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Abstract. This paper deals with matrix transformations of generalized Dirichlet series
with complex frequencies that define holomorphic functions in a bounded p-convex

domain of C.

1. Introduction

The matrix transformation is one of the methods for summing series and se-
quences using an infinite matrix. Matrix transformations of power series of one
complex variable has been studied previously by several authors. Most papers
dealt with Norlund matrices, i.e., triangular matrices of a special form (see, e.g.,

[7,8]). For the general case of matrices there seem to be very few articles. In [1],
Borwein and Jakimovski considered matrix transformations of power series in
the complex plane C and obtained some results on this direction. Later, L6 Hai
Kh6i [4, 5] considered cases of the class of multiple Dirichlet series with complex
frequencies that define entire functions on C" as well as holomorphic functions
in bounded convex domains of C".

Based on the ideas in [4], in our previous paper [10], we considered matrix
transformations of generalized entire Dirichler series with complex frequencies
in C.

In this paper, following the methods of [5], we consider matrix transforma-
tions of generalized Dirichlet series with complex frequencies that define holo-
morphic functions in a bounded pconvex domain of C.

In Sec.2 we recall some notions and, by the same method as in [6], prove
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some auxiliary lemrnas which will be used in the sequel. In Sec. 3 we consider
matrix transformations.

2. Generalized Holornorphic Dirichlet Series in a Bounded pConvex
Domain

First we recall some notions.
Let 0 ( p < +oo. We suppose that the reader already knows the notions

of pconvex compact set with its psupport function (see, e.g., [3, p. 139]). A
domain G is called a pconvex domain if there exists a sequence of pconvex
compact  sets G,  such that  G :  Ui=,  Gn andGn C Gn+t  C G, n :  I ,2 , . . .  ,
where G, is the set of interior points of the compact set Gn. In this case we say
that the sequence of compact sets G,, is inside convergent to G. Everywhere in
what follows concerning the pconvex domain (in the case p I 1), we suppose
that 0 € G. Without loss of generality we can always assume that 0 Q G,,
n : 7 r 2 r . . . ,

Let G be a pconvex domain, not necessarily bounded and let (G");a1 be
a sequence of pconvex compact sets with the psupport functions h"(-p), p e
(-n,nl, which converges from inside to G. Then O < h"(p) t hn+r(g), n> I,
g e (-r,zr], and there exists n?e) : I im'-- h"(-p). As h"(-p) a;re h
trigonometrically convex functions, the limit function n(-p) belongs to the same
class of functions. This limit function is called the psupport function of the 4
convex domain G (see, e.C,, [2]). It should be noted that in the case p : 1 the
notions of l-convexity and l-support function coincide with the usual notions of
convexity and support function.

Furthermore, we denote bV O(G) (G being a Aconvex domain) the space
of holomorphic functions in G, with the topology of uniform convergence on
compact subsets of G.

Now let G be a bounded Aconvex domain (G ) 0) with the p.support func-
tion h(-g) )0,g € (-zr;zr] and let ();)pt be asequence of complex numbers
in C, 0 < hr I T *oo as /c --+ oo. Consider a generalized Dirichlet series

@
S a  r  / \  \  -  ^
)  c 1 r 1 7 e \ A 1 1 2 ) ,  z e ( : l

where coefficients cp e C and Eo@) is the Mittag'-Leffier function

m

EoQ):l =:=--- (r ueing the Gamma function).

First we.""",t ,5:rl;fitl.t-ates which witt be used in the sequet (see,
e.c. ,  [2 ] ) .

Lernma 2.1.
(a) Let K be an arbitrary compact subset of G(K ) 0). Then there erists q €

(0;1) szch that K C qG and,, furthermore, there exists C : C(p) ) 0 such
that, for all k > I, we haue

( 2 . 1 )
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sup lE o (),1, z) I S sup lE, (), 1, z)l 1 Q s(oh@'s )'o )) | ro l ' (2 .2 )
z e K z e q G

(so we ce,n assurne i,n addi,tion that C > I).
(b)  f 'or  d e (0,  l )  and 01 e (0, I ) ,  there ex is ts  C1:  Ct(p,e,?t )  )  0  such that ,

for all k ) 7, we haue

sup lEo(),1,2)l > cr"Qot"g '\6))l '\s l '
z e 0  1 G

(2 .3)

(so we can assurne i,n addition that} < Q < I). I

The following charaterization [2] of the coefficients of the series (2.1) when it
ionverges in the topology of O(G) is important and necessary for further study.

