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1. Introduction

Let Pp::821a1,... ,rxf be the polynomial algebra over F2 in k variables, each
of degree 1. The general l inear group GLp:= GL(k,F2) acts on P7, in the usual
manner. Dickson proves in [1] that the ring of inva"riants, D6 :: (Pa)GLo, is
a lso a polynomial  a lgebra Dk =F2lQk, /c- l r . . . ,8r ,0] ,  where Qp,"  denotes the
Dickson invariant of degree 2k - 2' . It can be defined by the inductive formula

Q * , ,  =  Q ' r - r , r - ,  *  V * '  Q  n t , r ,

where, by convention, Qn,x = L,Q*,": 0 for s ( 0 and

vv -  
f l  { r t " t  + " '  + }r-rc*-r  a *r) '

A;  €F2

Let ",4 be the mod 2 Steenrod algebra. The usual action of .4 on Pft commutes
with that of GL*. So D;, is an .A-module. One of the authors has been interested
in the homomorphism

jn 'Fz 
2@x)GL^ 

+ (Fz 
2Pr)""u ,

which is induced by the identity map on P; (see [3]). Observing that j1 is an
isomorphism and j2 is a monomorphism, he sets up the following

Conjecture 1.1. [3] jn :0 in posit ' iue degrees for k > 2.
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Let DI and "4+ denote, respectively, the submodules of D1 and A con-
sisting of all elements of positive degree. Then Conjecture 1.1 is equivalent to
DI c A+ . Px for k > 2 (see [3]). In other words, it predicts that every G,Ls-
invariant polynomial is hit by the Steenrod algebra acting on Pr for k > 2.

In [3], one ofthe authors proves the equivalence of Conjecture 1.1 and a weak
algebraic version ofthe conjecture on spherical classes stating that: There are no
spherical classes in QsSo ercept the elements ol Hopf inuariant one and those of
Keruaire inuariant one. He also gives two proofs of Conjecture 1.1 for the case
of. k :3. The fact that jn I 0 for k:1 and 2 is, respectively, an exposition of
the exsitence of Hopf invariant one and Kervaire invariant one classes. In this
paper, we establish this conjecture for every ,b > 2. We have

Main Theorern. DI c A+ 'P1" for k > 2.

Recently, F. Peterson and R. Wood privately informed us that they had
optained a proof of this theorem for le = 4 and probably for fr = 5. The readers
are referred to [5] and [6] for some problems, which are closely related to the
Main Theorem. They are also referred to F. Peterson [7], R. Wood [11], W.
Singer [9], S. Priddy [8] for other approaches to the hit problem from several
classical ones in Homotopy theory.

This note contains three sections. Sec. 2 is a preparation on the action of
the Steenrod squares on the Dickson algebra. In Sec. 3, we express an outline of
the proof of the Main Theorem.

2. Preliminaries

The action of the Steenrod operations on D6 is explicitly described as follows.

Theorern 2.1. l2l

Sq"(Qn,")  :

Q n , ,  f o r i = 2 " - 2 ' , r 1 s ,

Q n , r Q n , t  l o r i : 2 k  - 2 t  + 2 "  - 2 r ,  r  1 s  1 t ,

Q'*," for i : 2k - 2" ,
0 otherwise.

Fbom now on, we denote Qx," by Q" f.or brevity.

Let In (r > 0) be the right ideal of ,4 generated by the operations Sq2" f.or
i : 0 , , . .  , n .

Deffnition 2.2. Suppose Rr,Rz Q. Pn. Then we write R1 = R2 (modl,) if
Rt * Rz belongs to In ' Px. By conuention, Rr : Rz (mod 1,) rneans Rt : Rz
f o r n < 0 .

This is an equivalence relation. We have



A-Decomposability of the Dickson Algebra 191

L e r n m a  2 . 3 .  L e t k > 7  a n d  s u p p o s e  S  i s  a n o n - e m p t y  s u b s e t o l  { 0 , . . . , k -  1 }
such that 7 / S. Then

QRz = 0 (modIs) ,

where Q: flse,e Q, and R is an arbitrary polgnomial in P1,.

3. Outline of Proof of the Main Theorem

Let Q be a non-zero Dickson monomial. If Q * 1, it can be written as

Q: II  A?"
Q1iln

where n is some non-negative integer and, Ai is some Dickson monomial dividing
f lo." .o Q" for i  = 0,. .  .  ,  n,  with A^ * L.

