Vietnam Journal

of

MATHEMATICS

© Springer-Verlag 2000

Short Communication

A-Decomposability of the Dickson Algebra*

I till by the Stempor ningers nating on A (on k > 2

Nguyên Hưu Việt Hưng and Trân Ngọc Nam

Department of Mathematics, Vietnam National University 334 Nguyen Trai Street, Hanoi, Vietnam

Received September 16, 1999

1. Introduction

Let $P_k := \mathbf{F}_2[x_1, \dots, x_k]$ be the polynomial algebra over \mathbf{F}_2 in k variables, each of degree 1. The general linear group $GL_k := GL(k, \mathbf{F}_2)$ acts on P_k in the usual manner. Dickson proves in [1] that the ring of invariants, $D_k := (P_k)^{GL_k}$, is also a polynomial algebra $D_k \cong \mathbf{F}_2[Q_{k,k-1}, \dots, Q_{k,0}]$, where $Q_{k,s}$ denotes the Dickson invariant of degree $2^k - 2^s$. It can be defined by the inductive formula

$$Q_{k,s} = Q_{k-1,s-1}^2 + V_k \cdot Q_{k-1,s},$$

where, by convention, $Q_{k,k} = 1, Q_{k,s} = 0$ for s < 0 and

$$V_k = \prod_{\lambda_j \in \mathbf{F}_2} (\lambda_1 x_1 + \dots + \lambda_{k-1} x_{k-1} + x_k).$$

Let \mathcal{A} be the mod 2 Steenrod algebra. The usual action of \mathcal{A} on P_k commutes with that of GL_k . So D_k is an \mathcal{A} -module. One of the authors has been interested in the homomorphism

$$j_k: \mathbf{F}_2 \underset{A}{\otimes} (P_k)^{GL_k} \to (\mathbf{F}_2 \underset{A}{\otimes} P_k)^{GL_k},$$

which is induced by the identity map on P_k (see [3]). Observing that j_1 is an isomorphism and j_2 is a monomorphism, he sets up the following

Conjecture 1.1. [3] $j_k = 0$ in positive degrees for k > 2.

^{*}This paper is supported in part by the National Research Project, No.1.4.2. AMS 2000 Subject Classification: Primary 55S10, Secondary 55P47, 55Q45, 55T15.

Let D_k^+ and \mathcal{A}^+ denote, respectively, the submodules of D_k and \mathcal{A} consisting of all elements of positive degree. Then Conjecture 1.1 is equivalent to $D_k^+ \subset \mathcal{A}^+ \cdot P_k$ for k > 2 (see [3]). In other words, it predicts that every GL_k -invariant polynomial is hit by the Steenrod algebra acting on P_k for k > 2.

In [3], one of the authors proves the equivalence of Conjecture 1.1 and a weak algebraic version of the conjecture on spherical classes stating that: There are no spherical classes in Q_0S^0 except the elements of Hopf invariant one and those of Kervaire invariant one. He also gives two proofs of Conjecture 1.1 for the case of k=3. The fact that $j_k\neq 0$ for k=1 and 2 is, respectively, an exposition of the exsitence of Hopf invariant one and Kervaire invariant one classes. In this paper, we establish this conjecture for every k>2. We have

Main Theorem. $D_k^+ \subset \mathcal{A}^+ \cdot P_k$ for k > 2.

Recently, F. Peterson and R. Wood privately informed us that they had optained a proof of this theorem for k=4 and probably for k=5. The readers are referred to [5] and [6] for some problems, which are closely related to the Main Theorem. They are also referred to F. Peterson [7], R. Wood [11], W. Singer [9], S. Priddy [8] for other approaches to the hit problem from several classical ones in Homotopy theory.

This note contains three sections. Sec. 2 is a preparation on the action of the Steenrod squares on the Dickson algebra. In Sec. 3, we express an outline of the proof of the Main Theorem.

2. Preliminaries

The action of the Steenrod operations on D_k is explicitly described as follows.

Theorem 2.1. [2]

$$Sq^{i}(Q_{k,s}) = \left\{ egin{array}{ll} Q_{k,r} & \textit{for } i = 2^{s} - 2^{r}, \, r \leq s, \\ Q_{k,r}Q_{k,t} & \textit{for } i = 2^{k} - 2^{t} + 2^{s} - 2^{r}, \, r \leq s < t, \\ Q_{k,s}^{2} & \textit{for } i = 2^{k} - 2^{s}, \\ 0 & \textit{otherwise}. \end{array}
ight.$$

From now on, we denote $Q_{k,s}$ by Q_s for brevity.

Let $I_n \ (n \geq 0)$ be the right ideal of \mathcal{A} generated by the operations Sq^{2^i} for $i = 0, \ldots, n$.

Definition 2.2. Suppose $R_1, R_2 \in P_k$. Then we write $R_1 \equiv R_2 \pmod{I_n}$ if $R_1 + R_2$ belongs to $I_n \cdot P_k$. By convention, $R_1 \equiv R_2 \pmod{I_n}$ means $R_1 = R_2$ for n < 0.