Theorem 2.L. If the series (2.I) conuerges in the topology of 0(G), then

, .  / l o g l c r l  , /  . \
I imzup (T;f-* h(arg&)) < 0.

Conuersely, if the cofficients of (2.I) satisfy condition Q,\ and if

ti* l?8,k : o.
k- o l , \ /c lp

(2.4)

(2 .5 )

then the series (2.1) conuerges absolutely in the topology of O(G). I

In connection with Theorem 2.I,we can associate to the sequence (,\r) the
following class:

.Ac  :  { c :  ( c6 )  :  ( 2 .9  ho lds } .

It is easy to verify that "4c is a vector space (with the usual vector addition
and scalar multiplication).

Theorem 2.1 then shows that in the compact-open topology of. 0(G), the
series (2.1) converges if and only if it converges absolutely. In this case this
series represents a holomorphic function in the bounded Aconvex domain G,
i.e., an element of the space O(G). Thus the space "46 defines the class A(n,G)
of generalized Dirichlet series with the sequence of frequencies A : (,\s) that
converge locally uniformly in G.

Note that A(A,G) C 0(G), the equality holds if and only if the system

lnoQxr))|, is an absolutely representing in the space O(G) (see, e.C., [2]).
Before going on we recall the following fact [11] which will be used in the

sequel: ,/ (\) satisfies condition (2.5), then

€
f -  t \ .  t p

)  . r tnr r '  < +oo, Vr e (0, 1).
k = 7

We prove the following:

Lemrna 2.2. For an! c: (cp) e A6 and l. e (0, I), we haue

(2.6)
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m / \

\- l"r. le(lrz(arc A* )J l)t l '  < +oo.

Proof. Let 
": 

(.r) € Ac.Then for some 6 € (0; 1), there exists N such that,
for all k ) N, we have

* f#*h(arg t r r ) (e ,
lA r  lP

which is equivalent to

bnl < eG 
-nt" 's ' \6 ;)  1 ' \1 1P .

we put € : min h(p) > 0, e € ?n;"1. Then, bv (2.6), we have

@ / \ @

i  t * ; " (zn( " ' s ro ) ) l ) *  l '  <  f  " ( ' *u - ' l r z (a rg ' r1 ) ) l r l l r
k = 7  k = l

= i " { ' * t ' - r )c ) l ro l '  .  +* ,
k = 1

by choosing e such that 0 < € < (1 - l){. The proof is complete. r
Denote bv AZ the Kothe dual of the space 46, i.e.,

,ry: {@il , i"nuu converges absolutely for all (cs) e Ac}.
k = 7

Also we consider the following set:

4 : 
{fuil; i"orr converses for all (c6) e Ac}'

/ c = 1

We prove the following:

Lemma 2.3. If (2.5) hold,s, then (rr) e Al" ,t and, only if ("x) e Aft, i.e.,

A t : 4 .
In this case these sequence spaces can be defined as follows:

4: AZ: {{,n) : Iipsun (fi# - hlars^fr)) < 0}.

Proof. Necessity. Let ("r) e ,Afl. Suppose that

lim sup ( 
los l1o | - h(ars )k )) > o,

/ . - - ^ \  l , \ l ;  
' "  " ' / -

Then, for a sequence (to)Pt J 0 there exists an increasing sequence (k)rf=t of
positive numbers such that

l+|"k|. - h(arg lr, ) ) -e* yp ) r,
l ^k "  ln
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which is equivalent to

Iog(tluk") < (+ - h(arg)r, )) l)r, lo , Yp > I.

Define a sequence (c6) as follows:

(  I l l " r , l ,  i f  k  :  k p ,  p  :  I , 2 , .  . .  ,
" * : l o ,  o t h e r w i s e .

