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1. Introduction

Let Py := Fa[z1,... , 2] be the polynomial algebra over F; in k variables, each
of degree 1. The general linear group GL;, := GL(k,F,) acts on Py in the usual
manner. Dickson proves in [1] that the ring of invariants, Dy := (P;)%%*, is

also a polynomial algebra Dy = Fa[Qk k—1,.-. ,Qk,0], where Qi s denotes the
Dickson invariant of degree 2¥ — 2%, It can be defined by the inductive formula

Qk,s = Qi——l,s-—l iy Vk ° Qk—l,s:

where, by convention, Qg =1,Q,, = 0 for s < 0 and

Vi = H ()\1:1:1 + o+ A1 Ty + .’Ek).
A; EF2

Let A be the mod 2 Steenrod algebra. The usual action of A on P, commutes
with that of GL;. So Dy, is an A-module. One of the authors has been interested
in the homomorphism

Ji : Fa % (P)Ctx = (P, % Gz,

which is induced by the identity map on Py (see [3]). Observing that j; is an
isomorphism and j» is a monomorphism, he sets up the following

Conjecture 1.1. [3] j; = 0 in positive degrees for k > 2.

* This paper is supported in part by the National Research Project, No.1.4.2.
AMS 2000 Subject Classification: Primary 55510, Secondary 55P47, 55Q45, 55T15.



190 Nguyén Huu Viét Hung and Trén Ngoc Nam

Let D: and AT denote, respectively, the submodules of D; and A con-
sisting of all elements of positive degree. Then Conjecture 1.1 is equivalent to
Dk+ C AT - Py for k > 2 (see [3]). In other words, it predicts that every GLj-
invariant polynomial is hit by the Steenrod algebra acting on Py for & > 2.

In [3], one of the authors proves the equivalence of Conjecture 1.1 and a weak
algebraic version of the conjecture on spherical classes stating that: There are no
spherical classes in QoS° ezcept the elements of Hopf invariant one and those of
Kervaire invariant one. He also gives two proofs of Conjecture 1.1 for the case
of k = 3. The fact that j; # 0 for k = 1 and 2 is, respectively, an exposition of
the exsitence of Hopf invariant one and Kervaire invariant one classes. In this
paper, we establish this conjecture for every & > 2. We have

Main Theorem. D,': C At - P for k> 2.

Recently, F. Peterson and R. Wood privately informed us that they had
optained a proof of this theorem for £ = 4 and probably for £ = 5. The readers
are referred to [5] and [6] for some problems, which are closely related to the
Main Theorem. They are also referred to F. Peterson [7], R. Wood [11], W.
Singer [9], S. Priddy (8] for other approaches to the hit problem from several
classical ones in Homotopy theory.

This note contains three sections. Sec. 2 is a preparation on the action of
the Steenrod squares on the Dickson algebra. In Sec. 3, we express an outline of
the proof of the Main Theorem.

2. Preliminaries
The action of the Steenrod operations on Dy, is explicitly described as follows.

Theorem 2.1. [2]

Qi r fori=2%-2"r <sg,
, QurQue fori=2F—20 42907, r<s<t
STk 5) = Rbs o it h ’
Qk,s fori=2F =29,
0 otherwise.

From now on, we denote Q) s by @, for brevity.

Let I, (n > 0) be the right ideal of A generated by the operations S¢?° for
1=0,...,n.

Definition 2.2. Suppose Ry,R; € P;. Then we write Ry = Ry (mod I,) if
R; + Ry belongs to I, - Py. By convention, R1 = R, (mod I,) means R; = R,
forn < 0.

This is an equivalence relation. We have
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Lemma 2.3. Let k > 1 and suppose S is a non-empty subset of {0,... ,k— 1}
such that 1 ¢ S. Then
QR? = 0 (mod Ip),

where @ = [[,c5 @s and R is an arbitrary polynomial in Py.

3. Outline of Proof of the Main Theorem

Let @ be a non-zero Dickson monomial. If @ # 1, it can be written as
Q= ][ 4%,
0<i<n

where n is some non-negative integer and A; is some Dickson monomial dividing
H0<s<st fori =0,...,n with A, # 1.

Indeed, suppose Q [lo<s<i @3- Since @ # 1, there exists at least one
as # 0. Consider the 2-adic expansions of all the non-zero a;’s:

Z asi2i7

0<i<n(s)
where o,,(;) = 1. Now denoting

n = max n(s),

a,#0

0<s<0
ag :=01ifn(s) <i<n (0 < s < k),
A= [[ @ (0<i<n),

0<s<k

one can easily check that Q = [[yc;<, A7 and each A; divides [Mo<cscr @s-
Moreover, there exists an integer r such that 0 < r < k, a, # 0, and n = n(r).
Then An = [[o<, < @3~ is divisible by Qo = Qa”“ V= Qr, 80 A, # 1.

Definition 3.1.

(i) We call n the height of Q. The monomial A? = A;(Q)? is called the i-th
cut of Q. It is said to be full if A; is divisible by HO<s<k Qs. The monomial
Q@ is called full if its cuts are all full.

(ii) A Dickson monomial is called a based cut if it is the Oth cut of some Q # 0
and # 1.

The Main Theorem is proved by means of the following two lemmata.

