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Abstract. In this work we study a hyperbolic-parabolic equation involving a non-
linear boundary feedback (|y'|°+1)y’ and other non-linear boundary term |y|7y. For
p = 7 we prove the exponential and algebraic decay and for ¥ # p we obtain the
algebraic one.

1. Introduction

Let Q be a bounded domain of R* with C? boundary I'. Let I’y and I'; be
nonempty sets of I such that I' = I UT;, where ToNT; =0 (note that this
assumption excludes the simply connected regions). Let v be the unit normal
vector pointing toward the exterior of Q and let 3/0v be the normal derivative
in the direction v. We consider the following hyperbolic-parabolic problem:

K(z,t)@+ (z, t)(9 —Ay=0in Q =Q x (0,00)

ot? ot
y=0onX; =T x (0,00)
1.1
ay+.7:(:vty,a>=00n20=F0x(0,oo) (1.1)
19} 0
dy .
_.0 b
\y(x,O) y,at( z,0) =y inQ,
where = oy -
9y 4 9y
f(z’t’y’ at) 8t+| ul'y \ ot
Here

p,'ye(O 3 }1fn>3andp,'y>01fn—12. (1.2)
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In this paper we study solvability and decay rates of strong solutions to
problem (1.1) for the degenerate equation, that is, when K > 0.
Hyperbolic-parabolic equations are very interesting since they have several
applications in Mechanics. We can mention, for instance, the models of transonic
Karman equation
Yeyse — Ay =0

which describes a compressive gas flowing in a transonic region where the velocity
of the gas varies from subsonic values to supersonic ones. In the supersonic
region, where 1 > 0, this equation is hyperbolic-parabolic as in the present
case.

In recent years, important progress has been obtained in boundary stabiliza-
tion for distributed systems with non-linear feedback. Among the various works
in this direction we can mention the following ones: Cipolatti, Machtyngier, and
San Pedro Siqueira [3]; Lasiecka [8,9]; Favini, Horn, Lasiecka, and Tataru [5];
Lagnese and Leugering [6]; Lasiecka and Tataru [10]; Zuazua [12].

As far as we are concerned, semigroup theory is not suitable to prove the
existence of degenerate problems, that is why we use Galerkin procedure. But,
as we are looking for strong solutions, Galerkin method offers us some technical
difficulties which led us to transform the problem (1.1) into an equivalent one
with zero initial data.

Under adequate assumptions on the coefficients K(z,t) and o(z,t), when
p = 7 we obtain the exponential and algebraic decay and when p # v we obtain
the algebraic one. In both cases the derivative E'(t) of the energy

1 1 1
Et) = §/Q1r((:.:,t)|y'|2d:c+§/Q|Vg,,|2da:+ m/r |ly|Y+2dr (1.3)
o

is non-positive.

We use the perturbed energy method to obtain the above-mentioned decay
rates. Our paper is divided into five sections where in Sec. 2 we give notations
and state the principal results. In Sec. 3 we prove solvability of (1.1) while in
Sec. 4 we prove the decay rates of the solutions obtained in Sec. 3.

2. Notations and Main Results

In what follows we are going to consider

(u(t), v(t)) = /Q w(z, tyo(z, Bdz, [t = (u(t), u(t))

and
lulloo = esssupexollu(t)llze= (),

where u = u(zx, t).
In addition, if z,w € L?*(I'g) we are going to denote

I / 2 (el (.

JTg
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We define
V={ve H(Q);v =0o0n I}, (2.1)

which is a Hilbert space equipped with the topology induced by the inner product
(V.,V.).
Let p be a real number such that

p=max{2(2p+1),2(2y + 1)}. (2.2)
Since © has a smooth boundary I" we are able to construct a trace operator
o : HY(Q)NLP(Q) — LT (T) (2.3)
and, therefore, as we have 0 < (p+2)/2 < 2n/(n —2) , n > 3, we deduce

ol eg2 o < Cllulln o), Yu € H'(R) 1 2(). (24)

The construction of the above trace operator is given in the appendix of this
paper.

Remark 1. We recall the existence of the trace operator vo : H'(Q) — LI(I") for
1<q<(2n—2)/(n—2) if n > 3. Then, in order to obtain H' () < L2(r+1)(T)
(analogously H*!(€2) — L2P+1)(T')) we could consider v, p € (0,1/(n — 2)]. But
this assumption is more restrictive than those considered in (1.2).