Then we have

,,fl*o (+# + h(arg)6)) ! Iimzup (Ef#"D + h(ars)r"))

S l imsuP(eo) :  Q,

which means that (cs) € Ac.
However, since lc4, uorl: l for p: 1,2,..., i t follows that the series f[, cpzp

does not converge. We get a contradiction.

Suffici,ency. Assume that there exists a constant Q such that

ri3zun (fi#l - h(arsr,)) : O < o,

and a lsothe condi t ion (2.5)  issat is f ied.  Then,  for  e >0 (sat is fy ingQ*r  < 0) ,
there exists N1 such that, for all ,k > N1 , we have

*+ l -h(arg. \s)  l=Q+ ,
lAxlP

or, equivalently,

f un l  <  
" (@+ i+h (a rs ' \ s ) )1 , \ p  

l r )  .

Now, Iet (cp) e A6. Then there exists AI2 such that, for all k ) AI2, we have

1c1,1 3 
"G-n1u's 

' \o  1) ; ' \o  1 '  '

Hence, for all k > l/: max{Nr,I{z}, we have

i  l "rr* l  < i  (eQ+e;l ' r* l '  .  +*,
k = N  k = N

due to (2.6) .
Consequently, the series DLt c*ux converges absolutely. This completes the

proof. r

We prove the following:

Lemrna 2.4. Let (ap) be a sequence of real numbers. Suppose that

limsuP 1* * ffiffi) ''( *oo' vz € G' (2'7)
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Then

l i m z u p a a l A - I .

Proof .  As the funct ion IoglEr( \kz) l  is  subharmonic in  G,  k :  I ,2 , . . . ,  and we
already have condition (2.7), it is desirabie to apply Hartogs' lemma for the
sequence

s*(z) :oo * *91*9*, z € G, k :7,2,""
I  A6 lP n(ar$ A6 /

Since l.\p lr h(arg )1 ) ) 0 for all k : 1,2, ... , i t is clear that the function 9r(z) ,
k : I,2, ..., is also subharmonic in G.

Now, Iet.F( be an arbitrary compact subset of G(K = 0). Then, due to
Lemma 2.1, there exist q1 € (0, 1) and C1 :Ct(p) > l such that, for all k ) 1,
we have

lEoQ,1,z)l J sup lEo()xt) l  S 
"sup"lEr(\*) l

< Cr"(o 'h(aLg'u)) l r1 l '  ,  V,  e K.

Hence, by (2.8), we have

Moreover, from (2.7), it follows, in particular, for z :0 that

sup 91 , (z )  <  O* ; . ( 2 . 1  1 )

Furthermore, for such an E > 0, we put Qz : | - el3 and Qt : I - el4. It
is clear that 0 1 qz < q3 < 1. Then, due to Lemma 2.1, there exists 0 < Cz :

Cz(p,e) ( l such that, for all ,k > 1, we have

sup lEo( )62) l  2  ,up  lL r (A1,2) l2  C2e. ( t "n ! 'e ' \u ) ) l ) *  l '
z e q t d  z e % G

l i m s u p a , 6 < A < + m .
f r+oo

(2 . i0 )

By (2.9) and (2.10), there exists Mx ) 0 such that

p*(z) 3 My, Yz e K, Vk > I .

Now applying Hartogs' Iemma (see, e.g,, [9]) we obtain that if K is a compact
set in G and e ) 0, then there exists ko € N such that, for all k ) /cs, we have

e k ( z )  <  A + 2 ,  Y z  €  K ,

which implies that, for all k ) k6,

(2 .8 )

(2.r2)

Furthermore, since logC2 < 0, there exists k1 € N such that, for allk)-k1,
we have
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I o g C z  - l o g C z -  e

| \Fh@'c)rJ 
'2,So*

Then, by (2.72) and (2.13), for all k ) k1, we have

) a x - i * ( t - ; )  : " r + r - ; '

3  l i m  2 1 1  : u k ,  k : I , 2 , . . . ,
J - 6

suP rpr (r) -- o,, +
z e q s G

logC2

l ) r  lPh(ars )r  )
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(2 .13 )

+ q z

(2.14)

(3 .1 )

Since ,F( is an arbitrary compact subset of G, we can choose 6 : q3G. Then,
by (2.11) and (2.14), for all /c > I 'r: max{ko,,t1}, we have

€ F
a 1  * 1 - ; S A * ; ,

which implies that
a p l A - 1 * e ,  V / c > N .

