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Abstract. A decomposition method is proposed for reverse convex programs with
a special low rank nonconvex structure. When specialized to liuea.r programs with an
additional reverse co[vex constraint, this method gives aa improved version of the
polyhedral annexation method ea^rlier developed by the first author for reverse convex
programs.

1. Introduction

We are concerned with the problem

min{ (c ,  x ) l  x  e  D,  e fu@))  !L }  (P)

where D is a compact convex set in Rn, g : X +.Rm a continuous mapping on
an open convexset X f D, and g:Y +,R aquasiconcave function defined
on a convex set Y in fi* containing g(D), such that
(A1) The recession cone of Y contains a polyhedral cone K = {y e RTI yi = 0,
i  =  p*  1 , . . . , rn )  sa t is fy ing

pfu) >_ p(y') whenever A,y' e Y, ! - a' e K.

(AZ) 9(o) is K-convex, i.e. for a'ny tta' e X and o e [0,1] :

s(ar t  (1 -  a)o')  <x ag(x) + (1 -  a)s(x ') ,

where we wri te y '  3x y to mean that y -y '  e K, i .e.  A' . i  < y;  ( i  -  1, . . . ,p),  Al  =
y i ( i = p + 1 , . . . , r n ) .

(A3) There is a point o € D such that

pk(o)) > 1; (c,  o) < min{(c,  a) l  x e D, rp(g(o)) < 1}.
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For any set.E C -R- containing 0 denote E* = -Eo = {t € .R-l (t,y) >
- l Y a  €  E I .  I f  E i s  a c o n e t h e n . E *  =  { r  €  R ^ l  ( t , s )  Z  0 V s  e  f i ,  *
K*  :  { t  e  R l  t ;  )  0 ,  i  =1 , . . .1p} .Assumpt ion  (A2)  ensures  tha t  fo iany
t € K' the function a +> (t,g(a)) is convex. Clearly (A2) holds if 9(r) _
(St (o ) ,  . . .  ,g^ (a) )  w i th  91( r ) ,  . . .  ,gp(a)  convex  and go11( r ) , . . .  ,g_(o) f  a f f ine .
Assumption (A3) is innocuous, because it is satisfied whenever the constraint
ek@)) I I is essential, i.e.,

m in{ (c ,  a ) l  x  e  D}  <  min{ (c ,a ) l  x  e  D,9@@))  <  \ .
Important special cases of problem (P) that have been previously studied include:
(1) convex program with an additional convex multiplicative constraint:

min{ (c , c ) l  r €D ,  f Jg i (o )  S t }
i = l

where 9;(c) are convex positive-valued on X ) D l4-7] (see also [3]). In
this example, p(y) = lllr y;, K = R!.

(2) Linear prograrn with an additional low-dimensional reverse convex con-
straint:

( 1 . 1 )

mia{ (c ,  a l l  x  e  D,  rh (q , . . . ,om-r )  *  (d ,c )  <  1 } , (1 .2)

€

where D C r?" is apolytope, ,b@y... ,xm_r) is a concavefunction of.m-L
variables (* < n) (see [3,12]). In this exampleY = R^,g;(r) = o; (i
1 , . . . , r n - l ) , g ^ ( a )  =  ( d , x ) ,  p ( y )  =  r b ( h , . . . , y m - r )  t A * ,  K  =  { A
R T I  Y r =  o ,  i  -  1 , ' .  . , r n  -  l \ '

