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1. Introduction

This paper deals with the so-called linear regular multipoint boundary- value
problems (MPBVPs) for differential-algebraic equations (DAEs). It may be con-
sidered as a complement to works {1, 2}, indicating further advantages of regular
MPBVPs.

We begin by recalling some notations and concepts which will be frequently
used in this article.

Let us consider the following linear MPBVP:

Lz := A(t)z' + B(t)z = q(t); t € J :=[to, T, )]
i
roi= [ dn)e(t) =7, @)

where A,B € C(J,R"*™) are contiuouns matrix-valued functions with
detA(t) =0, Vt € J; n € BV(J,R"*") is a matrix-valued function of bounded
variations, and v € R™ and g € C := C(J, R") are given vector and vector-valued
function, respectively.

In the remainder of the paper we assume that the pair of matrices {4, B}
satisfies the transferability condition {4], i.e.,
(i) There exists a continuously differentiable projector-function @ €

C(J,R™*™), i.e., Q2(t) = Q(t) such that Im Q(¢) = Ker A(t) for all t € J.
(ii) The matrix G(t) := A(t) + B(t)Q(t) is non-singular for all ¢t € J.

Let P(t) := I — Q(t), where [ is the identity matrix, then P € C*(J, R"*")
and PQ=QP=0; P?=P.
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Since
A@t)z' = A() [P(t)z ()] — A()P'(t)=(t), (3)
we should restrict our consideration to the Banach space X :={z € C': Pz €
C'(J,R")}, endowed with the norm ||z]| := [|z]|oo + I[(Pz)'||oo, where |[z|loc =
max {||z(t)|| : ¢t € J} and ||. || denotes a certain norm in R™.
From now on, we use the expression Az’ as an abbreviation of the right-hand
side of (3).

Let Y (t) be the fundamental solution matrix of the following initial-value
problem (IVP): Y' = (P'P; — PG-'B)Y; Y(to) = I, where @, := QG~'B and
P, := I — Q, are canonical projections. It has been proved (4] that the matrix
X (t) := Py(t)Y (t) P(to), with columns belonging to X, satisfies the relations:

A@B)X' +B(@t)X =0; P(to)(X(to) —I) =0.

Moreover, Ker X (t)=Ker A(t) for every t € J.
Now, define the so-called shooting matrix D := [ tf dn(t)X (t) and a closed

subspace Im [ := {ftf dn(t)z(t) : =z € C} of R™

Definition 1. The triplet {A, B,n} is said to be regular if the shooting matriz
D satisfies the conditions:

Ker D = Ker A(tp); ImD =ImT. (4)

The regularity of {4, B,n} guarantees the well-posedness of MPBVP (1)-(2).
More precisely, what can be proved is the following:

Theorem 1. [1] The regularity of the triplet {A,B,n} is equivalent to the
unique solvability of MPBVP (1)~(2) in the space X forallge C andy € ImT.
Moreover, the solution of (1)—(2) depends continuously on the data {(g,7)-

From Theorem 1 and Banach’s fixed point principle, one can derive an exis-
tence theorem for perturbed system:

Lz = A(t)z' + B(t)z = q(t) +ef (2, 2, 1), (5)
i
Fph= /dn(t)x(t) = v+ eg(z). (6)

to

Theorem 2. Suppose that

(i) The triplet {A, B,n} is regular.

(i) f : R® x R* x J — R" is Lipschitz continuous in the first two variables,
€.,

1£(C,s,8) = FE, 501 < eallC = Cll + ealls = 31| ¥¢, 65,5, € R VE€ .
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(iil) Ker A(t) C Ker f((¢,s,t) V¢, € R™; Vt € J. Here, f is assumed to be con-
tinuously differentiable in the first variable and f; denotes the corresponding
partial derivative.

(iv) The nonlinear boundary operator g : C — ImI is Lipschitz continuous, i.e.,
llg(z) — gl < esllz — ylloo; Va,y € C.
Then for a sufficiently small € > 0, problem (5), (6) is uniquely solvable for
all g € C and y € ImI'. Moreover, the iterative process: A(t)z;  ; + B(t)zn41 =

q(t) + ef(zh, zn, t); ft:: dn(t)zn41(t) = v+ eg(zn) is convergent at a geometrical
rate.

Using Theorems 1 and 2, we can prove the regularity of some perturbed
systems.

Proposition 1. The regularity of the triplet {A, B,n} is stable under small
pertubation of B € C(J,R™*"), i.e., if {A, B,n} is regular, then, for any C €
C(J,R™*™) and for a sufficiently small € > 0, the triplet {A, B +€C,n} is also
regular.

Proposition 2. Suppose that {A, B,n} is a regular triplet. Then, for a suffi-
ciently small € > 0, the triplet {A +eBP,B +eBPP' ,n} is also regular.

We note that the pairs {A, B +¢C} and {A + ¢BP, B +¢BPP'} in Propo-
sitions 1 and 2, respectively, are transferable.

Proposition 3. Suppose that:
) {A, B,n} is a regular triplet.

(ii) The perturbed boundary operator T'¢( ft dne (t)z(t) with
ne € BV (J,R"*") satisfies two condztzons
(a) ImI'; C ImT.
(b) The total variation V,F (n — ne) is not greater than e.
Then, for a sufficiently small € > 0, the triplet {A, B,n.} is also regular.

