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Abstract. In this paper, we investigate eventual stability in terms of two measures of
nonlinear differential systems. We obtain some sufficient conditions by using Lyapunov
direct method and some comparison theorems. Some examples are also worked out.

1. Introduction

We have studied stability of the solutions of nonlinear differential systems, and
learned that Lyapunov stability, especially uniform stability and uniform asymp-
totic stability, plays an important role in a physical system. However, we some-
times only need to study the ultimate state of the solution. This kind of stability
is called eventual stability which we shall define in the next section.

There are several different concepts of stability studied in the literature, such
as eventual stability, partial stability, conditional stability, etc. To unify these
varieties of stability notions and to offer a general basis for investigation, it is
convenient to introduce stability in terms of two mearsures.

In this paper we will investigate eventually uniform stability and eventually
uniform asymptotical stability in terms of two measures. We will obtain some
sufficient conditions based on Lyapunov function. Furthermore, by using dif-
ferential inequalities, we will establish some comparison theorems. Our results
improve some of the earlier findings and may be suitable for many applications.
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2. Preliminaries

Consider the differential system
z' = f(t, ), z(to) = zo, (2.1)

where f € C[Ry x R",R"] .

Let us begin by defining the following classes of functions for future use.
K = {a € C[R+,R]: a(u) is strictly increasing and a(0) = 0},
= {mh €ORy x B Ry]:  inf  hit2) = 0}.

Definition 2.1. Let hg, h € T', then we say that hg is uniformly finer than h if
there ezist a § > 0 and a function ¢ € K such that

ho(t,z) < & implies h(t,z) < @(ho(t,z)).

Let hg, h € T". Now we can define the eventually uniform stability and

eventually uniform asymptotical stability. Let (t) = z(t, to, zo) be a solution of
(2.1).

Definition 2.2. The system (2.1) is said to be (ho, h)-eventually uniformly
stable if, for every e > 0, there exist two positive numbers § = 6( €) > 0,7 =
7(e) > 0, such that

h(t,z(t)) <€, t > to > 7, provided that ho(to,zo) < 4.

Definition 2.3. The system (2.1) is said to be (ho, h)-eventually quasi-uniformly
asymptotically stable if, for every € > 0, there exist positive numbers dg, 7o and
T = T(e), such that

h(t,z(t)) < e t > to+ T, to > 7o, provided that ho(to,zo) < bo.

Definition 2.4. The system (2.1) is said to be (ho, h)-eventually uniformly
asymptotically stable if Definitions 2.2 and 2.3 hold together.

We need the following known result for our discussion.

Lemma 2.1. [1] Let g € C[R+ X R, R] and r(t) = r(t,to,uo) be the mazimal
solution of
u' =g(t,u)  u(to) = uo, (2.2)

u
ezisting on J. Suppose m € C[Ry, Ry}, D¥m(t) < g(t,m(t)), t € J, where DT
18 Dins derivative. Then

m(to) < ulto) implies m(t) < r(t), t € J.
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Similarly, the set « = 0 with respect to the system (2.2) can be defined as
eventually uniformly stable and eventually uniformly asymptotically stable.

3. Main Results

In this section we shall state and prove our results. We define for any hg, h €
L, S(h,p) ={(@ ) hit,z) < p}, S¢(h,r) = {(t,z) : h(t,z) > r}.

Theorem 3.1. Assume that

(i) ho is uniformly finer than h;

(ii) there ezists a function V € C[S(h,p), Ry], V(t,x) is locally lipschitzian in
z, and

b(h(t,z)) < V(t,2) < alho(t,)) for (t,2) € S(h,p) () S°(ho,7) and t > 6(r),
where a, b € K and 6(r) is continuous and monotonic decreasing in r;
(iii) DTV (¢, z) < 0 for (t,z) € S(h,p) () S¢(ho,r) and t > 6(r).
Then the system (2.1) is (ho, h)-eventually uniformly stable.
Proof. From (i), there exist a 6* > 0 and a function ¢ € K, such that
h(t,z) < @(ho(t,z)), provided that ho(t,z) < 8*.
For every € € (0, p), choose § = §(e) such that 6 € (0,6*] and a(d) < b(e), p(d) <
e. Observe that if ho(to,Zo) < 8, then h(to, o) < @(ho(to, o)) < w(8) < €. Let
T = 7(€¢) = (8), and we can prove that

ho(to, zo) < 6 implies h(t, z(t)) <€, t > tg > 1.