(3) Linear program with an additional monotonic reverse convex constraint:

m i n { ( c , r ) l  a € D ,  / ( o )  S l } , (1 .3)

where D c Rn is convex, /(r) is a quasiconcave function for which there
exists an rn x n matrix Q of rank rn such that /(o,) >_ f (r) whenever
Q;r' 2 Qix (i 1, . . . , p), Q;x' = Qia (i = p * 1, . . . ,rn) (see [9], and also
[3' 12]). In thi case, l@) = p(Qx) where 9(.) is a quasiconcave function
defined by p(y) = f (x) for all o satisfying Qa = y.
Note that problems (1.1) are also special cases of problems (1.3). By reduc-

tion to concave sriaimisa,t'isn over convex sets, variants of outer approximation
method for solving (1.1) were developed by Thach et al. [{ and Kuno et al. [4, b].
This method cannot, however, be extended easily to the general problern (p).
Later, in Konno et al. [3] and rhy [12] proposed a decomposition method based
on polyhedral annexation for solving problems (1.2) and (1.3). The aim of the
present paper is to extend the latter method to problem (p) and to improve
it by a more transparent presentation and a more thorough discussion on im-
plementation issues. In addition, results of computational experiments will be
reported to show the efficiency of this decomposition approach.

The paper is organized into six sections. After the Introduction, in sec. 2,
we will show how the basic subproblem of transcending the incumbent can be
reduced to the minimization of a quasiconcave monotonic function over a con-
vex set. Based on this reduction, a global optimality criterion will be formulated
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which suggests a decomposition strategy for solving (P). h Sec. 3, we will dis-
cuss some crucial issues regarding the implementation of this decomposition
strategy. In Sec.4, the detailed algorithm will be described and its convergence
established. In Sec. 5, we will examine the case when D is a polytope and 9(r)
is affine. It turns out that, when specialized to this case, the algorithm gives
an improved version of the decomposition method earlier presented in [3] and

[13] for linea^r progra,rrs with an additional monotonic reverse convex contraint.
Finally, in Sec. 5, we will report computational experiments to show the perfor-
mances of the proposed algorithm on randomly generated problems with n up
to 140 and rn up to 6.

2. Basic Subproblem and Decompositiou Strategy

Let,ys € (-m, *ml be an upper bound of the optimal value, i.e.,7o ) min{(c, x)l r e
D, p(S@D < l). The key subproblem towards solving (P) is the following:

(SPo) Find a feasible solution uith on objectiue function volue less thon
% if there is one (or else proae that no such solution edsts, i.e. 1s is
the global optimal aolue). (It is agreed that a global optimal value equal
to *oo means that the problem (P) is infeasible.)

An answer to this question can be obtained by solving the following subproblem:

min{g(g(c)) l  y = g(x),  x € D, (c,r)  < to}. (Qo)

To see this, assume that the problem is regular, i.e.

(A ) Any feasible solution of (P) is the limit of a sequence of interior feasible
solutions (by interior feasible solution we mean a vector c € intD satisfying
p(g(r))  < 1).

Theorem L. If there is a feosible solution cl to (q6) with gfu@r)) < L, then the
point ftr € [a,cr] such thot p(g(i')) = 1 ds a feasible solution to (P) satisfying
(c , f t )  <  ?o '

Conuersely, under the regularity assumption (L4), t the optimal ualue o!
(Qo) rs no less than 1, thenls is the global optirnalualue.

Proof. If. pk@L)) < 1, then, since rp(g(a)) > 1, the line segment la,xLl c D
contains a point dl such that 9(9(61)) = t. Since (c,o) ( 70, we must have
(",it) <,ys, so il is a feasible solution with (c,ft) <.y0.

ConverselS if there is el €'D satisfying p(g(sl)) ( 1, (c,11) < 7e, then,
since by (A4) or = limr' where a" e intD,p(S@") ( 1, we must have (c,s") <
7e for some z. Hence, the optimal value of (Qs) must be inferior to 1. r
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Now define

Eo =  {y  e  Y l  y  =  9 (c ) ,  x  €  D, (c , * )  <  to }  cY C R^ ,

C = { v e Y l  r p ( y )  2 t }

Flom the assumptions, it is easily seen that the set C is convex and closed and
that

9(o )€Eso in tC .

F\rrthermore, for every u € K, we have p(s@) + u) > pk@D ) 1. Hence,

g ( o ) + K c C .

We can now formulate the following criterion.

Theorem 2. We have

1 = min{p(9(r)) l  r  € D,(c,r)  < 70}
<+ Eo c C e IC -s(o)] ' c [Es - e(a)].