From now on, let us consider a special MPBVP (1), (2 ) with n(t ft s)ds,

where C € C(J, R**"). Introducing a new variable y(¢ ft ds we
can reduce (1), (2) to a two-point BVP for an enlarged system

A(t)2' + B(t)z = q(t), (7)

Mz(to) + N2(T) =7, (8)

- AR 10 o = ) B 1 20PN 21 o QIR RS - A
whereA.-(0 I)’ B := (—C 0), M = (0 1), = (0 0),
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Obviously, boundary condition (8) can be rewritten as: I'z := ftf dnz(t) =5
with

-M t=t
HOW=: < 0 | B tolkesmea
NS = 3

ol

Defining the enlarged projections @ = (Q 0) :

W Tk, o e 0
0 0 - Q"(o I)and

taking into account the fact that G = A + BQ := (—gQ 3,) .G e

CcQG™!
ferable.

However, if Im T # R™, then the triplet {4, B, 7} is not regular with respect
to the space X = {z = (z,y)T € C : Pz,y € C'}.

Thus, it should be more rational to implement approximate methods directly
to regular MPBVPs than to enlarged two-point BVPs.

Let to < t; < -+- < t;n = T be a given partition of the interval J = [to, T.
Denote by X;i(t) the fundamental matrix satisfying relations A(t)X; + B(t)X; =
0, te [ti,ti+1]; Pi[Xi(ti) = I] == 0 e & 1), where P; := P(t;).

We are looking for a solution of (1), (2) of the form

—1 —
( & 3), we come to the conclusion that the pair {4, B} is also trans-

z(t) = z(t, so, 51, vy Sm—1) 1= zi(t) if t € [tivti-l—l], (z=0,..,m— 1),

where x;(t) is a solution of the IVP:

{ A(t)z} + B(t)zi = q(t), )

P;(z;(t:) — si) =0.

The shooting vectors s;(i = 0,...,m — 1) are defined from the matching condi-
tions:
Pi(z;—1(t;) —s;) =0 (10)

and the boundary condition (2):

ars fii tiy1
/C’(t)x(t)dtz > /C(t)zi(t)dtzy. (11)
to =0 4

According to [4], (¢, So, ..., Sm—1) is a solution of (1) and therefore, by virtue
of (11), it is also a (unique) solution of (1), (2).

Denote by Y;i(t) the fundamental matrix of the IVP: Y/ =
(P,Ps = PG_IB)Y;’; Y;(tz) =I; te [ti)ti+1] (Z =0,.,m— 1)

From (9), it follows that

mi(t) = Xi(t)si + fi(t) ; te [tiati-i-l] ('L =0,..,m— 1)7 (12)
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where
510 = X0 [ Y O +PE)6 (Da(r)dr + QG 0.

The matching condition (10) implies that
Py(Xi—1(ti)si—1 — si) = 1y, (13)

where r; = —P; fi_1(t;). Using (11), we have

m—1
> Cisi =7, (14)
1=0
where C; = [+ C(t)Xi(t)dt and § = v = Ti5" [ C(t) fi(t)dt. Let Qi :=
I-P,.

Theorem 3. Let {A,B,n} be a regular triplet. Then the shooting vectors
{s } ~! satisfying conditions (13), (14) and additional relations Qgs; =0 (i =

m 1) are uniquely determined. Moreover, the solution of MPBVP (1), (2)
is gwen by (12).

Finally, let us consider a MPBVP for a weakly non-linear DAE:

Lz := A(t)z' + B(t)z = q(t) + £ f(z, 1), (15)
T

Tz := [ C(t)z(t)dt = ~. (16)
/

Suppose that the triplet {A, B,n} is regular and the non-linear part f(z,t) is
Lipschitz continuous in z. From Theorem 2, it follows that for a sufficiently
small € > 0, MPBVP (15), (16) has a unique solution and the Picard method
applied to (15), (16) is convergent. However, avoiding the stiffness effect of the
left-hand side of (15), we should implement the multiple iteration method (see
[3]) for solving (15), (16).

Suppose that the (j—1)th iteration z7~!(t) has been found. Then the next
approximation z7(t) can be defined as

2 (t) = z1(t), t€ [tiytiy1] (6=0,...,m—1),

where z°(t) is a solution of linear MPBVP (1) (2) obtained by the above-
mentioned multishooting method, and A(t)(z]) + B(t)z] = q(t) + ef(z771,1);
P;(z(t;) — s7) = 0 (j > 1). The matching conditions give P; (x)_ 1(t-) s)) =
0. Further, from boundary condition (16) we get 2:"01 tt HLO@)2()dt = .
Thus, we define

2] (t) = Xa(t)s] + f1(£), t € [ti,tiqal, (17)
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() = Xi(t) / Y Hn)Po(r) (I + P'(1)GTH(7) [q(r) + ef (271, 7)]dr

+Q()GTH(t) [a(t) +ef (2771, 1)].

Putting
m—1 tit
i =Rl P =1- Y [ coima,

=0 {

we come to a system, similar to those of (13), (14):

3. Cisi =1y BXia(t)sly - Pisl=r] (i=1,.,m-1).

Adding to this system m relations Q:sl = 0 (¢ =0,..,m—1), we can define the
shooting vectors s] and then determine z}(t) (¢ =0,...,m — 1) by (17).

Theorem 4. Suppose that the triplet {A, B,n} is regular and f(z,t) is Lipschitz
continuous in z. Then, for a sufficiently small ¢ > 0, the multiple iteration
method is convergent at o geometrical rate.

Detailed proofs and numerical experiments will be given in a forthcoming
paper.
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