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Abstract. We construct explicit global non-smooth solutions for a class of infinitely
degenerate elliptic differential operators, for which the hypoellipticity failes at discrete
values of a complex parameter.

1. Introduction

It is well known that the operator
m
Xo+ Y X2, (1)
j=1

where Xo, X1,..., X are real vector fields in @ C R”, is hypoelliptic in Q if
Xo, X1,..., Xm and their repeated commutators of at most k times (k is some
positive integer) span the the tangent space T;({2) at any point z € Q (see [6]).
The simplest example of degenerate elliptic differential operators that satisfy the
above hypothesis may be the following operator in R?:
2 2
527 + alo) oz + e 0) g+ cle) o,

where a(z) = 22¥, and b(z,y), c(z,y) are real smooth functions in R2. However,
the situation changes drastically if b(z,y), c(z,y) are complex-valued functions.
Grushin [5] showed that the operator

i o 0° k-1 0

— — o pr T — C, k>

922 +z B2 u By uEe >1 (2)
is hypoelliptic if and only if u avoids some discrete set of C. Unlike operators of
principal type (see [2]), the hypoellipticity of operators with multiple character-
istics depends much on lower order terms, and the discrete phenomena like above
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are common for them. These phenomena were obtained in many works later.
Another generalization of Hérmander’s theorem is to investigate the hypoellip-
ticity of (1) when the “finite type” condition violates, starting from Fedii [3].
(Systematic study is then in [8,9, 10,12, 14, 16]; see also [11] for more complete
references). Finally, the discrete phenomena for infinitely degenerate elliptic op-
erators have been observed recently in [7,13]. The aim of this paper is to give
explicit global non-smooth solutions of the following homogeneous equation:
327.14(.’1/',:!/) —4 2ip—r2 62“(:373/)
G¢Y)\’U,(.'L',y) =——6'm7‘— +z e J=i —W
—4 ip— au(zv y)
e 2] ———=2 =)
(@)2 =

where (z,y) € R?,i = v/-1,-7/2 < ¢ < 7/2, and the function A(z) satisfies

A €C if >0,
A = =2 A\
(=) {,\_eCifx<o}

+1iA

g

We will construct the solution u(z,y) as a composition of powers of two complex
flows which annul each other at a discrete set of values of the parameter A. Such
a special kind of solutions was first obtained in [4] for the Kohn-Laplacian on
the Heisenberg group, and recently in [15] for Eq.(2). The operator G4 » was
treated in [7] when ¢ = 0 and Ay = A_ or A = —A_. For the general case we
refer to the paper [13]. The paper is organized as follows. In Sec. 2 we give some
definitions of notations used in the paper, and establish some auxiliary lemmas.
In Sec. 3, we state and prove the main results.

2. Auxiliary Lemmas

We will use the following notation

I'(z +m)
I'(z)

We denote by C' a general constant which may vary from place to place. For

two complex numbers 21,2 € C, we define z;? as e?2nz1 and if 2, = re*?, -7 <
¢ < 7, then Inz; = Inr + . Now let us recall the following lemma from [15].

(z,m)=z(z+1)---(2+m—-1) = for z€ C, meN.

Lemma 1. Assume that wi,w3 € C,Rews > —1. Then we have
279l (w3 + 1)
[(1 + 2a59)[(1 4 “afei)’

/ (sin @ + % cos9)“* sin“* 6 df = 3)
0

Corollary 1. Assume that wi,ws € C,Rews > —1. Then we have
/ In(sin 0)(sin @ + 7 cos §)*“* sin“® 8 df =
0

7 (2T(ws + 1) In2 + 20" (ws + 1) — D(ws + 1) (9 (1 + 23392) + ¢ (1 + 2apen)))
Qwa+1T(1 + ws;au)]:‘(]_ + u)342-w1)

)
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where 1 is the Psi function of Gauss ¥(z) = I'(z)/T(z).