In order to establish our results, we make the following assumptions:

(Al) Assumptions on the Coefficients
We consider

K,a € Wh*(0,00; L® (), (2.5)
and that there exists § > 0 satisfying
1
KZOinQ;a—§|Kt|26>0inQ. (2.6)

The assumption (2.6) is widely used in degenerate problems. We refer the
reader to the works of Lar’kin et al. {7] and Cavalcanti et al. [1, 2].

(A2) Assumptions on the Initial Data
The initial data y° and y! are chosen in V N H¥2(Q) N L?(Q) satisfying the
compatibility hypothesis

a(z,0)yt — Ay’ =0 in Q

0
— 0 o1 F
;.-;U 1 (2.7)
g .
o+ + 1"+ 1y =0 on To.

Remark 2. The assumptions (A2) are required to obtain an estimate to y”(0)
term and will be clear in Sec. 3. We also note that, for any fixed y! € V' N
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H3/2(Q) N LP(RY), the elliptic problem (2.7) possesses a unique solution y° €
V 0 LP(Q). Now, since 0y°/0v = —y! — ]yOP - ’yllpyle L3(Ty), it follows
that y° € H%2(Q).

Now, we are in a position to state our main result.

Theorem 2.1. Under the assumptions (A1)-(A2), problem (1.1) possesses a
unique strong solution y :  x (0,00) — R satisfying

y € L™(0,00; V) (2.8)
y € L= (0,00; V) (2.9)
VEKy' € L®(0,00; L*()) and ' € L*(0,00; L(£2)) (2.10)

Ky' +oy —Ay=0in Q

:
y(0) = 4%/ (0) =y' on Q

8.
;‘li + F(z,t,y,4') =0 on Ig

Moreover
(A) If A = p, there exist constants C >0 and 6 > 0 such that

E(t) < CE(0)exp(—6t), t =0, (2.11)
and also there exists a constant M > 0 such that
22

E(t) <2(Mt+ [E(Q)] %) 7, t>0. (2.12)
(B) If A # p, we obtain the decay rate given in (2.12).

3. Strong Solutions

In this section we are going to prove the existence and uniqueness of strong so-
lutions to problem (1.1). For this end we transform the boundary value problem
(1.1) into an equivalent one with zero initial data, using the change of variables

v(z,t) = y(z,t) — é(z, 1), (3.1)

where
o(z,t) = 1 (z) + ty' (z); (z,t) € Q x (0,T). (3.2)

Considering (3.1) and (3.2) we obtain the equivalent problem for v:

Kz, th" +a(z,t)v — Av=F in Q x (0,T)
v==0on I x(0,T)

: 3.3
%+f(m,ﬁ,-t:+¢wu’+df)ZG‘“‘ To.% (8,7) i

#(0) =2'(0) =0 in Q
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where
F=—a¢d + Ag, (3.4)
_ O
G = W (3.5)
and

Fla,t,o+ 9,0 +¢)=v +v+d["(v+8) + [V + ¢V +¢).  (36)
In the sequel we are able to prove that, for every T' > 0, 3C > 0 such that
[Av(®)|? + V' ()2 < C;Vt € (0,T). (3.7)

We observe that if (3.7) is obtained we get the same inequality for the solution
y provided that (3.1) and (3.2) hold. Therefore we can extend y to the whole
interval (0, 00) using standard arguments. Hence, it is sufficient to prove that
(3.3) has a solution in (0,7, which will be done by the Galerkin method.

We represent by (w, ),en a basis in VNLP(£) which is orthonormal in L?(£2),
by V,, the subspace of V generated by the m first vectors wy,...,wn, and we
define for each ¢ > 0

K.=K+¢ and ven(t) = ngim (t)wi,
i=1
where v, (t) is the solution to the following Cauchy problem:
(K (t)vem (8),w5) + (a(®)vem (8), w5) + (VUem (8), Vej) + (v (£), wj)r,
[ v + 007 (v + )+ 1l + SV (0 + ) gl
To
= (F(),w5) + (G, w)r0; 5= L0, %em(0) =0l (0) =0.  (3.8)
The approximate system (3.8) is a normal one of ordinary differential equa-
tions which has a solution in [0,%., ). The existence of a solution in the whole

interval (0,7 is a consequence of the first estimate.