Lemma 3.2. Let k > 2 and suppose R is an arbitrary polynomial in P;,.
(a) IfQ = H0<1<n A% #£ 1 and it is not full, then QR € A* . P,.

(b) If Q = [ocicn A2 is full, then QS*" ™ (R*™™) € A*. P, for 0 < m
<k-1.
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Lemma 3.3. Suppose k > 2. If A is a full based cut, then A =0 (mod I,).

Proof of the Main Theorem. Suppose @ = [[p<;<n AZ is a Dickson monomial
with A4, # 1. o

If Q is not full, then applying Lemma 3.2(a) with R = 1, one gets
Qe At . P

If Q is full and n = 0, then @ is the full based cut of itself. So using Lemma
3.3, one obtains Q = 0 (mod I;). In particular, @ € A™ - P;.

If Q is full and n > 0, then A, is the full based cut of itself. By Lemma
3.3, one has A, = Sq¢'(R;) + S¢*>(Rz), with some R;,R; € P;. Noting that
Q' = [lo<icn A?' is also full with the height n — 1, one can apply Lemma 3.2(b)
to it and get

Q'S¢* (RY) = [] A¥Sq*(RY") € At Py,
0<i<n
Qs (B = J[ 47Se " (RY) € AT - P

0<i<n

(It should be noted that 1 < k — 1.) Therefore,

Q= [ 4% 47 = [ 4¥(5¢"(R")+ 8" (RY)] € A* - Py

0<i<n 0<i<n

The proof is complete. [ ]
Outline of Proof of Lemma 8.2. The proof is divided into two steps.

Step 1: If Lemma 3.2(a) is true for every n < N, then so is Lemma 3.2(b) for
everyn < N.
Indeed, suppose @ = [[o<;c,, A2 (with n < N) is full and m satisfies 0 <

m < k — 1. One needs to prove QSq®" """ (R*"™") € A* . P, where R € P,.
By the Cartan formula, one gets

QS¢™ (R = 30 S¢TTIQRTT (mod AT Py),
0gj<2™
where R; := qum‘j(R) forj=1,...,2%0
Let B H0<Z<p B? be an arbltrary Dickson monomial of S¢2"*"7(Q), with
B?' the ith cut of B. Note that p > n. If [o<i<n B =1, then p > n, so we

get BR"’"+1 (To<i<p B?7'R¥")? = 0 (mod Io). If [To<icn B? # 1, then it is
not full So we can choose an integer q such that B, # 1(0 < ¢ <n < N) and

[To<i<q B?' is not full. Applying Lemma 3.2(a) to [],<;<, B? | we obtain
29+1

BRJZ-"-H _ H B?( H Bizi—q—xR?n—q> c .A+'Pk-

0<i<q q<i<p
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Therefore, Step 1 is shown.

Step 2: Lemma 3.2(a) holds for every non-negative integer n.

Let ¢ = ¢(Q) be the smallest integer so that A, is not full (0 < ¢ < n).
Suppose s is the smallest integer with 0 < s < k such that Q, t A4,.

Using Step 1, we prove Lemma 3.2(a) by induction on n and for a fixed n
by induction on s. [ ]

Outline of Proof of Lemma 3.3. Note that to prove Lemma 3.3, it suffices to
show

QzQ]_ =0 (mod .[1)

Let Ry i= Y, T1T2T3Ts - --z%k_l, where 37 denotes the sum of all sym-

metrized terms in z1,..., 2. Using Theorem 2.2 of [4], one can show that
Q2Q1 = [S¢*(R1)]? (mod ;) = 0 (mod I).

Lemma 3.3 is proved. ™

The result of this note will be published in detail elsewhere.

References

1. L.E. Dickson, A fundamental system of invariants of the general modular linear
group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911)
75-98.

2. Nguyén H. V. Hung, The action of the Steenrod squares on the modular invariants
of linear groups, Proc. Amer. Math. Soc. 113 (1991) 1097-1104.

3. Nguyén H.V. Hung, Spherical classes and the algebraic transfer, Trans. Amer.
Math. Soc. 349 (1997) 3893-3910.

4. Nguyén H. V. Hung and F.P. Peterson, Spherical classes and the Dickson algebra,
Math. Proc. Camb. Phil. Soc. 124 (1998) 253-264.

5. Nguyén H.V. Hung, The weak conjecture on spherical classes, Math. Zeit. 231
(1999) 727-743.

6. Nguyén H.V. Hung, Spherical classes and the Lambda algebra, Trans. Amer.
Math. Soc., to appear.

7. F.P. Peterson, Generators of H*(RP* A RP*) as a module over the Steenrod
algebra, Abstracts Amer. Math. Soc. 833-55-89, April 1987.

8. S. Priddy, On characterizing summands in the classifying space of a group, I, Amer.
Jour. Math. 112 (1990) 737-748.

9. W. M. Singer, The transfer in homological algebra, Math. Zeit. 202 (1989) 493-
523.

10. N.E. Steenrod and D. B. A. Epstein, Cohomology Operations, Ann. of Math. Stud-
ies, Vol. 50, Princeton University Press, 1962.

11. R.M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture,
Math. Proc. Camb. Phil. Soc. 105 (1989) 307-309.