Proof. Differentiating in ws both parts of (3) yields the desired result. W

Lemma 2. Assume that wi,ws € C,Rews > —1. Then we have

/ In(sin 0)(sin € + 7 cos §)“* sin“® 6 cos § df
0

= —(_W}T)E / (sin@ + i cos 0)“* sin“s*! 9 dh
w3 + 0
iwl
ws+1

+ / In(sin 6) (sin 8 + i cos ) sin“**" 9 df,
0

Proof. Two times differentiating by parts gives the desired result. =

Lemma 3. Assume that wy,ws,ws € C,Rew;,Rews > 0,Rews > —1. Then

/ (w1 5in @ + 4 cos 8)“* (w2 sin § — ¢ cos 0)“2 sin“® 8 df
0

w0 (ws + 1)Fy (1 4 ws, —wy, —wp, 1 + wa=tez | 4 water—wy Lowg 1-ug)

2w3[‘{1 afl w3+u:12;—wn )1—'(1 + wa—ué] -I_—m-:) '
(4)

where Fa(o, 3,8',7,7',z,y) ts the two-variable hypergeometric function of
Appel {1] defined as

(Ol, m + n)(ﬂa m)(ﬂ’?“) My
(v,m)(+',n)(1,m)(1,n) '

F2(a,ﬂ,ﬂla7’7l’zvy) == Z

Proof. Define the left side of (4) by F(wy,ws,ws, w1, ws). It is clear that F is an
analytic function of (w;,ws) when Rew;, Rews; > 0. We have

a771_'_7"};1(“-11 , W2, ws, W, ’LU2)
owl*owy

= (—1)’""‘"/ (—w1,m)(—wa,n)(w; sinf + i cos §)“1 ™
0

(wg sinf — 4 cos )2 " sin“2 T™ IR g 4

= (_"1)m+n(-w1’m)(_w2’ n)F(wl —m,ws —N,w3 +m+ n,ws, wz)'
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By using Lemma 1, we deduce that

am+nF(w1’ Wa,Wws, W1, ’LU2)
OwT* 0wy

(=1

(w11w2)=(1»1)
= (~w1,m)(—wz,n)F(w1 —m,ws —n,w3 +m+mn,1,1)

m
= (~w1, m)(~w2,n) / (sin @ + i cos§)** "™ (sin@ — i cos§)“> " sin“3 ™" g df
: 0

Il

/ (~wy, m)(—ws,n)(sin @ + i cos )1 ~mw2H " gins TN g dg
0

r2-(wstmtn) () m)(—wsy, n)[(ws + 1+ m +n)
T(1+n + @atea=w2)P(1 4+ m 4 La=giter)

Hence, the desired formula follows. m

Corollary 2. Under the assumptions of Lemma 3, if wy + w2 + w3 = —2, then
/ (wy sin 6 + i cos §)“* (w3 sin 6 — i cos 6)“2 sin** § df
0

. 27wz + 1)
5 (w1 + ws)@s 101 4 W)F“ + wa—ué,ﬂ),)-

Proof. By Lemma, 3, we have
/ (w; sin @ + i cos 0)“* (wy sin @ — 4 cos §)“2 sin*® § df
0

_ nl(ws + 1) B (1 + ws, w1, —wa, ~wi, —ws, i 1ows)

a 9usT(1 4 “akwizea)(] 4 wa—witug)

Now, using the following relation (see [1,p. 15])
F2(a7ﬂ,,61’ﬂvﬁlawvy) = (1 - = y)—a

we get the desired result. ]

Corollary 3. Under the assumptions of Corollary 2 but with Rewsz > —1 re-
placed by Rews > 0, we have

/ (wy sin 6 + i cos 8)“* (we sin 6 — i cos 6)“* sin“*~* § cos § df
0

i (w1 + wa ) (w1 ~ wz) + (w1 — wa)ws ) 7 (w3)
(w1 + wp)ws 1D (1 + wated=w2)P(] + La—widwa)’

Proof. Note that

/ (wy sin 6 + & cos §)“! (wa sin @ — i cos §)“2 sin“*~* f cos 0 d
0

Wa T : . ' ' . )
= — & 9w1+1 sinf ~ 9)v2 w3 10d9
i(w +'w2)/o (Bukilgi e Sl Tl S
wy i [ . ; : ~
N T oS, ¢ 9)“t (wy sinf — 9)¥2+! gin“s—1 g do.
i(wy +w2)/0 (w sin 6 + ¢ €08 6)*" (wy 8in 6 — 4 cos §)"2" " sin
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Applying Corollary 2 yields the desired result. -