This is an equivalence relation. We have

Lemma 2.3. Let k > 1 and suppose S is a non-empty subset of $\{0, \ldots, k-1\}$ such that $1 \notin S$. Then

 $QR^2 \equiv 0 \pmod{I_0},$

where $Q = \prod_{s \in S} Q_s$ and R is an arbitrary polynomial in P_k .

3. Outline of Proof of the Main Theorem

Let Q be a non-zero Dickson monomial. If $Q \neq 1$, it can be written as

$$Q = \prod_{0 \le i \le n} A_i^{2^i},$$

where n is some non-negative integer and A_i is some Dickson monomial dividing $\prod_{0 \le s \le k} Q_s$ for i = 0, ..., n with $A_n \ne 1$.

Indeed, suppose $Q = \prod_{0 \le s < k} Q_s^{\alpha_s}$. Since $Q \ne 1$, there exists at least one $\alpha_s \ne 0$. Consider the 2-adic expansions of all the non-zero α_s 's:

$$\alpha_s = \sum_{0 < i < n(s)} \alpha_{si} 2^i,$$

where $\alpha_{sn(s)} = 1$. Now denoting

$$egin{aligned} n &:= \max_{\substack{lpha_s
eq 0 \ 0 \leq s < 0}} n(s), \ lpha_{si} &:= 0 & ext{if } n(s) < i \leq n \ (0 \leq s < k), \end{aligned}$$
 $A_i &:= \prod_{\substack{0 \leq s < k}} Q_s^{lpha_{si}} \ (0 \leq i \leq n), \end{aligned}$

one can easily check that $Q=\prod_{0\leq i\leq n}A_i^{2^i}$ and each A_i divides $\prod_{0\leq s< k}Q_s$. Moreover, there exists an integer r such that $0\leq r< k$, $\alpha_r\neq 0$, and n=n(r). Then $A_n=\prod_{0\leq s< k}Q_s^{\alpha_{sn}}$ is divisible by $Q_r^{\alpha_{rn}}=Q_r^{\alpha_{rn}(r)}=Q_r$, so $A_n\neq 1$.

Definition 3.1.

- (i) We call n the height of Q. The monomial $A_i^{2^i} = A_i(Q)^{2^i}$ is called the i-th cut of Q. It is said to be full if A_i is divisible by $\prod_{0 < s < k} Q_s$. The monomial Q is called full if its cuts are all full.
- (ii) A Dickson monomial is called a based cut if it is the 0th cut of some $Q \neq 0$ and $\neq 1$.

The Main Theorem is proved by means of the following two lemmata.

Lemma 3.2. Let k > 2 and suppose R is an arbitrary polynomial in P_k .

- (a) If $Q = \prod_{0 \le i \le n} A_i^{2^i} \ne 1$ and it is not full, then $QR^{2^{n+1}} \in \mathcal{A}^+ \cdot P_k$.
- (b) If $Q = \prod_{0 \le i \le n} A_i^{2^i}$ is full, then $QSq^{2^{m+n+1}}(R^{2^{n+1}}) \in \mathcal{A}^+ \cdot P_k$ for $0 \le m < k-1$.

Lemma 3.3. Suppose k > 2. If A is a full based cut, then $A \equiv 0 \pmod{I_1}$.

Proof of the Main Theorem. Suppose $Q = \prod_{0 \le i \le n} A_i^{2^i}$ is a Dickson monomial with $A_n \neq 1$.

If Q is not full, then applying Lemma 3.2(a) with R = 1, one gets $Q \in \mathcal{A}^+ \cdot P_k$.

If Q is full and n = 0, then Q is the full based cut of itself. So using Lemma

3.3, one obtains $Q \equiv 0 \pmod{I_1}$. In particular, $Q \in \mathcal{A}^+ \cdot P_k$.

If Q is full and n > 0, then A_n is the full based cut of itself. By Lemma 3.3, one has $A_n = Sq^1(R_1) + Sq^2(R_2)$, with some $R_1, R_2 \in P_k$. Noting that $Q' = \prod_{0 \le i \le n} A_i^{2^i}$ is also full with the height n-1, one can apply Lemma 3.2(b) to it and get

$$Q'Sq^{2^{n}}(R_{1}^{2^{n}}) = \prod_{0 \leq i < n} A_{i}^{2^{i}} Sq^{2^{n}}(R_{1}^{2^{n}}) \in \mathcal{A}^{+} \cdot P_{k},$$

$$Q'Sq^{2^{n+1}}(R_{2}^{2^{n}}) = \prod_{0 \leq i < n} A_{i}^{2^{i}} Sq^{2^{n+1}}(R_{2}^{2^{n}}) \in \mathcal{A}^{+} \cdot P_{k}.$$

(It should be noted that 1 < k - 1.) Therefore,

$$Q = \prod_{0 \le i < n} A_i^{2^i} \cdot A_n^{2^n} = \prod_{0 \le i < n} A_i^{2^i} [Sq^{2^n}(R_1^{2^n}) + Sq^{2^{n+1}}(R_2^{2^n})] \in \mathcal{A}^+ \cdot P_k.$$

The proof is complete.