If this is not true, then there exist some solution z(t) = z(t, to, zo) of (2.1) with
ho(to, o) < & and #;,1s, such that ¢, >t > to > 7,

hO(tl,x(tl)) = 6a h(t2,$(t2)) =6 and (t,.’L‘) € S(hae)ﬂsc(h’ﬂ)‘s)’ te {tlat2]-

From (ii) and (iii), we have

b(e) = b(h(tz, 2(t2))) < V(t2,(t2)) < V (b1, a(tr))
< a(ho(ts, a(t1))) = a(6) < be).

This absurdity shows that the system (2.1) is (hg, h)-eventually uniformly sta-
ble, which we are led to prove. m

Theorem 3.2. Assume (i) and (ii) of Theorem 3.1 hold and
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@iii) DtV (t,z) < —c(ho(t,z)) for (t,z) € S(h, p) " S¢(ho,r) and t > 8(r), where
ce K;

(iv) ho(t,z) is locally lipschitzian in x and there exists vy > 0, such that D_hy(t, z)
< 0 provided that ho(t,z) = 7.

Then the system (2.1) is (ho, h)-eventually uniformly asymptotically stable.

Proof. By Theorem 3.1, the system is (hg, h)-eventually uniformly stable. There-
fore, there exist a &y € (0,7) and 79 > 0, such that if ho(tg,z0) < &g, then
h(t,z(t)) < p, t > to > 0. Let € € (0, p), designate 6 = é(¢), T = 7(e) = 6(9),
and

ho(to, zo) < & implies h(t,z(t)) <€, t >to > 7.

Since ho(to, To) < 8o < 7y, we have ho(t, z(t)) < 7, t > to. In fact, if this is not
true, there exists a t; > tg, such that ho(t1,2(t1)) = v and ho(t,z(t)) < v, t €
[to,?1). Thus,

1
D_ho(t]_, I(tl)) = liminf

nf -——[ho(t, 2(t)) — ho(t1,2(t1))] 2 0.
ity b—1t
This contradicts (iv).

Choose T = T'(¢) = (a(y)+1)/c(6))+7. Then the system is (ho, h)-eventually
quasi-uniformly asymptotically stable with the choice of &y, 70, and T. To prove
the theorem, it is sufficient to show that there exists a t* € {tg + 7(¢), 8o + T'(€)],
such that ho(t*, z(t*)) < 4. If this is not true, then ho(t,z(t)) > 6, t € [to +
7(€), to + T'(€)].

From (ii) and (iii), we have

0 < Vito+T,a(to +T)) < V(to + 7, 0(to + 7)) — / o(ho(t, (1)) dt
to+T1
a(y) +1
< a(ho(to + 7,z(to + 7)) — c(O)(T — 1) < a(y) — c(é)—W < 0.
The contradiction leads to the conclusion. a

The concept of Lyapunov function together with the theory of differential
inequalities, provides a very general comparison principle under much less re-
strictive assumptions. If this sets up, Lyapunov function may be viewed as a
transformation which reduces the study of a given complicated differential sys-
tem to the study of relatively simpler scalar differential system.

Consider the differential system

z' = f(t,"r)v (E(to) = To (2.1)

and the scalar system

1

u = g(t,u), ul(to) =wuo>0. (2.2)
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Theorem 3.3. Assume that (i) and (ii) of Theorem 3.1 hold and there ezists a
function g € C[Ry. x Ry, R] such that

(iii) D*V (t,7) < 9(t, V(£,2)) for (t,5) € S(h,p) (1S(ho,7), ¢ > O(r).

Then the eventually uniform stability of the set u = 0 with respect to (2.2) implies
that the system (2.1) is (ho, h)-eventually uniformly stable.

Proof. From (i), there exist a §* > 0 and a function ¢ € K, such that
h(t,z) < @(ho(t,z)) provided that ho(t, z) < §*.

Since © = 0 is eventually uniformly stable, for every ¢ € (0, p), there exist two
numbers § = §(¢), T = 7(e), such that u(i,to,u0) < ble), t > to > T, provided
that uo < 8, where u(t, o, ug) is a solution of (2.2).

Choose § € (0,0*] such that a(d) < ¢ and ¢(d) < €. Let 7 = max{7,6(4)},
then hg(to, o) < & implies h(to, Zo) < @(ho(to, o)) < ¢(6) < €. The conclusion
of the theorem holds with the choice of §, 7. In fact, if this is not true, there
exist ty > t; > tg, such that

ho(t1,2(t1)) = 8, h(ts,z(t2)) =€, and (t,x) € S(h,p)[)S°(ho,8), t € [t1,t2].

From (iii), we get
V(t, z(t)) < r(t, t1,uo) fort € [t1,1s],
where r(t,t1,uo) is a maximal solution of (2.2) with the initial value ug at time
t; and ug = V(t1,2(t1)) < alho(t1,z(t1))) = a(d) < 6. Thus, we have
ble) = b(h(tz,.’l}(tz))) < V(te,z(t2)) < r(t2,t1,u0) < ble).