3. Main Results

We try to find u(z,y) in the following form:

_ 14 TN

u(z,y) = Fya(z,9) ~ @ (e”"‘%f +iy) N (ei"’_ﬁ - iy)_ i,

which are € away from the origin. The following conditions guarantee that
Fya(z,y) € C™ (R?\(0,0))

Ay —A_=4k,k€Z and

1Ay Ay,
1 B S ek R
] (EW"F[ + iy) (e P=Tat — ay) o>,
.F,Jf,‘,\(m,y) = 144 o,

x (e“ﬁ'_ﬁ_l + iy)_T (em_ﬁl - -aly) Pz <0,
or \y —A_=4k+2,k€Z and

144 1—M
. 1 -t P ) -+
z (47T +4y) (™ -iy) T ,z20
F,‘-g,‘)(.’r, il’) = FA_ 1=X_

(eid’_ﬁf — iy) i , ¢ <0.

In future, we will consider only the above cases. Therefore, we can simplify our
writing as follows (in both cases):

P .
-z (e*d’ TeT +zy)

_ _1+.:\ . _i=Ay
x (e“‘s—ﬁ_l + a'y) ) (ew—ﬁ - iy) o, z>0,

(1) =g (ei"(’_ﬁT + iy)
Let us rewrite Ggx = XoX1 + 1 ((A+1)z™* - 2|z|7%) e¥-1/I21 /8y, where

X, = 0/0z—isign(z)z—2e~1/1°19/0y, Xo = 8/dz+isign(z)z~2ei~1/I=l §/8y.
Note that

Fya(z,y) =

(ew—l;_l — z'y) : , <0

X1 (ei‘p_l_iT + z'y) = 2sign(m)z“2ei¢_ﬁ,X1 (eid’_l_;'l - zy) =0,
X (eid’_&r + z'y) =0, X, (ew_]%f - iy) = 2sign(z)z 2™ T,

Therefore, we have G4, Fp,a(2,y) =0 in R?\(0,0). Since Fy »(z,y) € L} (R?)

(see the proof of Theorem 1), it follows from a theorem of Schwartz that Gy Fpa
is a finite sum of §-Dirac function and its derivatives.

Theorem 1. Assume that —7/2 < ¢ < 7w/2, Ay, A_ € C, Ay — A_ € 2Z. Then

mAy 96(z,y)

G¢,)\F¢,,\($, y) = T¢‘,\5(z,y) + 4 cos 2 a0 (5)
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where

1+Xx_ 1—-X_

142 1-2 2424 —A_ R R ot
—+ —5— A 7 A_ % |sing|do

Tor= [ 47,7 AZT sinbds+(-1)
0

-7

. ™ _iiii _S—A | .
+ et / In(sin6)A, ;> A_ 7 (" sinf — iXy cosB) df+
0

342 _ 3-Xx_

=i 0 %A 3-a
+(—1)£3;%'A_e’¢/ In|sind|A, ;> A_,°* (e*|sin 6] — iA_ cos) db,

-7

where we have used Ay 4 = *®|sin8| +icosf, A_ 4 = e|sin 6| — i cosé.

Proof. We begin by noting that if —7/2 < ¢ < 7/2 then (e~%/I#l 4 iy)* and

(eP#—1/1=l — iy)ﬂ € C>(R?\(0,0)) for every o and 8 in C. Let us introduce the

following “polar coordinate”:
sign(sin 6)

9, dzd dpdf
T=-—-———" y=pcosb,dzdy = y
In(p|sin6|) =K 4 | sin 8| (In p| sin6|)

;< l,—m<O<m.