(2 .1)

(2.2)

(2.3)

Proof. Clearly I is the optimal value of (Qo) if and only if there is no o € D
such that (c,r) < ?o and Vk@)) ( 1, i.e. if and only if Eo C C. F\rthermore,
from convex analysis, Eo C C if and only if [C - 9(o)]. C [Eo - g(a)]', proving
Theorem 2. r

The above criterion suggests the following outer approximation scheme for
solving (SPo). (Recall that 7s is an upper bound for the objective function value.
Also note that [C - S(o)]' C K' since K c C - g(a).)

Step 0. Construct an initial simplex Ml in R^ such that lC - g(o)j' C Mt C K'
(see Proposition 1).

Step 1. Check whether Ml clEs -g(a)]' (see Proposition 2). If yes,7s is the
optimal value.

Step 2. Otherwise, atL € Mt is found such that t' (lno -s(a)]..Then there is
y r  €  Eo sa t is fy ing  ( t ' , y ' -g (o) )  <  -1 , i .e . ,g r  =g( r r )w i thor  G D, (c , r l )  (  ?0 ,
(tt,g(r1) - g(o)) < -1. If p(g(ot)) ( 1, then by Theorem 1, we can derive a
feasible solution il with objective function value (c,it) < ?0, and (SPo) is
solved.

Step 3. f ip(e@')) 2 1, i .e.  g(rr)  e C, then tL ( lC-s(a)1. (because (t t ,g(r t)-
g(a)) < -1), and since [C - S(a)]. is a convex closed set, a linear inequality can
be constructed to cut off tr from lC - S@)1. (see Proposition 3) and form a
polytope Mz smaller than Mr but still containing {C - S@)l-.
Step I. Return to Step 1, with M1 +- M2.

Clearly, since Mf c C - 9(o), i.e.,9(a) + MI c C, the above procedure
amounts to constructing a sequence of expanding polytopes 9(o) + Mi C g(a) +
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Mi C "' C C until a polytope g(o) + M; ) Eo is obtained (which then implies
Eo C C). Thus the outer approximation procedure for verifying the inclusion
lC - g(")J. C [& - 9(a)]' is equivalent to an inner approximation (polyhedral
annexatiou) for verifying the inclusion Eo C C. To make this conceptual method
implementable the following operations have to be specified:
- Step 0: constructing the initial simplex M1i
- Step 1: checking that Mr c [Eo - g(o)].;
- Step 3: determining the cut that separates tl from lC - g(o)1..
These issues will be taken up in the next section.

3. Implementation Issues

Before discussing these issues, note that the above method assumes regularity
of problem (P) (assumption (A )). For the general case when this assumption
may fail to hold, it is useful to introduce the following concept of approximate
solution.

A feasible solution o, to the problem

such that

min{(c, x)l  a e D, p(g(s)) < I + e}

(c ,  r . )  (  min{(c ,  x) l  a  e D,  gfu@))  !  l }

is called an €-approtimote optimol solution of (P). Setting

C , = { U e Y l p ( y ) ) 1 * e } ,

it is easily seen that in any case (with or without (Aa)) a feasible solution r, of
(P,) with (c,r,) =,ye will be an e-approximate optimal solution of (P) if

{y ly = g(t) ,  x € D, (c,x) !  16} c C,,

or equivalentg if

[C, - g(o)]- c [Eo - s(o)]..

In the sequel, e denotes a small positive number such that (A3) stiil holds for
(P , ) ,  i .e . ,

p b @ ) )  >  1 + e ,  ( c , a )  l  m i n { ( c ,  r ) l  t  e  D , p ( g ( r ) )  <  1 + e } .