Tndeed, suppose I : flo.". rQ|'. Since Q f 1, there exists at least one
a" * 0. Consider the 2-adic eipansions of all the non-zero o"'s:

es :  t  e" i2i ,
0 ( i ( n ( s )

where o"r1r'1 : 1. Now denoting

n := ma;{  n(s) ,
d s T U

0 ( s ( 0

d s i  t : 0  i f  n ( s )  1 i  1  n  ( 0  <  s  <  k ) ,

Ai : :  I I  Og" '  (o  < i  <  n) ,
0(  s ( /c

one can easily check that Q : f lo<,<, A2u' and each A; divides flo.".*Q".
Moreover, there exists an integer r such that 0 1r 1k, a, 10, and n = n(r).
Then A, : f]o<"<r 83," is divisible bv Q7'" = Q7'^(") : Q,, so A, * L.

Definit ion 3.1.
(i) We call n the height of Q. The monomial A2n" = At(Q)'" i.s called the i-th

cut of Q. It is said to be full i f Aa is diuisible by flo.".r Q,. The rnonom,ial
Q i,s called full il its cuts are all full.

(1i) A Dickson monomial is called a based cut if it is the \th cut of some Q + 0
and I  I .

The Main Theorem is proved by means of the following two lemmata.

Lernma 3.2. Let k > 2 and suppose R is an arb'itrary polynomial ,in Pp.
(") If Q: f lo<r<, A?" + 1 and it is not full, then Qftz^+' € A+ . Pn.

( b )  4 Q :  f l o . n . , A l "  t s  f u l t ,  t h e n Q S q , ^ * ^ * ' ( R ^ * ' )  e  / +  . p p  f o r 0 1 m
< k - 1 .
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Lemma 3.3. Suppose k > 2. If A is a full based cut, then,  : 0 (mod[).

Proof of the Main Theorem. Suppose Q =lIo.o.nA2n" is a Dickson monomial

with A^ * L
If I is not full, then applying Lemma 3.2(a) with .R : 1, one gets

Q e A+ .Px.
If Q is full a^nd n = 0, then Q is the full based cut of itself. So using Lemma

3.3, one obtains Q =0 (mod.I1). In particular, Q e "4+ 
' Px.

If Q is full and n ) 0, then .4,, is the full based cut of itself. By Lemma
3.3, one has.4, = ^9q1(Rr) + Sq2(R2), with some Rr,Rz € P*. Noting that

Q' = lIo<t.n Al' is also full with the height n - 1, one can apply Lemma 3.2(b)
to it and get

Q,sq2^ (R?^ ) = II t7', 5n " @?" ) e /+ . Px,
O1i.1n

e,Sqr"*' (RZ" ) : n t?, sn "*, (nl" ) e "4+ . r1,.
01i1n

(It should be noted that 1 < k - 1.) Therefore,

A - II d?' . AT : II A!'1snz^ @?") + sq'^*' (R?")l € A+ . Px.
O(i(n.  O1i1n

The proof is complete.

Outline ol Proof of Lemma 3.2. The proof is divided into two steps.

Step 1: If Lemma 3.2(a) is true for every n ( N, then so is Lemma 3.2(b) for
every n I ly'.

Indeed, suppose Q = flo.,., Af' (with n < N) is full and rn satisfies 0 (

m < Ie -  1.  one needs to p QSq2^+^+11p2^+t) e A+.P1, where R e Pn.
By the Cartan formula, one gets

esqr^n'* '1nz'+1; 
-  

t  Sq'^* ' i (Q)R?"* '  (^odA+ .pn),
o<j<2*

where R7 := Sqz^ 
-i (R) for 7 : I,. . . ,2 .

Let B = flosn<o B!' be an arbitrary Dickson monomial of. Snz^+'rrO), with

Bln the ith cut oia. uotu that p ) n. If f lo.n., B\n :1, then p > n, so we

get BR?a"*':  (f lo<r<, B?'- 'R?" ) '= 0 (mod/s). I f  f lo.u., B?' + 1, then it  is
not full. So we can cEbose an integer q such that Bo l1 [0 S q 1 n 1N) and

flos,so Bl" isnot full. Applying Lemma 3.2(a) to flogn5n Bl",we obtain

BRl^*': 
o=T=o "?' ( rrn r"?'-"-' 

^?"-")'o*' , A* . ,o.
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Therefore, Step 1 is shown.

Step 2: Lemma 3.2(a) holds for every non-negative integer n.

Let q - q(Q) be the smallest integer so that An is not full (0 < S < n).
Suppose s is the smallest integer with 0 < s < k such that Q"l An.

Using Step 1, we prove Lemma 3.2(a) by induction on n and for a fixed n
by induction on s. I

Outline of Proof of Lemma 9.9. Note that to prove Lemma 3.3, it suffices to
show

QzQt  =  0  (mod11) .

Let ,Rr i: D"y*r1x2x3rf;...r"n*-', where D"r- dgnotes the sum of all sym-
metrized terms in rtt...tr1. Using Theorem 2.2 of l4l, one can show that

QzQt = lSq' (R ) l '  (mod/1)  = 0 (mod. I1) .

Lemma 3.3 is proved.

The result of this note will be published in detail elsewhere.
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