Note that the map (z,y) + (p,0) is not a diffeomorphism along the line z = 0.
But it is good enough for us because in future we will use it only for inte-
gration, and if necessary we can take integrals as a limit. It is easy to verify
that p? = e~?/Iel 4 42, First we prove that Fy (z,y) € L},.(R?). Indeed, since

Fy\(z,y) € C=(R?\(0,0)) it suffices to prove that Fy (z,y) € L'(Bc), where
B. = {(z,y)|p(z,y) < €}, and ¢ is small enough. We have

s dpdf
/ |Fg,x(z,y)| dzdy < 2/ / —
27 -xJo p|sinf||Inp|sind||

e m/2
=8/ pt dp/ @ 3 :
0 o |Inp|sin6||"|sin6)

For a small fixed p let us make use of the following change of variables
& =In(sinf)/Inp. If p < e, we have

/”/2 dg v f“ d¢
o |np|sing||’|sing] (np)* Jo (1 e2mp)t/? |1 4¢3

1 de c
= (i p)’“’ﬁ (1—e26)"2 14+ ¢ ~ (np)*

Thus,
dp
p (In p)?

< Q.

/ |Fya(z,y)| dedy < C /
B, 0
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Note that Fya(z,y) ¢ L} (R?) for any p € (1,00]. Now, let R? = {(z,y) €
R?|p(z,y) > €}. By applying Green’s formula, we have

/ F(234)C g0 y) dody = / o(@,9)Gor f(@:9) dedy

R?

- / v(z, y){u1 afg];’ y) + vy g e T —-—-—af((;;’ y) +idwy x_4ei¢"71—if(z, y)}ds

/f x, y (%( ’y) B, z“‘ew_r’%ravf?zy)}ds

=/V(f,'u,¢,)\)dzdy— /U($7y)B1(f,¢,)\)d5+/f(xyy)Bz(U,@ds
2 p=€ p=€ (6)

for every v(z,y) € C°(R?), f(z,y) € C*(R?\(0,0)), where v = (11,v3) is the
unit outward normal to RZ. Replacing f(z,y) in (6) by Fy (z,y), we obtain
[ Forte:9)Go-v(a.v) dady
R?
= [V(Esro 0N dody = [ v(e,9)Ba(Fon 8,0 ds

R2 p=e

+ / Fix(2,y)Ba(v, ) ds. )
pP=E€
The first integral in the right side of (7) vanishes. We now compute the third
integral in the right side of (7). It is easy to check that

1/2
ds’{9 = ((ln ¢]sin8]) "* sin"2 4 cos? § + ¢ sin 0) dé
and
( ) sign(z)z—2e~?/I2| y
v=(v1,1n) = — : :
i (m—4e—4/|m[ + y2)1/2 (:L.—-4e—4/|.1:| + y2)1/2
Hence,

-1/2
(m“"e“‘/'x' + y2> ds‘ = i o
8B.  ¢|sinf| (Ing|sind)|)

It follows that
/ Fy x(z,y)B2(v,$) ds

<C [ |Foa@ul (bl + ba. a=2e40) s

p=¢
o / lA (1+/\)/2 |A (1-2) /2| ( —2p—2/[z| 4 1;'26_1/1‘”]|y|) ds
e|Ine|sinb| big| (z—%e~4/12l +y2)1/2

< |lne| / |A _(1+'\)/2'|A:f;_’\)/2| (Isiné| + |cosf])dd — 0 as & — 0.
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Next, we evaluate By (Fy x, ¢, A). We have

. MO YL rwee 2 g I =i
_ (e“P—]?r + iy) (ew—m - iy) X
x (z=4e=4/1e! +y2)_% (x—ze—%r (e2i¢—T5T +y2) S
+x——3€i¢—];—| (i)\y _ ei¢_|lT|) (e_l_wl' +y2)), z >0,
BI(F¢,/\,¢a )‘) =9 2424 —A i 342 . 1 -3z
e (o ) ¥ (o)
x (2 e4/12l 4 42) ;( g2 T (2i¢_%+y2)+

4‘$_3 ip— TT (sz __ez¢ rT) (6 ﬁﬁ +_y2)), T S O.

.

Therefore,

m
14hy 1=dyp

= /-u(:n,y)Bl(,m_,\,qa,,\)ds:[1;(5,9).4;7 AT sin0do

0

p=£
g = .