Now le t  e i , i  :1 , . . .  , rn ,  be  the  i th  un i t  vec tor  o f  R^  and es  =  - (e l  +  . . .+
e* ) .  For  every  i  -  0 ,p  *  1 , . . . , rn ,  compute  a ;  -  sup{c l  S@)+ae i  e  C, }  ( r f
this supremum is infinit'e, let c; be an arbitrary positive number, as large as
convenient). Denote

(P. )

(3.1)

^91 =  [49e0,  o '11ef rL , . . .  ,a^€^ ]  +  cone{e l  ,  . . .  ,ep} .
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Proposition 1.
(i) The set My:= .9i is an m-simplex defined by the inequolities:

t i >  0  ( i =  1 , . . . , p ) ,  t ; )  - L f a ;  ( i :  p * 1 , . . . , m ) ,  D L r t r l l f a s ,  ( 3 . 2 )

(ii) Ml sotisfies lC" - S@)l' C Mr C K* and its uerter set V(M1) consists of
the points

- ( 1 , . . . , I ) ,  - (  1  
,  . . . ,  - L  , B , , I , a ) ,  ,  = r , . . . , r n ,  ( 3 . 3 )' 0 r '  

A a "  
' 0 1  

O i - t  Q i + L  A m

where l f  ai  =0 for i  = L,." ,P and F; = -DT=o,i+nGl, i ) .

Proof. Clearly 0 € int51, hence M1 is compact. Since Si - -Si, (i) follows
from well-known properties of pola,rs of polyhedrons. To prove (ii), observe
from (3.2) that Mr C K'; furthermore, since 51 C C, - g(o), it follows that

lC, - S@)1. C Si = Mt. The last part concerning V(Mt) can be checked by
direct computation. I

Proposition2. For any polytope M such thatlC, -g(o)l- c M c K*, we houe
M clEs - g(a)l' if and onlY if

m in{ ( t ,  s@)  -  s@)) l  s  €  D,  \c ,c )  S  ro }  2  - l  V t  eV(M) ,  (3 .4 )

where V(M) denotes the uertex set of M.

Proof. Clearly M c lEo - g(o)1. if and only if min{(i, y)l y e Eo - g(a)} 2
- l  Vt € M,i .e. ,  i f  and only i f  min{(t ,g(r)  -  s(a)) l  a € D,(c,r)  S ro} )
-1 Vt € M. But, since the function t r+ min{(t, g(x) - S@))l n € D} is concave,
it follows that min{(t,s@) - g(a))l 

" 
€ D} > -1 Vt e M, if and only if

min{(t ,s(r)  -  g(a)) l  a e D} > -1 Vt e V(M). I

Note that by virtue of assumption (A2) for each t e V(M), M C K', the
function x *> (t,g(x) - 9(a)) is convex, so (3.4) is a convex problem. Now in
s tep  3 ,  le t  m in{ ( t l ,  S@) -  g (a) ) l  c  €  D, (c ,o )  <  70}  =  \ tL ,g (a l )  -g (a) )  <  -1

with cr e D, lc,ol)  (  lo and p(g(r l ))  > 1.

Proposit ionS. Let i l  )  1 be any number such that g(a)+0{g(xt)-9(o)) e Ce.
Then

( t ' ,g(") -  s(o)) .  -+, ( t ,e(ol) -  g(a)) > -+ vt € [c - g(o)].  (3.5)
at At

Therefore, the cut
- l

( t , s @ ' ) - g ( o ) ) > - 0 ,

uill cut ofi tL while not encluding ony point of lC, - S(a)]''

Proof. Note that since g(cr) e C' while 9(o) € intC,, a number 01 ) I as
described always exists. The first inequality of (3'5) follows from (tl,g(rr) -

(3.6)



Decomposition Algorithm lor Reaerse Conaex Programs 49

g(o)) < -1 and i l )  l . I f . te lC, -g(o)1. then by def ini t ion (r ,s) > -1 Va €
C, - g(a), which yields the second inequality because 0r(S@r) - g(a)) € Cr. t

4. Algorithm and Convergence

The above development leads to the following algorithm for finding an e-approximate
optimal solution of (P), without the regularity assumption.