A Priori Estimates

The First Estimate. Multiplying both sides of (3.8) by g.;,,(t) and summing
over 1 < j < n, we obtain

1d K,
s [ Katnast [ (Vs + [ (o= Byt P
+ / v, [2dT + / {[vem + @7 (Vem + @) + [Vl + &P (Ve + ¢')}0L,, dT
ro I-‘0

= (F(0), vl () + (G, vem )y = (G (1), v () (39)
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Analysis of I} = fl"o {lvem + B (Vem + @) + Ve + ¢'1P (v, + ¢')}0L,, dT
We have

i =/1~ {lvem + &7 (Vem + @) + [l + &' (Ve + &) H Ve + ¢)dD

i {lvem + ¢" (Vem + @) + [ + &I (Ve + @) }¢'dD (3.10)

and therefore, from (3.9), (3.10), and (2.6), we get

2
2 v+2
3o { [ Kottt [ 9ven P+ 2 [ o+ gpri2ar

+6/Q |V, [P +/F0 |V, [2dT + /F [V, + @'|PF2dD
< (F(t), v (1) + %(G(t),vam (t))ry — (G'(2); Vem (t))r,

[Vem + @7 (Vem + ¢)¢'dl’
To

+ / [l + &Py + @) dT (3.11)
To

Analysis of I = fl‘o [vem + @7 (Vem + @)@’ dD’ and I3 = fFo vl + &'1°
(Ve + ') @' dT.

Using the Young inequality and since (y+ 1)/(v+2) + 1/(y+2) = 1, we
have

Jg £ kl/ [Vem + @|7T2dT + k2/ |¢' |7 +2dr. (3.12)
ro 1-‘0

Now observing that (p+1)/(p+2)+1/(p+2) = 1, we obtain for an arbitrary
n>0

h<n [ Plardpawscon [ gpta @)
To T'o
Also, for an arbitrary n > 0, it follows that

(F(t), v (£)) < Coa(MIF )P + nlvLm (). (3.14)

Thus, from (3.11)—(3.14), we deduce that

2
T+2

+(5-n) /ﬂ ot [P + / |v;m|2dr+(1—n) /F v, + ¢/[P+2dD
< GOIFOF + £ (G(E), vem )y + Ct| Vot (1)

tky | vem + GT2AT + Ky / |/ [7+2dT + Cy () / |/ P2
Fo FO FO
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Integrating the above inequality over [0,t], ¢ € (0,t.,) and noting that
Vem (0) = 0], (0) =0, we get

5 [VEm OF + [93em O + =25 e () + 601, |
+(6-m) / oL (5)[2ls
[ W aiegdo+ (=) [ ok 6) + 9572 0,
< Cs+Caln) /0 |F(s)[2ds + (G(£), vem (), + Ci / (Ve (5) s
#h1 [ oo () + 8Ost [ 8Os
+Ci() / (IO [asepme: (3.15)
We observe that for an arbitrary 1 > 0

(G(t), vem ()1, < Co(MIGE) +n0|Voem (8)I. (3.16)

From (3.15), (3.16), choosing n > 0 small enough and employing Gronwall’s
lemma, we obtain the first estimate

[VE@ om0 + [Toem @] + [0em (&) + 6O T 12,

i t
+/0 |’Uém(3)‘2d3+/o l“;m(s)’iz(r.,)ds

t
+/0 ot () + 8 (5) 252y d5 < ©, (3.17)

where C is a positive constant which is independent of ¢ > 0, m € N and
te[0,T].

The Second Estimate. First of all we are going to estlmate v (0) in L2()

norm. Taking t = 0 in (3.8) and noting that ¢(0) = 1°, ¢'(0) = ¥*, ., (0)
V. (0) = 0, we have

(KOl @) + [ (19 + Py Yayar
= (F(0),w;) + (G(0),wj)ry, 3=1,...,m. (3.18)
On the other hand, from (2.7), (3.4), (3.5) and (3.18) we obtain

(K. (0)v!,,(0),w;) =0 forall j=1,...,m and forall e > 0. (3.19)
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Multiplying both sides of (3.19) by gj.,, (0) and adding over 1 < j < m, we
have

|v/E-(0)v", (0)| =0 for all ¢ >0 and m € N. (3.20)

Now, taking the derivative of (3.8) with respect to t and observing that
@"(t) = 0, we conclude that

(R ()0l (8),7) + (K ()0 (8 07) + (B (8, 5)
+ (a(t)v({:’m (t)a w]') + (V'U::m ), ij)
+ (U (0,000 + (14 1) [ Toam + 81 (sl + oyl

+(p+1/ [VL + @' [P UL w;dD

= (Fl( )’ ]) (G,( )"""J)To' (3-21)

Multiplying (3.21) by g7}, (t) and summing over 0 < j < m, from (3.5) it
follows that

2 / Zd
de {/Kh} |da:+/|VvEm| z‘}

+ [ (@t Gl P (0u(t)n (2 i ()
+ [ Wm0 (o 2) [ oo 490 (6 40l
T'o

p+1/ [0y + /1P [0 T

= (F'(t), vl (t)) — E(%y;,vém(t))u(ro). (3.22)

Analysis of Iy = (v + 1) [i, [vem + 6|7 (Ve + ¢ )0l dT.