Hence,
l i m s u p a l  < A - 1 .

The proof is complete. I

We also recall the following fact which will be used in the sequel: Let (cr)f=,
be a sequence of real numbers and (up)f=, be a sequence of positiue rturnbers
such  tha t \  <  m ,  I  up  I  M ,  f o r  a l l  k  2 l .  f f l imsups_mck  (  0 ,  t hen
l imsup l * - (u6c6 )  <  0 .

3. Matrix Ttansformations of Generalized Holomorphic Dirichlet
Series

Denote by A6(U) the class of all matrices [uir]i'6=r having the property that
whenever the sequenc..: (.x) € Ac, the sequence of functions (/i(r))[,
given by

f iQ)  : :  lu l r ,c r *Ep( \xz ) ,  i  :  L ,2 , . . . ,
f t =1

converges uniformly on every compact subset of G, each generalized Dirichlet
ser ies ! [ ,  u i *e,Er( \pz)  being convergent  in  G,  j  :  I ,2 , . . . .

We shall study conditions for a given matrix ["iu]I*=, to belong to the class
Ac(u).

Theorem 3.L. If the follouing conditions hold

(3  2)
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rimzup(;ylff id =0, (3.3)

then the rnatrix l%n] betongs to A6(tl).

Proof. Assrme that conditions (3.2) and (3.3) hold. Let c: (c6) e 
"46. 

Take
an arbitrary compact subset K of G(K > 0). Then, we have K c q1G for some
q1 € (0,  1) .

Due to condition (3.2), for every k € N, the sequence ("to)7,, is bounded

and therefore,

8o ,:: l?logluixl < +*, vk > 1.

Hence,

lu ix l  < 
"Q* ,  

Yk > 1, Vj  > 1. (3.4)

< +oo.

Thus, each series
oo

l u lxc t  Ee( \xz ) ,  i  :  I ,2 , ' . . ,
k = 1

converges absolutely in the topology of the space O(G) and therefore, represents
a holomorphic function (f iQ)) in G.

We now prove that the sequence (/i) converges uniformly on K.
Let e be any positive number. Due to Lemma 2.2, we choose l[ > l/ so

that

F\rrthermore, by condition (3.3), for qa - (1 - qt ) f 2, there exists N : N(qr )
such that

, ,  1?91"r*1, ,  1qa, yk> N, vj  > 1,
l^kf n\atg ̂ k )

o r , e q u i v a l e n t l Y ,  
/  . .  . \ , . , "

lu lx l3 e\s4n(ars^rr , , t . t * t '  ,  y le  > N,  v j  > 1.  (3.5)

Then, due to Lemma 2.1, Lemma 2.2, and by (3.4), (3.5), for all j  > 1, we have

, @ m

r"p l I  uixcxEp(\1,2)l < I lulxcxl sup lro1.16z;l
z e K t f - _ ,  

-  |  
7 _ r ' -  

' z € q 1 G '

< c, i  lui n"1,1"(o' o( 'rg'u ;) 1'\3 |P
/r= I

:  
"  [E 

fu i r"r@(n,h(ars)1)) t r* l '  + 
_F,,  

fu ix"1,1"(o, i , t " .e.r* l ) t r* t ' ]

=  
"  [E  

px l "Qu*(n ,n{ "u r * ) ) l ro , '  *  
* i ,  

l cs ;s ( (0 ,+n ,1r '1 "c ro) ) t ro l ' ]
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Denote

k = N r  * 1 k = N r  t l

6 /

t  V1 ,1s ( t ' +qa )h (a rg ) * ) ) l ^ r l '  <  : - -

k = N r  * l

N1

C3 (Nl)  : :  D lc6 1s 
(e '  h(u's ' \o )) l ro l '  .