Algorithm

Step 0. Let Er be the best feasible point available, ,y1 = (c, il) (set il = 0,1t =
*m if no feasible solution is available). Construct Mr as indicated in Proposition
1. Let Vr =V(Mt).  Set ,b = 1.
Step L. For every t € Vr \ {0} solve the subproblem

min{(t,e(o) - g(a))l  a e D,(c,c) < r*} (4.1)

to obtain the optimal value p(t) and an optimal solution c(t) of it. (If this step
is entered from step 4, it suffices.to solve (4.1) only for every new t € tr21). Let
th € a.rgmin{p(t)lt 6 Vr}. If p(tk) ) -1, then terminate: ee ir r-"pproxirnate
optimal if lr < *oo, or (P) is infeasible otherwise.
Step 2. ff p(t&) ( -1 and ak := n(tk) satisfies p(e@k)) < t, then from c&,
derive a solut ion te+l such that gfu@k+t))  = 1+e and (", i*+t)  (  t*  (see
Remark 2 below). Let 7pa1 - (",fk*t), M*+r = M*,V*+r - Vj. Return to step
l w i t h h F & + 1 .

Step 3. I f  p(g(rk))  )  1,  compute 0p = sup{dl  s(o)+ Q(s@k) -  s(a)) 6 C,} and
define

M*+t  = Mon {q $,s@k) -  s@D > -+}
I  d k )

Step 4. Compute the vertex set I/j41 of. Mpa1. Set & <- ,t + I and return to step
1 .

Remark I. In step 4, since M1a1 differs from M1 by just one additional linear
constraint, the vertex set V3..1 of. Mpal can be derived from I/1, by using any sub-
routine for on-line vertex enumeration, e.g. the one by Chen- Hansen- Jaumard
[ t2 ,  Sec .6 .2 ] .

Remark 2. In step 2, the solutioo 5t*1 can be taken to be the point 6e where
the line segment [a,rft] meets the surface p(S@D = l *e (see Theorem 1), or
any better feasible solution of (Pr) obtained for example by performing a local
search from fft.

The convergence of thd above Algorithm can be estabrished on the basis of
the following simplified version of the Basic outer Approximation Theorem:

Theorem 3. Let G be an orbitrary closed, subset of Re with o non-empty inte-
rior, let {uk} be an infinite sequence in Rq, ond for eoch k, Iet 11,(u) be an ffine
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l 1 ( u k )  > 0 ,  l r ( u )  S o v u € G .

I! the sequence {uk} is bounded, if w e intG and for euery k there erist uK €

l.,url\ intG, such that l*(uh) Z 0, then

u k - u k - + 0  ( k + + m ) .

Proof. See [10] (also [13]). r

Theorem 4. If the Algorithm is infinite it generates an infinite sequence {ik}
of which euery a,ccurnulotion point is an €-approrimate optimal solution.

Proof.  Denote? - l imTp (k -+ +oo),  E = {a eYly = 9(x),  a € D, (" , t )  < 1}
and let E =limlk" (z -l +m). By passing to subsequences if necessary, we can

assume that t, -l I (where y stands for k, to simplify the notation). We first

show that step 2 can occur only in finitely many iterations y. Indeed, suppose
the contrary,that 9@@")) < 1 for all v. Let i' be the point of [a,o"] where

Vb@\) = 1 * e. Applying the Basic Outer Approximation Theorem to the

s e t G : =  { o l  c  €  D , p ( g ( x ) )  2 1 * e , ( c , o )  <  l }  w i t h a €  i n t G , t h e s e q u e n c e s
,y,u = tu,,t)' = i ', and the cuts lr(u) = (c,u- i"), we see that x' - i ' '+ 0,

hence 9(9(e)) = t * e, conflicting with the fact p(g(r")) ( 1 vv, Thus, step 2

occurs only in finitely many iterations z and without loss of generality, we can

assume that step 3 occurs at every iteration z. This implies '1, = 7 Vz. Define

b( t )  -  ( t , -g (x ' )  +  g (a) )  -  I '  Then

l , ( t ' ) >0 ,  l , ( t )  <  0V t  €  lE  -  g (a ) ) ' (4.2)

the cuts lr(t), and the sequences {f 
', s'} we then obtain t' - s' + 0' i.e', t' -+ t

such that (I,g(e) - g(o)) = -1. But for every z and every t e M,,

min{( t ,  s@) -  g(o)) l  o  € D, \c , t )  S 7}  ) -  ( t ' ,s ( r " )  -  s(a)) .