First we observe that (v., + ¢) € L®P+2/2(Ty) and therefore (vem + ¢)7
€ L?(+1/7(Iy). From the continuity of the trace operator given in (2.3) we
conclude that

H('Uem t) + o(t) H _S“r_+il( ) < Ciljvem () + ¢(t)”’;p_?(ro)
< Co|Vem (t) + Vo (2)|". (3.23)

On the other hand, if we define ¢3 = 2(y + 1)/, then 1/q1 + 1/q2 = 1/2 if
and only if g2 = 2(y + 1). Then, from this equality, (2.2) and (2.4) we deduce
[Vem () + & Ol o2 () = [10Em ) + & Ol 26011y
< Ol () + SO 2,
< G|V, (1) + V' (2)]. (3.24)
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Thus, from (3.23), (3.24) and using the generalized Holder inequality we
obtain

1] < C3|Vvem (t) + VO |V (8) + V' ()] [V (B)lz2(ro)-

From the above inequality, (3.17) and for an arbitrary 1 > 0 it follows that

1] < Ky (1 + Vg 0D 10Em (D22 (ro)
2
<k ("7) + k2 (77)|V112m (t)lz + Tl'”élm (t)|L2(1‘0)- (325)

Combining (2.6), (3.22), and (3.25), we conclude that

2 2 (VRO OF + 190 0P } + 810l OF + (1 =)oty O 0,

< ko) + RV OF + (0 im0 = (sl ®) e,
+ lltlloo [Vem (8)]10Em () (3.26)
We also have for an arbitrary n > 0
(F' (), vim (1)) < ka()IF' () + vl (1) (3.27)
and
lletelloo [0Em ()1 10Fm (8)] < Ra(mlattlloo [Vem ()12 + mlvgr, ()12 (3.28)

Integrating (3.26) over [0,¢] it results from (3.20), (3.27) and (3.28) that
VRl O + 19 OF + 6= 20) [ Pl ()P
1_77)/ [vim 5)|L2(r0
< T +kala) [ 190n(@Pds + ko) [ (0P

+ ksl | (P + |( ot 0), | (3.29)

Finally, from the inequality

(% 0 IE

choosing n > 0 sufficiently small, we obtain from (3.29) and employing Gron-
wall’s lemma the second estimate

t
VRO () + Vel (1) + /[v |2ds+/0|v’ ) apnyds < C,

(3.30)

ay

! 2
ooy | Ve O] < K () + 0 Vel (O,
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where C is a positive constant which is independent of ¢ > 0, m € N, and
t€[0,tem].

Due to estimates (3.17) and (3.30) we can extract a subsequence (v,,) of
(vem ) such that

Ve, — Ve weak star in L*(0,T;V), (3.31)
v, — v, weak star in L% (0,T;V), (3.32)
\/Evé'u — /K. weak star in L®(0,T; L*(2)), (3.33)
v, — v/ weak in L*(0,T; L*(Q2)), (3.34)
Ve — v weak star in L (0,T; L7+*(Ty)), (3.35)
v}, — vl weak in LP*%(0, T; L***(Iy)), (3.36)
v}, — v, weak in L*(0,T; L*(I'o)), (3.37)
vll, — vl weak in L*(0, T; L*(T'0)). (3.38)

The convergences (3.31), (3.32), (3.33) and (3.37) are sufficient to pass to
the limit in the linear terms of the approximate equation given in (3.8).

Analysis of the Nonlinear Terms

From (3.17) and taking into account the continuity of the trace operator vy :
H'(Q) — HY/2(T") we have that

(ve,) is bounded in L%(0, T; H/%(Ty)), (3.39)

(v.,) is bounded in L?(0,T; L*(Ty)). (3.40)

From (3.39), (3.40), taking into consideration that the immersion H/2(I") —
L?(T') is continuous and compact and using Aubin—Lions theorem, we can extract
a subsequence, still represented by (v, ), such that

Veu — Ve strong in L*(0,T; L*(To))
and therefore,
Vey — Ve a.e. on Y. (3.41)

Using analogous arguments, from (3.30) we obtain a subsequence (v;,) such
that

ve, — U a.e. on Yg. (3.42)
Consequently, from (3.41) and (3.42), we get

[Vep " vep — |ve|"ve and |vg,|Pvr, — |uclPul ae. on X. (3.43)

On the other hand, by the first and second estimates, one has

(|vep|"ve,) is bounded in L*(Xo) (3.44)
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(Jvi,[Pv,) is bounded in L2(%). (3.45)
Thus, combining (3.43), (3.44), and (3.45), we obtain
Ve Y Ve — [ve|Yve weak in L?(Zo)
WL, 1PvL, — [vt|Pu. weak in L? ().