This is a contradiction. The proof is complete. ™

Remark. By Theorem 3.3, we have the following conclusion: g(t,u) = 0 is
admissible to yield that the system (2.1) is (hg, h)-eventually uniformly stable.

Theorem 3.4. Assume (i)—(iii) of Theorem 3.3 hold and

(iv) ho is locally lipschitziaﬁ in x and for every y > 0, there ezists a point (o, Zo),
such that ho(to, To) = v implies D_ho(to,z0) <0 .

Then the eventually uniform asymptotical stability of the set u = 0 with respect to

(2.2) implies that the system (2.1) is (ho, h)-eventually uniformly asmptotically

stable.

Proof. By Theorem 3.3, the system (2.1) is (ho, h)-eventually uniformly stable.
So for p > 0, there exist §; > 0, 71 > 0(d1), such that

if ho(to,.’ﬂo) < 61, then h(t,z(t)) <p,t>th>m1.
For every € € (0, p), there exist § = d(¢) > 0, 7 = 7(e) > 6(d), such that

if ho(to,mo) < &, then h(t,l‘(t)) <€ t2>2tg2>T. (*)
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?

Since 4 = 0 is eventually quasi-uniformly asymptotically stable, for ¢ € (0, p)
¢) for

there exist o > 0, 70 > 0 and T = T/(e), such that u(¢,to,uq) < b(
t>tg+ T, to > 10, provided that ug < dg.

Choose d; > 0, such that a(6s) < dg. Let § = = min{d,d2}, T = max{r, 1 },
T =T(e) = T +, then with the choice of §, 7, T the conclusion holds, namely,
h(t,z(t)) <e, fort > to + T, to > 7, provided that h(to, zo) < 3.

If this is not true, there exists t* > to + T, such that h(t*,z(t*)) = e
From (*), there exists ¢ > to + 7, such that ho(t,z(t)) > 6 for t € [,t*], thus
(t,z(t)) € S(h,p) () S¢(ho, ), t € [t,t*]. Similar to the proof in Theorem 3.2, we
can conclude that hq(t, z(t)) < 5 provided that ho(to, zo) < 8 for t > tg. From
(iii), we have

V(tat) <r(t,5,3), e[t 7],
where r(t,t,%) is a maximal solution of (2.2) with the intial value % at time £,
and T = V(%,z(f)) < a(ho(t, z(2))) < a(é) < do.

From (ii), we have

b(e) = b(h(t", z(t"))) < V (", z(t7)) < r(t*,2,7) < ble).

This is a contradiction. The proof is complete. =

Remark. If g(t,u) = —c(u), ¢ € K, then under the conditions of Theorem 3.4
the system (2.1) is (ho, h)-eventually uniformly asymptotically stable.

Theorem 3.5. Suppose that

(i) ho is uniformly finer than h;

(ii) there exists a function V € C[S(h,p), Ry), V(t,z) is lipschitzian in = for a
constant L > 0 and

b(h(t,z)) < V(t,2) < alho(t, @) for (t,z) € S(h,p) (") S°(ho,) and t > 8(r),

where a, b € K and 6(r) is continuous and monotonic decreasing in r for

0<r <p;
(iif) DV (t,2)|(2.1) < 0 for (t,z) € S(h,p) () S°(ho,7) and t > 6(r).
Then the perturbed system

t' = f(t,z) + R(t,z),  z(to) = o (3.1)

is (ho, h)-eventually uniformly stable, where R € C[S(h, p), R"], and for every
continuous function z(t) such that h(t,z(t)) < p* < p,t >0, fooo [|R(s, z(s))||ds <
0.

Proof. From (i), there exist a §* > 0 and a function ¢ € K, such that
h(t,z) < @(ho(t, z)) provided that ho(t, z) < §*.
For every € € (0, p*), we choose a § = §(e) > 0 such that ¢(6) < ¢ and 2a(9)

<

b(e). Let 71(e) = 6(d(¢)). Then since fooo [|R(s,z(s))|lds < oo for h(t,z(t)) <
p* < p, there exists a 75(€) > 0, such that if ¢y > 72(¢), then we have

a(d

[ IR, e las < 5

to
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Let 7 = 7(¢) = max{ri(€),72(€)}. Then the system (3.1) is (ho, h)-eventually
uniformly stable with the choice of § and 7. Observe that hg(tg,z9) < § implies
h(to, o) < @(ho(to, Zo)) < () < e. If this is not true, there exist t; > &; > i,
such that

ho(t1,z(t1)) =6,  h(t2,z(t2)) =€

and

(t,z) € S(h,e)[5°(ho,6), t € [t1, 2],

where z(t) = z(t, to, Zo) is a solution of (3.1). From (iii), we have D*V (¢, z)|(3.1) <
L||R(t,z)|| and consequently,

ta
V(tsr2(ta)) < V(i1 2(0)) + L / IR, z(t))]|dt.