Outline of Proof of Lemma 3.2. The proof is divided into two steps.

Step 1: If Lemma 3.2(a) is true for every $n \leq N$, then so is Lemma 3.2(b) for every $n \leq N$.

Indeed, suppose $Q = \prod_{0 \le i \le n} A_i^{2^i}$ (with $n \le N$) is full and m satisfies $0 \le m < k-1$. One needs to prove $QSq^{2^{m+n+1}}(R^{2^{n+1}}) \in \mathcal{A}^+ \cdot P_k$, where $R \in P_k$. By the Cartan formula, one gets

$$QSq^{2^{m+n+1}}(R^{2^{n+1}}) \equiv \sum_{0 \le j \le 2^m} Sq^{2^{n+1}j}(Q)R_j^{2^{n+1}} \pmod{\mathcal{A}^+ \cdot P_k},$$

where $R_j := Sq^{2^m - j}(R)$ for $j = 1, ..., 2^m$.

Let $B = \prod_{0 \le i \le p} B_i^{2^i}$ be an arbitrary Dickson monomial of $Sq^{2^{n+1}j}(Q)$, with $B_i^{2^i}$ the ith cut of B. Note that $p \geq n$. If $\prod_{0 < i < n} B_i^{2^i} = 1$, then p > n, so we get $BR_j^{2^{n+1}}=(\prod_{0\leq i\leq p}B_i^{2^{i-1}}R_j^{2^n})^2\equiv 0\ (\mathrm{mod}\ I_0).$ If $\prod_{0\leq i\leq n}B_i^{2^i}\neq 1$, then it is not full. So we can choose an integer q such that $B_q\neq 1\ (0\leq q\leq n\leq N)$ and $\prod_{0 \le i \le q} B_i^{2^i}$ is not full. Applying Lemma 3.2(a) to $\prod_{0 \le i \le q} B_i^{2^i}$, we obtain

$$BR_j^{2^{n+1}} = \prod_{0 \le i \le q} B_i^{2^i} \left(\prod_{q < i \le p} B_i^{2^{i-q-1}} R_j^{2^{n-q}} \right)^{2^{q+1}} \in \mathcal{A}^+ \cdot P_k.$$

Therefore, Step 1 is shown.

Step 2: Lemma 3.2(a) holds for every non-negative integer n.

Let q = q(Q) be the smallest integer so that A_q is not full $(0 \le q \le n)$. Suppose s is the smallest integer with 0 < s < k such that $Q_s \nmid A_q$.

Using Step 1, we prove Lemma 3.2(a) by induction on n and for a fixed n by induction on s.

Outline of Proof of Lemma 3.3. Note that to prove Lemma 3.3, it suffices to show

$$Q_2Q_1 \equiv 0 \pmod{I_1}$$
.

Let $R_1 := \sum_{sym} x_1 x_2 x_3 x_4^8 \cdots x_k^{2^{k-1}}$, where \sum_{sym} denotes the sum of all symmetrized terms in x_1, \ldots, x_k . Using Theorem 2.2 of [4], one can show that

$$Q_2Q_1 \equiv [Sq^2(R_1)]^2 \pmod{I_1} \equiv 0 \pmod{I_1}.$$

Lemma 3.3 is proved.

The result of this note will be published in detail elsewhere.

References

- L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911) 75-98.
- Nguyên H. V. Hung, The action of the Steenrod squares on the modular invariants of linear groups, Proc. Amer. Math. Soc. 113 (1991) 1097-1104.
- Nguyên H. V. Hung, Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc. 349 (1997) 3893-3910.
- Nguyên H. V. Hung and F. P. Peterson, Spherical classes and the Dickson algebra, Math. Proc. Camb. Phil. Soc. 124 (1998) 253-264.
- Nguyên H. V. Hung, The weak conjecture on spherical classes, Math. Zeit. 231 (1999) 727-743.
- Nguyên H. V. Hung, Spherical classes and the Lambda algebra, Trans. Amer. Math. Soc., to appear.
- 7. F. P. Peterson, Generators of $H^*(\mathbf{RP}^{\infty} \wedge \mathbf{RP}^{\infty})$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc. 833-55-89, April 1987.
- S. Priddy, On characterizing summands in the classifying space of a group, I, Amer. Jour. Math. 112 (1990) 737-748.
- 9. W. M. Singer, The transfer in homological algebra, Math. Zeit. 202 (1989) 493-523.
- N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Ann. of Math. Studies, Vol. 50, Princeton University Press, 1962.
- R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Camb. Phil. Soc. 105 (1989) 307-309.