Hence, for every t €. lC, - g(a)]. C nI:iM,,

min{( t ,  g( r )  -g(a)) l  o  e D,(c , t )  S ?}  2  ( I ,g(5)  -  g(a))  = - r .

That is.

lC, - g(a)l '  c [E - g(o)].,

proving the e-approximate optimality of i.

(4.3)

I
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Remark 3. As e -+ 0 is an €-approximate optimal solution tends to an exact
optimal solution.

5. The case of Linear Programs with a Low Rank Reverse convex
Constraint

An important special case for the applications is when D is a polytope and g(c)
is afine: gi(x) = (ci,x), i = 1,... ,rn. The algorithm can then be made finite
by the following arrangements and improvements:
(1) In Step 1, each problem (4.1) is a linear program:

- in { f  t ; (c i , x  -  a ) l  r  €  D,  (c , r )  <  ?* } ,
i = 1

so an optimal solution of it can be taken to be a vertex of the polytope
Dp = {x € Dl (c,  t )  <. ' tk} .

(2) I" step 2, rk = s(tk) is a vertex of D* which is not optimal for the linear
program min{(c, x)l x e D6} (because the intersection of the segment [a, c]l
with the surface ek@)) = 1 * e is a better solution). Therefore, starting
from c&, one can find (e.g., by using the simplex procedure applied to thi
above linear program) a better solution lying on the intersection of the
surface ek@)) = 1 + e with an edge of D. This better solution should be
taken to be tft+r.

(3 )  In  s tep  3 ,  d r  =  sup{91 p(s@+Q(rk  -  a ) )  >  1+e} .
under these conditions the incumbent solution il at iteratiou fr is always

an intersection point of an edge of D with the surface p(g(a)) = I * e. The
finiteness of the algorithm then follows from the finiteness of the set of edges of
D .

Remark 4. Let D = {a e Rl Ar 1 b, x ) 0} and S@) = Gr, where G is
the m x n matrix with rows c, ,...,c-. Assuming rankG = rn we can write

|  - ^ ' 1
G = lGB,Gx), r = l: ' l, where Gs is an rn x m non-singular matrix. Then

L O N I '
setting

the equation Gr - g yields

r = Zy * u. with Gu = -Gxxrv f Gryop = Q.

Thus, under the specified assumptions (D polyhedral and 9(r) afine) the prob-
lem (P) can always be rewritten as

min{(c,  Zy + u) l  AZy + Au 1 b,  Zy t  u  2 0,  p(y)  < t } .

Note that this is a problem of type (2) as described in the Introduction.

t : l"t'1, " = l-"r:3"'"],
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6. Computational Experience

The proposed algorithm has been tested on problems of the form

m i n { ( c , c ) l  c  €  D , h ( a 1 , a 2 , . . . , 8 , ) +  ( d , o )  <  0 } ,

where h(a1,a2,...,o") is a concave function of r ( n variables and D - 
{, €

R t  Ax 1b,n) 0)with Ag pn'"  andbe r?p. Thischoiceof thetestproblems
is in part justified by Remark 4.

The function h(r) used in the tested problems is a concave function of the
following types:

r
(o) -Dq,,?

i = l
f

(1) -  D@?) ls -  (2 ls)  *  max{r ;  :  i  = 1,  2,  . . . ,n}
i=1

f

(2) D{t '(r,  + i ln)L/i  t  i  * x;}
i=1

f f

(3) -Dr?l t  -  [D( ' i  + i ) )3/2
i= l  i= l

(4 )  ln ( ! i= , ( i *o i )  +  1 )  -  i  x ! l@ -  i  +L)
i =1

r ?
( 5 )  - e x p l D  l ? l i ' - i * a i ) 1 7 0 5 1  -  t  a ! l @ - i + r )

d= l  i= l

- r
( 6 )  { / ( D  i * c ; )  *  ( D  t t  + n - i )  -  D  r ? l t .