F (-1 _fv(s,E}A T AT,T |sind|dd
BEHig

1r 3+<\ ]
+/ v(e,0)e* In(esin§) A, A:__dﬁ (e'?sin® —idy cosf) df
0

b
AR LSy 0 ) T
-1)— = /v(e, 0)e'® In(e|sinb|)A, ;= A_,F (e'|sin6| —iX_ cosf) df

-7

+

Using the expansion of v(z,y) in Taylor’s series around (0, 0)

mav(O, 0) { y@v(O, 0)

Dot ie 2, .2
p By +0(z° +y°) as z°+y* =0,

v(z,y) = 0(0,0) +

we have

sign(sin §) dv(0,0)

In(e|sinf|) Oz O ((1/Ing)?) as &—0.

v(e, 8) = v(0,0) —



Non-Smooth Solutions for a Class of Infinitely Degenerate Differential Equations 167

Hence, we deduce that

[ 7Ek= fesaalw |
- /v(:z:,y)Bl(Fd,,)‘,(ﬁ, )ds = (/A+,¢2 s (¢'®sin@ — iy cos ) db
0

p=¢

+A 3-X

A7 ~ (¢*|sin6] — iA_ cos6) da) e*v(0,0)Ine

+(—1)m /A

1+1 A=A
(/A _,¢2 sinfdf + (—1 )2 /A

A
2

1+X 1-X_

:,¢2 | sin 8] d6

34A _3
+ et / In(sin6)A__ ¢§ Ay
0

© (€%sin6 — i\, cosf) db

PR 2 BhA_  8-a .
+(—1) e=¢/1n|51119|44+ o> A_,T (e"|sind| — i cos6) db |v(0,0)
3+A4 3—X ' i ey 38
(—euﬁ [A .—-.,—4)_ + (e“f’ sin@ — iy cosf) db + (_1)++wa
3+A a_ .
/ A _‘ = ( .“’ji sinf| —iA_ COSG) d0> %Ox’o)_

+0(1/lne) as £ = 0. 9)

By a theorem of Schwartz, without computation we can deduce that the coeffi-
cient of Ine on the right side of (9) is equal to zero. Alternatively we can see it

by using Corollary 2 and Corollary 3. Thus

3+A Ay
/A —,:.b_ (e"sinf — iy cosf) db

S+A 3-x_

AZ,T (e"|sin6] —ix_cosb) db

+(- 1)M/A

-

. 242 ~A_ A
= 2e~% ( cos T +(-1)7"=  cos o)
2 2
Therefore, we obtain

2 / v(z,y)B1(Fy,x, 4, 2) ds — T,xv(0,0) — 4 cos %i—‘avgl’ .

p=€
(10)

s € = 0.
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Now from (7), (8), and (10), we have

(GoaFon(z,9),v(z,9)) = (Fya(2,9), Gg,-av(z,y))
=51513) Fya(z,y)Gg,-2v(z,y)dzdy

p>e
= T} 4(0,0) — 4 cos %%‘;Q
Hence, Gy 2 Fy (2, y) = T 20(z,y) + 4cos(m); /2) 86(z,y)/0z. .

Now we would like to find the values Ay, A_ such that the right side of (5)
vanishes. It is obvious that the first necessary condition is cos(wA/2) = 0, or
in other words, Ay = 2k+ 1, A_ = 2I+ 1, where k,l € Z. We have the following:

Theorem 2. Assume that —m/2 < ¢ < m/2. Then Ty = 0 when Ay =
24+ 1,2 =21+ 1, or A = -2k —1,A_ = =2l — 1, where k and | are non-
negative integers.

Proof. Let us introduce the following function:

m
L(z,p) =/B;fj+“)/2 BZG™"72 sing do+

0
s

+ /ln(sin@)B;(,f"H‘)/2 B:f:'_“)/z (2%sin@ — izp cos ) db,
0

where we have used By , = zsinf +icos, B_ ; = zsinf — i cos§. We will need
the following

Lemma 4. Assume that Rez > 0. Then, for any integer k > 0, we have

L(z,2k+1) = (=1)*m;L(z,-2k - 1) = (—1)*n.

Proof. First using Lemma 1, Corollary 1 and Lemma 2, we obtain

L(1,p) = (% +2In2+T(1) — ¢ (§%ﬁ> — (3_7“» cos "'2—“

Therefore, we deduce that
L(1,2k + 1) = (=1)*m, if k> 0;L(1, -2k —1) = (=1)*x, if k> 0.