k = 1

From condition (3.2) it follows that there exists N2 such that

l u ^ r - u n * l '  
€  u ' ' -t  

zcPr^v) '  
Yk :1 '2 ' " ' ' l y ' r '  V rn 'n )  N2 '

Furthermore, by (3.5) and (3.6), we have

@

t  ( lu*nl  *  lunnl)  l "*  lu(o' f t1arg 
' \ t  ) ) l ) t  lp

k = N r  t 1

:  i  lu*nl l "x;s(r ,h(u 's ' \*)) l )* l '  + i  lu^xl l "x le(r ,n{" ,sro)) l . ro l '

27r

(3.6)

(3.7)

(3.8)

oo

< 2  t  P1 ,P(k 'mn)n(arg ' \1 ) ) ; ' \1 lP
k = N r  + 1

< 2

:  ,  Vm,n )  N2.  (3.9)

Then, due to Lemma 2,1 and by (3.7), (3.8), (3.9), for all m, n) N2, we get

sup l. f- (") - f ,(") l- sup I 1(r-* - u,1")c1,Eo(),1,) l
z € K  z e K t  1  

|

= i lr-* - unkl lcpl sup lEr(),1,2)l leCli lr-o - unkl lcple(e'n(" 'ero))lrol '
k = l  z e K  l = t

f l g t  r  . \ , . . -
:  c t l  I  l r -n  -  u ,x l l cx le \a 'h ( "s ) t ) / l ) t lo

L * = 1

+ i lu*r - unxllcxle(o'rt"cr*))l 'r*l ' l
k = N r  * 1  I

f - N r / \
-' n. | " I l.o I e(o' r'(u'e )* )/ l)t le-  " ' l 2C1C3(Ut )  (= ,

+  i  lu^o l * l rn t l ) l c l le (o ' r r1 "g ' \ *1 )1 ' \ t la l
k = N r  * 1  I

€
z

.c, ln&@Jc3(rn) . &):;
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The theorem is proved. r

Theorem 3.2. If the matrix l"tnl|o-, belongs to A6(tt), then condit'ion (3.2)
and the following condition hold:

Iim r loglulxl \
-jJo (Rffi ) s0' Yi :r'2'"" (3'10)

Proof. Assume that the matrix lt r'r] belo.tgs to A6(l/). Consider "unit

vectorst t  o(*) ,  m:  I ,2r . . . ,  in  -46,  wi th

' [ - ' : { l ,  :1J*: 
m:7'2"

Obviously, for each "unit vector" o(n) of the space ,46, the sequence
r  " ( m \  ,  ' x

f j ^ )  t4  , :  
*  

u i roP)  Eo() ,1 ,2) ,  i  :7 ,2, . ' .  ,
fr=1

is well defined, F\rrthermore, from the convergence of the sequen." (fl^)(0))l'

the series

iu l r"uno(\xz),  i  :  I ,2, . . . ,
k = 1

converges in G. This implies that

(uinEr(\pz)) ,  € Afi,  Yz € G' Vi > 1.

Due to Lemma 2.3 we have

, .  l log lu ipt r r ( ) ,xz) l  _  h(arg)r ) )  . -0,  Vz e G,  j  :  t ,2 , . . .  .  (3 .11)r l m s u p \  
p o l o  . /

Put ru : maxh(rp), p e (-r;r]. Then we have

1 1 1
o < : s 4 ; m < { '  v / c > 1 '  ( 3 ' 1 2 )

By (3.11) and (3.12), we have

, .  /  los lu i {  1  t :q l fg( r*?)1,  _  1)  <  0,  vz  € G,  i : r ,2 , . . . .rrmsup 
\ l l*F G.cl*)  

-  
1,1*1r l4urer*) 

L) \  v1 r '  :  v '  r
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Hence,

, .  /  log lzsr |  ,  log lEr()pz) l  rIimzuP (m,i;affi + F;;Gffi ) 'r' Yz € G' j :7'2' ""

Applying Lemma 2.4 gives

Iir 
loe lur," I

,i 'JP t.1ffiff i 
<o' i:7'2'""

The proof is complete.
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