The above convergences are sufficient to pass to the limit in the non-linear
terms of (3.8).

Uniqueness. Suppose y and § are solutions to problem (1.1). Then z = y — §
satisfies

(K02 (2),w) + (@) (), 0) + (V2(2), Vo) + ( (0, w)r,
+ [ iy - lgrywar + [ ey ~19pgywar
To e

< C(’Y)/r (Iyl” +181")12l IZ'IdF+C(p)/ (Iy'lP +19'17)]' a0 (3.46)

Tq
(for all w € V N L ().
Using the same arguments considered in the above estimates and Gronwall’s
lemma we obtain from (3.46) that |Vz| = |2’| = 0. This completes the proof of
the first part of Theorem 2.1. n

4. Asymptotic Behavior

The derivative of the energy defined in (1.3) is

Bt = [ (ae,t) - gKu(o)W/fde— [ Wpriar— [ jyPar. 41)
Q Ty T'o
Let A be a positive constant such that
[v]2 < \Vv|?; Yo e V. (4.2)
We are going to divide our proof into two cases.

A. Exponential Decay
For an arbitrary € > 0, we define the perturbed energy
E.(t) = E(t) + ed(2), (43)

where

P(t) = /n K(z,t)y ydz. (4.4)

Proposition 4.1. There exists C; > 0 such that



248 M. M. Cavalcanti, V. N. Domingos Cavalcanti, and J. S. Prates Filho

|E.(t) — E(t)| < eC1E(t),Vt > 0,Ve > 0. (4.5)
Proof. From (4.4) we obtain

B0 < DKL @ IVEY (0] < SI Ko O + 5 VEY (.

From the above inequality and (4.2) we have
[b(®)] < (1Ko X + 1 E(E)- (4.6)
If we define C; = ([|K|oo A + 1), then from (4.3) and (4.6), we get
|Ee(t) — E(t)] = ely(t)| < eCLE(?)

which concludes the proof. (]

Proposition 4.2. Suppose that p = . Then there exist Co > 0 and &7 > 0
such that
E.(t) < —eCyE(t),Vt > 0 and Ve € (0,¢1].

Proof. Differentiating (4.4) and replacing Ky" by —ay’ + Ay in the obtained
expression, we get

Y (t) = / Ki(z,t)y'ydz ~ / a(z, t)y' ydz
/Ayydm+/ K(z,t)|y'|2dz. (4.7

By the generalized Green formula and taking into account that dy/0v =
—( +y"y + [¥'|°y’) on Zo, it comes that

/ Ayydz = —/ |Vy|2dx — / W'y + |y|""% + [/ |Py'y)dT. (4.8)
Q Q

Ty

Substituting (4.8) in (4.7), adding the term — [, K|y/|*dz on both sides of
the equality (4.7) and defining L = min{2,~ + 2}, we obtain

P (t) < — LE(t) + 2/Q K(z, )|y |*de + /Q Ki(z,t)y ydz

—/ a(fv,t)y’ydz—/ Iy’l"y’ydl“—/ y'ydl. (4.9)
9] Ty To

Now we are going to analyse the term I = fro |¥'{Py'ydl. From Young's
inequality, we have for an arbitrary n > 0

I <o) [ [1P+2ar +n / jy[P*2d. (4.10)
Fo FD

From (2.6), (4.1), (4.3) (4.9), and (4.10), we obtain
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EL(t) = E'(t) +e¢'(t)
<6 [ WPdo— [ Wprtar- [ WPar- Lesq)
Q Ty Ta
+ 26/ K(z,t)|y |*dz + 5/ Ki(z,t)y'ydz — 5/ a(z, t)y ydz
Q Q Q
—-e/ y'de+501(n)/ |y'|”+2dF+617/ |y|P*2dT. (4.11)
Te Ty To
Let us consider p > 0 such that
/ [u|?dl" < u/ |Vu|®dz, Yu € V. (4.12)
Fo Q

Then, from (4.11), (4.12) and making use of Schwarz inequality, we get for an
arbitrary n > 0

El(t) < / (6 — My ()l P ~ /F (1= 6, (n))|y/|P+2dT
- /F (1 — Ba ()l PdL — eBA)L — 11 Kslloo A + lalloo A + 20]

+en | lylP*2dr, (4.13)
o

where
Mi(n) = 2| K loo + || KtllooO2(n) + [lal|oo 83 ().