\ /  i= l  i= l  i= l

The algorithm coded iu PASCAL and ran on an IBM PC Intel Pentium MMX
166. We solved more than 100 randomly generated problems. The computa.
tional results on a number of these problems are reported in Table 1, where the
following notations a,re used:

n number of variables
p number of linea^r constraints
r * 1 rank of reverse convex constraint
It number of iterations
NOpt index of iteration in which the optimal solution is found
NCut number of cuts
NIm number of iterations in which the incumbent has improved
LP number of solved linea.r subproblems
IX maximal number of vertices at one iteration
ry total number of generated vertices
Time computational time (in seconds)
Type type of function h(c)
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n p r It NOpt NCut NImp LP IX ru Time Type

2848 704 5342 95.24 0
1040 25r 1739 136.38 5
508 242 992 24.44 0
273 120 428 15.00 0
84 31 78 14.22 0
343 118 rt26 56.41 1
1710 158 1036 46r.64 0
2489 364 1674 565.29 0
2897 642 5998 208.94 1
88 24 76 40.04 0
71 32 77 31.70 0
2 6 5 5 5 . 8 2 0
35 8 13 25.70 0
568 74 462 66.4i 0
5 4 7 7 6 . 8 6 0
91 34 1r2 28.01 0

2r2r 2L5 L454 231.78 1
36 t4  22  1 .97  0
61 12 26 58.38 0
68 21 78 59.10 0
80 28 73 3.19 0
3 6 8 8 4 . 0 1  0
72 30 118 42.08 1

303 58 146 43.94 1
65 2t 44 8.90 0
86 17 55 119.57 4
354 76 358 20.04 5
39 4 tr  96.23 2
2 8 4 4 8 6 . 8 4 3
74 2t 40 i2.90 6
3 1  4 7 1 3 6 . 9 2 2
2 5 4 4 8 6 . 6 2 3

496 58 153 22.90 1
1520 437 3975 104.19 1
265 86 274 38.39 0
205 21 63 108.20 4
36 t2 18 6.97 5
98 30 r02 70.58 5
110 36 722 8.19 0
62 2t 44 7.69 0
51 18 26 2.63 0

2 0  1 0 7 3 0  2 7  L 7  1 2
3 0 1 8 6 2 8  2 7  1 4  1 3
3 0 1 2 7 t 6  1 5  I  6
3 0 1 0 7 2 0  1 9  7  1 2
4 0 L 7  6  8  4  3  4
5 0 1 5 5 1 8  1 6  1 6  1
5 0 2 0  6 3 1  3 0  L 2  1 8
5 0 1 8 7 2 0  1 9  1 0  I
5 0 1 0 7 3 8  3 6  1 9  1 8
6 0 2 5  5 1 1  I  4  6
6 0 2 0  6 9  6  3  5
6 0 1 5 4 5  4  0  4
7 0 2 5 4 6  4  |  4
7 0  1 0 5 3 0  2 9  1 1  1 8
7 0  1 0 6  I  7  0  7
8 0 1 5 5 1 0  9  5  4
8 0 1 0 6 5 6  5 3  1 3  4 2
8 0  5 7  5  3  1  3
8 0 2 5 4 r r  7  3  7
9 0 2 5 4 L 2  I  5  6
9 0 5 6 7  3  3  3
9 0 8 7 4  3  0  3
9 0 2 0  4 8  7  6  1
9 0 1 0 6 1 2  1 0  4  7

