and every t € M,,

min{(t, 9(z) — g(a))| z € D, {c,z) < 7} = (", 9(z") - g(a))-

Hence, for every t € [Ce — g(a)]* C NJ23M,,

min{(t, g(z) — g(a))] € D, {c,z) < ¥} > (£, 9(Z) — g(a)) = 1.
That is,

[Ce — g(a)]* C[E - g(a)]", (4.3)

proving the e-approximate optimality of Z. a
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Remark 3. As ¢ — 0 is an c-approximate optimal solution tends to an exact
optimal solution.

5. The Case of Linear Programs with a Low Rank Reverse Convex
Constraint

An important special case for the applications is when D is a polytope and 9{z)
is affine: g;(z) = (c,z), i =1,...,m. The algorithm can then be made finite
by the following arrangements and improvements:

(1) In Step 1, each problem (4.1) is a linear program:

min{i ti{c',z —a)| z € D,{c,z) < 1},

i=1

so an optimal solution of it can be taken to be a vertex of the polytope

Dy = {z € D| (c,z) < m}-

(2) In step 2, z¥ = z(t¥) is a vertex of Dy which is not optimal for the linear
program min{(c, z)| z € D} (because the intersection of the segment [a, z*]
with the surface ¢(g(z)) = 1 + ¢ is a better solution). Therefore, starting
from z*, one can find (e.g., by using the simplex procedure applied to the
above linear program) a better solution lying on the intersection of the
surface p(g(z)) = 1 + ¢ with an edge of D. This better solution should be
taken to be z*t1,

(3) In step 3, 6, = sup{f] v(g(a + O(z* —a)) > 1 +¢}.

Under these conditions the incumbent solution z* at iteration k is always
an intersection point of an edge of D with the surface ¢(g(z)) = 1 + €. The
finiteness of the algorithm then follows from the finiteness of the set of edges of
D.

Remark 4. Let D = {z € R"| Az < b, z > 0} and g(z) = Gz, where G is
the m x n matrix with rows c!,...,c™. Assuming rankG = m we can write
G =[Gp,Gn], z = [:z], where Gp is an m x m non-singular matrix. Then

setting

- [C5 w— | ~G5'Gnan
0 |’ TN ’

the equation Gz = y yields
z=2Zy+u with Gu=-Gnzy+GCGpnzny =0.

Thus, under the specified assumptions (D polyhedral and g(z) affine) the prob-
lem (P) can always be rewritten as

min{{c, Zy + u)| AZy+ Au < b,Zy +u >0, o(y) < 1}.

Note that this is a problem of type (2) as described in the Introduction.
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6. Computational Experience
The proposed algorithm has been tested on problems of the form

min{{(c,z)| z € D, h(z1, 23, ...,z,) + (d, z) < 0},
where h(z1,22,...,Z) i8 a concave function of r < n variables and D = {z €
R™: Az < b,z > 0} with A € RP*™ and b € RP. This choice of the test problems
is in part justified by Remark 4.

The function h(z) used in the tested problems is a concave function of the
following types:

0) —;L:l gia?
(1) -3 (?)/3 - (2/3) smax{z; :i=1,2,...,n}
i=1

@) {3z +i/n) iy}

i=1
(3) =X /i~ 5 (i +i)P"
i=1 =1

r

(4) In(Ci_GE*zi)+1)— Z: 2?/(n-i+1)

(5) —exp[gl(x?/ﬂ —i%2)/10° = " 2?/(n — i + 1)

=1

(6) \/(gi*zi)*(iézi+n—i)—,-gx?/i'

The algorithm coded in PASCAL and ran on an IBM PC Intel Pentium MMX
166. We solved more than 100 randomly generated problems. The computa-
tional results on a number of these problems are reported in Table 1, where the
following notations are used:

n number of variables

D number of linear constraints

r+1 rank of reverse convex constraint

It number of iterations

NOpt index of iteration in which the optimal solution is found
NCut number of cuts

NIm number of iterations in which the incumbent has improved
LP number of solved linear subproblems

IX maximal number of vertices at one iteration

v total number of generated vertices

Time computational time (in seconds)