Since v = p, from (4.13), we obtain

BL <~ [ 6y Fds — [ (1= es(nlype2ar
= /r (1 - by (m))ly/ P — eE(t)(L — nMy),

where
= (1Ktlloo + llelloo )X + 21 + (v + 2).

Choosing 1 > 0 small enough in order to obtain Cy = L —nMs; > 0, it comes
from the last inequality that

El(t) < / (6 — My () o/ Pz — /P (1= £y (n)) [y "+ 2dT
_/F (1 — e84 ()| PdT — eCLE(2).

For the chosen n we define 1 = min{6/M;,1/6,,1/6,} . Thus, if € € (0,¢,]
from the above inequality we conclude that there exists Co > 0 which verifies

E.(t) < —CLE(t). (4.14)
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The proof of Proposition 4.2 is complete. "
Defining .
€9 = min{ia, 51},
for all £ € (0,£¢] we obtain from Proposition 4.1
(1-Ci1e)E(t) S E(t) (1 +Cie)E(t), Vt 20 (4.15)
and consequently,

%E(t) <E.(t) < gE(t) < 2E(t), V¢ > 0. (4.16)

From the above inequality, we get
—2602E(t) < —ECgEe(t), (4.17)

where C; > 0 is the constant obtained in Proposition 4.2. Hence, from (4.17)
and Proposition 4.2, we obtain

€
E|(1) S ~SO:EL(0)
that is, d
5
o (EE (t) exp {§Czt}) <0.
Integrating the above inequality over [0, t], we get
£
E.(t) < E:(0) exp{ - Eczt}. (4.18)
Combining (4.16) and (4.18) we conclude the exponential decay, that is,
€
a n
E(t) < 3exp{ 2Cgt}E(O).

B. Algebraic Decay

Let us define
¥(t) = [BOP [ Ko,y yde. (419)
Q
Taking the derivative of 1 with respect to t, we obtain
=9
w0 =L[B0) T B | Kyyis
Q

+ [E(t)] £ / (Ki'y + Ky'y + K|y |?)dz. (4.20)
Q
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Substituting Ky" = —ay’ + Ay in (4.20) and taking into account that
/ Ayydz = —/ [Vyl*dz —/ (la"y +1y'1Py +3/)ydr,
Q Q To
we have

W) = S1E0] T B O [ Kyyis

+ [E(®)] {/ Ky ydm+/ K|y |2d:v—/ oy'ydz
- [19sPdz= [ yyar= [ wretar- [ ey},
0 To To To (4.21)

On the other hand, using Schwarz’s inequality, considering (4.2) and observ-
ing that E'(t) < 0, it follows that

|| Ko'vis| < IKILNT2E@) < IKIL N EQ).

Then we infer

where C = HKHZ2/\1/2.
Defining C; = C£[E(0)] %, from the above inequality, we conclude

2 [) T B ) /Q Ky'yde < ~CLE'(2). (4.22)
From (4.21) and (4.22) it results that
Y(t)<-CLE )+ {/ Ky yd:v-+-/ K|y |*dz
/ oy'ydz —/ |Vy|2dz - / 9y ydl’
/ ly|"**dT - / ly' Py’ de} (4.23)

Considering that (p +1)/(p+2) + 1/(p+2) = 1 and that (2.4) holds from
Hélder and Young inequalities, we obtain, for an arbitrary 5 > 0,

N
[ wevvar| < ([ wessan)# yolzsee,
[ 0
<G [ prar) S vyl
To

< Cs(n) /r W/ PH2dT + Con[Vy ()P, (4.24)



252 M. M. Cavalcanti, V. N. Domingos Cavalcanti, and J. S. Prates Filho
Thus, combining (4.23) and (4.24), we have

@b’(t) S—C’lEl(t)+ [E(t)]”/2{/QKty'yd:r-i-/QKlyl|2dx

—/ ay’ydm—/ ij|2da:—/ y'de—/ |y|“’+2dI‘}
o 9 To To

+ GBI [ 1yt + CanB@) vy
o (4.25)

Applying Hoélder’s inequality, we get from (4.2), (4.12), and (4.25), for an
arbitrary n > 0