Since for any fixed u the function L(z,u) is analytic with respect to z, in the
half-plane Rez > 0, it is sufficient to prove that %‘Z’—“l = 0 for every
z=1
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positive integer n when p is an odd integer. By the Leibniz formula, for an

integer n > 1 we have
1+ 1-
-Sor((555m) ()

m=

x/B pn=2m g "+10d0+<3;” m> <—3;“,n—m)
0

= /ln(sin )B4 %™ (sin™*! 0 — ipusin™ 6 cos f) dO)

S (te-rt) (8m)

m=0

(-1)
dz™

X /ln(51n9)B+ﬁ+" Zm=1 (2sin™ 6 — ipsin™* @ cos ) df

0

n—2
=2
n(n —1) ZC'” 2(3—'i—p )( 2”,':1—':71-—2)

m=0

X /ln(sin 9)B_T_,‘?'l+"_2m_2 sin™~1 6 df.

After some computation, using Lemma 1, Corollary 1 and Lemma 2 we see that

COMLGEM) | gn(u) 4+ S5 (u) + SP(8) + SP() + S2 () + 57 (1) + S2(w),

dzm z=1
where
_ ['(n + 2) cos(mu/2) = ERX
ST (u) = ont+i mE: Q+p/2+ml[1-p)/2+n-—m]
n
S2(u) = T'(n) cos( 7r,u/2 Zn —n+2m YuCm,

2n=1(p + 1)(1 m=0

n-1
SE) = —fzfﬂ(%(fﬁu/%) S (u =+ 2m 4 UG,

m=0
Sp(n) = 222 (s 2/,12211;172 1;;? e Bip)) (Z (n+14+(n—2m—pu)cm™

m=0

—3—:2(2n+(n—2m—,u—1) )Cm1+(n—1)2")
m=0
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n

SP () = 2:1(2 fi()?i‘/_ziﬁ) ;(m +1)(n+ 1+ (0 —2m - ) O,
$506) =~ e 3 20n + (0= 2m = DT

I'(n + 1) cos(mp/2) y

S7(w) = -

27 (1 — p?)
x <m2:)(n+1+(n—2m—u)u)(¢(3%{+n—m) +1/)(3-+-Tu+m))0,’l"
. :g)z(zn + (n~2m-u-1)p) (w(l‘T“ tn—m)+ ¢(3—J2"ﬁ +m))om,
S an — 1) (2L (B2 4 m))om
+"§ (n— )(1/;( 5 +n—m)+¢ 2 +m||C, .

It is not difficult to show that
S3(1) + S8(1) = S3(-1) + SP(-1) = al'(n + 1),
S3(1) +SgQ) = SP(-1) + S§(~1) = =7l (n + 1),

Plad 1) = i
Tt sy =sp(-1) =~

m'(n+1
ST(1) = SP(-1) = _%—1—)’
S2(p) =0 for every odd integer p,

Sg (1) = SF(u) = S¢(p) = Sg (1) =0 for every odd integer u # £1,

_1\k k
(Unl{na: LGy for every integer k > 1,

ST(2k +1) =SP(-2k-1) =

gn+1
—1)kxl 1)Ck
S7(2k+1) =87 (~-2k-1) = _=D 7r2n(fl+ )Cn for every integer k > 1.

Therefore, we deduce that in—%é’—‘il |Z=1 = 0 for every positive integer n when
is an odd integer. [

(Continuing the proof of Theorem 2) Note that

. 2424 -2 0
Tya = L(e, M) + (<1) "5~ L(*,A_).

Therefore, applying Lemma 4 yields the desired result. m

Remark 1. Combining Theorems 1 and 2 gives all the values A, A_, where G »
is not hypoelliptic as stated in [13]. It seems that our non-smooth solutions can
be also obtained by a method in [13] with the cut-off function x_(¢) € C*(R)
replaced by the Heaviside function.

Remark 2. Since the coefficients of G4, belong to the Gevrey class G2(R?), it
makes sense to say about the s-Gevrey hypoellipticity of G4, for s > 2. From
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Theorems 1 and 2, we also see that Gy x is not s-Gevrey hypoelliptic (s > 2)
when \y =2k +1,A_ =2l+1,0r Ay = -2k —1,A_ = -2l -1, where k and [
are non-negative integers.
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