1 0 0 9 6 7  4  2  4
1 1 0 2 5  4 1 3  7 2  4  8
1 2 0  5 5 2 0  1 9  8  1 1
1 2 0  3 5 2 1 2  1 1  2  I
r 2 0  3 5 3  6  5  0  5
1 2 0  1 0 6  9  7  2  6
1 3 0 3 5 2 9  8  1  7
1 3 0 3 5 3  6  5  0  5
1 3 0 4 6 1 6 7 4 4 1 1
1 3 0 5 6 2 6 1 4 2 0 5
1 3 0 8 7 1 5 1 4 6 8
1 4 0 1 5 4 2 1  2 0  4  t 6
1 4 0  1 0  5  6  4 '  7  4
1 4 0 2 0  5 1 1  1 0  5  5
1 4 0 5 5 r 2 1 1 5 6
1 4 0  8  6  7  5  2 '  4
L 4 0 3 7 7 5 1 5
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Exanp le  1 .  n=  10 ,  P=6,  r  =  3 ,  6  =0 '000010

2.3 -4.2 4.3 -0.2 -1.4 4.4 1.0
3 .0  -0 .3  0 .0  L .7  -2 .6  -1 .1  -2 .0
-0.4 -0.4 -0.6 -4.4 -0.6 1.5 L6
2.0  -1 .5  3 .3  2 .2  2 .7  -3 .5  4 .2
3.6 1.0 -3.1 0.5 3.6 2.4 -0.8
1 .0  1 .0  1 .0  1 .0  1 .0  1 .0  1 .0

b = (4.290,0.560, 0'800, 2'850, 3' 190, 500.000)'

c -  (72,-50,270,90,16, 129, -83,67, 159, 78),

h(r) = -8r? - l}xl - 24 - 76.4360r * 83.821c z * 5r.448rs + 15.000 < 0.

Computatioaal Result
Optimal solution:

r* - (0.685, 0.000, 0.000, 0.000, 0.315, 0.000, 1.456, 0.000, 0'000' 0.000)
Number of iterations: 7
Computational time: 0.44 sec.
Optimal value: -66.530648

Value of reverse function h(r.) - 0'000057
Optimal solution obtaiued at iteration: 4
Number of. LP : 27
Number of imProvements : 4
Number of cuts : 2
Maximal number of vertices : 6
Total number of generated vertices : 16

Example  2 .  n  =  10 ,  P=8,  r  =  4 ,  e=0.00001

A -

b - (1.890, -4.810, 0.440, 2.030, 2.640, -5.590, -4.850, 500.000),

s = (-47.0,184.0,82.0,74'0, 105.0, -3.0, -123'0, -105'0,56'0, 104.0)'

h(x) = -8.0cf - 7.0x1- 7.0a! - 3.0x2a * 63.190rr * 40.478x2.
*65.65313 * 31.306oa + 90000.000

Computational Result
Optimal solution:

s' = (95.237, 60.851, 0.0, 0'0, 0.0, 99.218, 222.329, 22.364,0.0' 0.0m)
Number of iterations: 17

3.5 3.2 -0.7
4.7 -4.6 2.5
-t.2 -2.8 -1.1
1.1 0.3 -2.3

-3.0 -3.2 -4.6
1.5 0.5 -4,9

-2.7 0.2 2.6
1.0 1.0 1.0

2.5
3.2
2.5

-1.9
3.8
-2.7
- J . I

1.0

0.9 -4.6 -0.6 -2.2 2.r -3.1
-2.8 -2.7 0.6 -t.7 -4.0 -2.7
-3.0 -2.r 2.3 -0.8 2.6 -2.0
-3.7 -2.3 0.1 3.8 4.6 1.1
-2.4 -0.4 2. r  0 .8 3.1 -1.9
0.0 1.0 -1.5 -2.8 -2.3 -0.4

-4.7 3.8 -4.6 4. r  -2 .3 0.8
1.0 1.0 1.0 1.0 1.0 1.0
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Computational time: 2.04 sec.
Optimal value -2327 1.932023
Value of reverse function h(a.) : -0.000011
Optimal solution obtained in iteration: 16
Number of LP: 107
Number of improvements: 10
Number of cuts: 6
Ma:<imal number of vertices: 24
Total number of generated vertices: 100
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