W) < - CE'(t) + [E(t)]”“{nan [ Wias
) AN /n Iy Pz + laflos Cs () /Q ' Pdz

+Ce(n)/ ly’lzdF+2n/\/ |Vy|*dz
T'o Q

+nu/ IVy|2dw—/ IVyl"’dw—/ |y["*2dT

O 1] To

+Ca(n)/ Iy’|”+2dl“+Czn|Vy(t)|”+2}. (4.26)
To

In addition, we have that
+2 2
VyO[52, < PREOPPVYOP < PPEOPR VYO gy (427)

Combining (4.26) and (4.27), we conclude that
W) < - GE)+ [BO Mi(n) [ Pz + (@) 00y [ vy
~ (B [ 1VuPdz—E@p/? [ tar

+ (B Csto) [ P+ Co(n) [E0)° [ wear,
o o (4.28)

where
Mi(n) = |Klo + Ca(mIIKtlloo + Cs(m)|eloo s

My =27+ 2124 [E(0)F/? + .
Choosing n = 1/2M> from (4.28) it results that

W (t) < — CLE(t) + My [E(®)]°/? /ﬂ ' Pdz
- 3B [ [vupdz~ [(B@]" [ r+tar

+ (B0 [ Wrtar+ GlE@]" [y far. .
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However, taking into account (2.7), (4.1) and considering
C7 = max{§~' My, C3, Cs }[E(0))"/2,

we obtain from (4.29)

Y'(t) < —(C1 +Cr)E'(t) - %[E(t)]p/z/g |Vy|2dz — [E(t)]p“/r ly|"+2dT.

(4.30)
Defining the perturbed energy
E (t) = [1 +eCs]E(t) + v(¢), (4.31)
where Cg = C; + Cy, we have from (4.2) and (4.19)
|Ee(t) — E(t)] < eCgE(t) + e|v(t)]
< &(Cs + [EO)]"*|| K| 2 AV2) E@). (4.32)

Considering C! = Cs +[E(0)]?/2|| K||X*A1/2 and ¢ < (2C})~1, from (4.32) we

have
%E(t) < E.(t) < 2E(t)

and therefore,

| i o

pt2
25

20] " < [E.0)]

+ 2

< 2% [B(t)] T Vi > 0,Ve € (0,(2C))"".

(4.33)
On the other hand, from (4.30) and (4.31), it follows that
B0 < B'() - 5 (B [ 1VoPdo—elB@P? [ rtar. (430
Q Ty

Now, from (1.2), we infer
-3 | 1vePds = 5 [ Kl Pdo+ — [ wirar - B
2 Q 2 Q ’ v+ 2 To
and consequently, from (2.5), (4.1), and (4.34), we have
BL(0) <=8 [ 1/ ds — elEOP B + SE@P? | KlyPas
o Q

£ p/2 Y+24T — p/2 7+2
G O [ lir+ear — B [ par.

+

Since v > 0, the above inequality becomes
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E(t) < - 5/ iy |2dz — [E@)]"2 E(t)
2]
E 2
+S[BO) 1K [ s

B=s / Iy [2de — e[E®)]* 2 B()
Q

& !
+S[EO) (Kl +1) [ 1Pz, (4.35)
: : 26 y—1
Choosing ¢ < g = min p/z,(2C’1) , we conclude
' (1Kl +1)[E(0)]

from (4.33) and (4.35) that

Eé(t) < __E__[E'E(t)] (P+2)/2’

= T o(p+2)/2
that is,
(-p-2)/2 £
EL(t)[E:(2)] S~ (4.36)
But since d
—~p/2 -p-2)/2
S E0) " =SB B ),
it results from (4.36) that
d -p/2 p
E[EE(t)] 2 2[p+4'jj2 '
Integrating the above inequality, it follows that
~p/2 -p/2 £p
[E.0)] """ 2 [E.(0)] 7" + ST b (4.37)

Finally, from (4.37), we obtain

_ € =2/p
E.(t) < {[EE(O)] o4 2(p+’[:)/2 t}

- -p/2 4 ~2/p
< {2 12 [E(0)] 7 + 5GroTz t}

<2{2- gt + (O]}

which concludes the algebraic decay and consequently the proof of Theorem 2.1.
[

5. Appendix

Lemma. There exists a continuous linear map
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1 22 200 1
Yo : H ()N LP(Q) — L7 (') such that yop = ¢|r, Vo € C*(Q).

Proof. 1t is sufficient to prove the above lemma when Q = R} = {(2',7,), 2’ €
R""! and z, € R.}, since by local chart we have the same result when ) has
smooth boundary.