Hence
b(e) = b(h(te, z(t2))) < V(t2,3(t2)) < V(t1,2(t)) + La—(LQ
< a(ho(ty, z(t1))) + a(8) < 2a(6).
This is a contradiction. The proof is complete. ™

4. Applications

Example 1. Consider the system

1
' =—y+(1—2a®—y*)zexp(t - 1_42;;),
_1’: —¥ (4.1)
¥ =z+ (1—2* -~y )yexp(t - ———=)
=g —y"
Let V(z,y) = (z? +y2 - 1)%,  ho(z,y) = h(z,y) = |2* + y* — 1|. Then
h*(z,y) < V(z,y) < hi(z,y) for (z,y) € R
and
D¥V(z,y)l(a.1) =4(z® +y* — 1)(za’ + yy')
=4 2 2 _ 1 2 b —
(@ +9* = D[ exp(t ~ ;7=
+ y2 exp(t — I_:z—-—yz)] (1 — 3;2 - y2)
=—4(z? +y* - 1)*(2® + y?) exp(t - )<0

-2 —y°
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for (¢,z,y) € R x R%. In paper [2], we can conclude that the system (4.1) is
(ho, h)-uniformly stable, but not (hg, h)-uniformly asymptotically stable. How-
ever, according to Theorem 3.2, the system (4.1) is (ho, h)-eventually uniformly
asymptotically stable. In fact, if ho(z,y) = h(z,y) = |1 ~ 22 —¢?| =1 — 22 — 2
for 0 <r <1-2z%-y?<2/3, then

1
Dho(z,y) = —2zz’' — 2yy' = —2(1 — 2 — y?)(2® + ¢?) exp(t — 1—2—) <0,

-z _.yz

1

1 — 22 _y2) < _4}7’3(1 i hO)

DtV (z,y) = —4(z* + y* — 1)%(2?® + y*) exp(t —
for0<r <1-22-y%<2/3, ¢t>6(r) >0, where §(r) = 1/r. Since V(z,y) and
ho(z,y) satisfy the conditions of Theorem 3.2, the system is (hg, h)-eventually
uniformly asymptotically stable.

On the other hand, if ho(z,y) = h(z,y) = |2 + y2 = 1| = 2% + y2 — 1 for
0<r<az?+y?-1<1,then

1

Dh0($,y) = 2(3.’1:1 -+ 2yyl = 2(1 = Zz — y2)(l'2 alx yz)exp(t = 1__:1:_2—_?

) <0,

DTV(z,y) = ~4(® +y* - 1)°(2” + y*) exp(t ~ ) < —4h3(1 + ho)

1-22 — ¢

forr <a2+y?-1<1, ¢t > 0(r) = 1/r. Since V(z,y) and ho(z,y) satisfy
the conditions of Theorem 3.2, then the system is (hg, h)-eventually uniformly
asymptotically stable.

Example 2. Consider the differential system

1 i 1 _ 2 - 2 e __t
iy gy Pinenl w
y=—z+(1-2°—y*)ysin“z
and the perturbed system
' =y + (1 - 2?2 — y?)zexp(—t) + Ri(t, z,v)
/ 2 2y, 2 (4.3)
y' = —z+(1-2° —y*)ysin®z + Ro(t, z,y),

where R]_(t,fl', y) = Rz(t,il?,y) = (1:2 + y2 =] 1)2texp(_t)'
Let V(z,y) = (22 + 4% —1)2, ho(z,y) = h(z,y) = |22 + 4> — 1|. Then we see
that
h*(z,y) < V(z,y) < hi(z,y) for (z,y) € R?,

D*V(z,y)|(a2) =2(2 +y* - 1)(222' + 2yy’)
=4(z® + y* — 1)(a® exp(—t) + y?sin’ z)(1 — 2% — ¢?)
= — 4(z® + y? — 1)*(z® exp(~t) + y®sin’ ) < 0
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and

[T IR s)lds = [ VAEHO +20) - Weexp(-at
0 0

where h(z(t), y(t)) = |z?(t) +y2(t) - 1| < p*. Hence, [;° ||R(s,z(s))||ds < co. By
Theorem 3.5, the perturbed system (4.3) is (ho, h)-eventually uniformly stable.
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