Type type of function h(z)
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Table 1
n p r It NOpt NCut NImp LP IX [V Time Type
20 10 7 30 27 17 12 2848 704 5342 95.24 0
30 18 6 28 27 14 13 1040 251 1739 136.38 5
30 12 7 16 15 9 6 508 242 992 24.44 0
30 10 7 20 19 7 12 273 120 428 15.00 0
40 17 6 8 4 3 4 84 31 78 14.22 0
50 15 5 18 16 16 1 343 118 1126 56.41 1
50 20 6 31 30 12 18 1710 158 1036 461.64 O
50 18 7 20 19 10 9 2489 364 1674 565.29 O
50 10 7 38 36 19 18 2897 642 5998 208.94 1
60 25 5 11 9 4 6 88 24 76 40.04 0
60 20 6 9 6 3 5 71 32 77 3170 0
60 15 4 5 4 0 4 26 5 5 5.82 0
70 25 4 6 4 1 4 35 8 13 25.70 0
70 10 5 30 29 11 18 568 74 462 66.41 0
70 10 6 8 7 0 7 54 7 7 6.86 0
80 15 5 10 9 5 4 91 34 112 28.01 0
80 10 6 56 53 13 42 2121 215 1454 231.78 1
80 5 7 5 3 1 3 36 14 22 1.97 0
80 25 4 11 7 3 7 61 12 26 58.38 0
90 25 4 12 9 5 6 68 21 78 59.10 0
90 5 6 7 3 3 3 80 28 73 3.19 0
90 8 7 4 3 0 3 36 8 8 4.01 0
90 20 4 8 X 6 1 72 30 118 42.08 1
90 10 6 12 10 4 7 303 58 146 43.94 1
100 9 6 7 4 2 4 65 21 44 8.90 0
110 25 4 13 12 4 8 8 17 55 119.57 4
120 5 5 20 19 8 11 354 76 358 20.04 5
120 35 2 12 11 2 9 39 4 11 96.23 2
120 35 3 6 5 0 5 28 4 4 86.84 3
120 10 6 9 7 2 6 74 21 40 1290 6
130 35 2 9 8 1 7 31 4 7 136.92 2,
130 35 3 6 5 0 5 25 4 4 86.62 3
130 4 6 16 14 4 11 496 58 153 22.90 1
130 5 6 26 14 20 5 1520 437 3975 104.19 1
130 8 7 15 14 6 8 265 86 274 38.39 0
140 15 4 21 20 4 16 205 21 63 108.20 4
140 10 5 6 4 1 4 36 12 18 6.97 5
140 20 5 11 10 5 5 98 30 102 70.58 5
140 5 5 12 11 5 6 110 36 122 8.19 0
140 8 6 7 5 2 4 62 21 4 7.69 0
140 3 7 7 5 1 5 51 18 26 2.63 0

53
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Example 1. n=10, p=6, r =3, £ =0.000010

30 23 -42 43 -02 -14 44 10 02 0.1
-1.3 30 -03 00 1.7 -26 -11 -2.0 19 1.0
00 -04 -04 -06 -44 -06 1.5 16 -39 -1.9
08 20 -15 33 22 27 -35 42 -14 -1.0
-47 36 10 -31 05 36 24 -08 09 -1.9
1.0 10 10 10 1.0 10 10 1.0 1.0 1.0

b = (4.290, 0.560, 0.800, 2.850, 3.190, 500.000),
¢ = (72,-50, 270,90, 16, 129, -83, 67, 159, 78),
h(z) = —8z% — 1023 — 2z — 16.436x; + 83.821z; + 51.448z3 + 15.000 < 0.

Computational Result
Optimal solution:
z* = (0.685,0.000, 0.000, 0.000, 0.315, 0.000, 1.456, 0.000, 0.000, 0.000)
Number of iterations: 7
Computational time: 0.44 sec.
Optimal value: -66.530648
Value of reverse function h(z*) = 0.000057
Optimal solution obtained at iteration: 4
Number of LP : 27
Number of improvements : 4
Number of cuts : 2
Maximal number of vertices : 6
Total number of generated vertices : 16

Example 2. n =10, p=38, r =4, £ =0.00001

(3.5 32 07 25 09 46 -06 -22 21 -31 \
47 -46 25 32 -28 -27 06 -1.7 -40 -2.7
-1.2 -28 -11 25 -30 -21 23 -08 26 -2.0
1.1 03 -23 -19 -3.7 -23 01 38 46 11
-3.0 -3.2 -46 38 -24 -04 21 08 31 -19
1.5 05 -49 -27 00 10 -15 -28 -23 -04
27 02 26 -3.7 -47 38 -46 41 -23 0.8
\1.0 1.0 10 10 10 10 10 10 1.0 1.0 )

b = (1.890,-4.810, 0.440, 2.030, 2.640,-5.590, —4.850, 500.000),
¢ = (—47.0,184.0, 82.0,74.0,105.0, -3.0, —123.0, ~105.0, 56.0, 104.0),

h(z) = —8.0z% — 7.023 — 7.023 — 3.0z% + 63.190z, + 40.478z;.
+65.653z3 + 31.306z4 + 90000.000

Computational Result
Optimal solution:
z* = (95.237,60.851,0.0, 0.0, 0.0, 99.218, 222.329, 22.364, 0.0, 0.000)
Number of iterations: 17
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Computational time: 2.04 sec.

Optimal value: -23271.932023

Value of reverse function h(z*) = —0.000011
Optimal solution obtained in iteration: 16
Number of LP: 107

Number of improvements: 10

Number of cuts: 6

Maximal number of vertices: 24

Total number of generated vertices: 100
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