Indeed, first of all we are going to prove that

/o2y 112/p+2 n
lell, ez -y < CllelZoiey Il i ar ) Voo € CRCR). (5.1)

For this end, let G(t) = |t|P/?t and consider ¢ €C3(R"). We have
* 9
0 a.’L'n

e i / / _8£ !
£ /O G (o', 2)) e (/0

G(p(2',0)) = — Glo(2',x,))dz,

and therefore,

e p+2 % s 0 .
(=, 0)] T = |Glp(a,0)| < © / Itp(:r",:::,,)F’“i,_.—@(:r’.:z:“)|d..r,4.

2 J0O ‘-)-Tn.
Hence,
ez / j ex2 ., p42 f /2] O
( o = ' ,0) ? de’ < —— 11 L dax
Hyg”f.-%im"-'] Jan-t |L'Q( )| 2 &o #l 8

2) 1/2

L}
O0x;

Vol e
p+2</
< = lolP d >
2 \Um =1 /ry
which proves (5.1).

Observing that p/(p + 2) + 2/(p + 2) = 1 we obtain from Young’s inequality
that

2/p+2

i el (rry < CU@llLr (ry) + ol az))-

[l 252 sy < Collel2rrin

Considering the above inequality we obtain by a density argument the desired
result which is proved by marking use of a density argument. n

Remark. Note that in our manuscript we consider the Laplace operator but
without loss of generality we can consider the elliptic one given by
n
0 0
Alt) = — — | @iz, t) =—
==Y 5 (sletizs )

i,5=1

1Here C? (ﬁ) means {Lp|ﬁ, e C&(R")}
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where

n

a;; = aj; and Jag > 0 such that Z aij(z,t)&€ > apl€|?, for all ¢ € R™ > 0.

i,j=1

This conclusion comes from the fact that if we define

= ou Ov

a(t,u,v) = “Z_I aij(z,t)gz—ia—mjdz, for all u,v € V,
provided that the functions a;;(z,t) satisfy some appropriate hypotheses, we
have
ao|Vul? < a(t,u,u) < a1|Vul?, for allu € V.
References
1. M.M. Cavalcanti, V.N. Domingos Cavalcanti, J.S. Prates Filho, and J. A. Sori-

(4]

10.

11.

12.

ano, Existence and uniform decay of a generalized and degenerate Klein-Gordon
system with boundary damping, Comm. in Appl. Analysis (to appear).

M. M. Cavalcanti, V.N. Domingos Cavalcanti, J.S. Prates Filho, and J. A. Sori-
ano, Existence and uniform decay of solutions of a degenerate equation with non-
linear boundary damping and boundary memory source term, Nonlinear Analysis
T. M. A. 38(3) (1999) 281-294.

R. Cipolatti, E. Machtyngier, and E. San Pedro Siqueira, Nonlinear boundary
feedback stabilization for Schrodinger equations, Differential and Integral Equa-
tions 9 (1) (1996) 137-148.

F. Conrad and M. Pierre, Stabilization de problémes d’évolution du second ordre
par des feedbacks non linéaires et non bornés, C. R. Acad. Paris 315 (1) (1992)
125-130.

. A. Favini, M. A. Horn, 1. Lasiecka, and D. Tataru, Global existence and regular-

ity of solutions to a Von Kdrmdn system with nonlinear boundary dissipation,
Differential and Integral Equations 9 (2) (1996) 267-269.

. J.E. Lagnese and G. Leugering, Uniform stabilization of nonlinear beam by non-

linear boundary feedback, J. Differential Equations 91 (1991) 355-388.

N.A. Lar’kin, V. A. Novikov, and N.Y. Yakenko, Towards a theory of variable-
type nonlinear equations, in: Numerical Methods in Fluid Dynamics, Yakenko and
Shokin (eds.), MIR Publishers, Moscow, 1984, pp. 315-335.

I. Lasiecka, Stabilization of hyperbolic and parabolic systems with nonlinearly
perturbed boundary conditions, J. Differential Equations 1 (1988) 53-87.

I. Lasiecka, Stabilization of wave equation and plate-like equations with nonlinear
dissipation on the boundary, J. Differential Equations 79 (1989) 340-381.

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave
equations with nonlinear boundary damping, Differential and Integral Equations
6 (3) (1993) 507-533.

B. Rao, Stabilization of Kirchoff plate equation in star-shaped domain by nonlin-
ear boundary feedback, Nonlinear Analysis T. M. A. 20 (6) (1993) 605-626.

E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary
feedback, SIAM J. on Control and Optimization 28 (1990) 466-478.



