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1. Introduction

The concept of linear compactness was introduced by Lefschetz in [4] for vec-
tor spaces of infinitive dimension and extended first to modules by Zelinsky in
[11] and further studied by Macdonald in [5], Z6schinger in [12]. Note that ev-
ery Artinian ,R-module is a representable linearly compact ,R-module, but the
converse is not true. Melkersson and Schenzel [9] defined the co-localization
Homp (,Rs; M) of an Artinian R-module M with respect to a multiplicative set
^9 in ,R and they showed that this construction does not usually give an Artinian
.Rg-module. In general, it even does not have finite Goldie-dimension, but we
shall see in Sec. 4 that it is always a representable linearly compact ,R-module.
The purpose of this paper is not only to extend the results for Artinian modules,
which are presented in [9], to representable linearly compact modules, but also
to give an affirmative answer to a question of Melkersson [8] in the case when
M is a representable linearly compact module without assumption that M has
finite Goldie-dimension.

2. Linearly Compact Modules

Let .R be a commutative topological ring and M a topological .R-module. A
nucleus of. M is a neighborhood of the zero element of M and a nuclear base of
M is a base for the nuclei of M.
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First we recall the concept of linearly compact modules by using the termi-

nology of Macdonald [5].

Deffnit ion 2.1.
(r) M is said to be linearly topologized if M has a nuclear base M consisting of

open submodules which satisfies the condition: Giuen r € M and N € M,
there exists a, nucleus U of R such that Un I N.

(ii) A Hausdorff linearly topologized R-module M is said to be linearlg compact

if M has the following property: If f is a family of closed cosets ('i.e., the

cosets of closed, submodules) in M which has the f,nite'intersection property,

then the cosets in f haue a non-empty intersect'ion.

It should be mentioned that any Artinian R-module is a linearly compact ,R-

module with respect to the discrete topology. But the converse is not true (see

Sec.  4) .
The following theorem is the key result for our further investigations in the

next sections and its proof is mainly based on the results of Jensen in [2].

Theorem 2.2. Let F be a fl,at R-module and M a linearlg compact R-module.

Then
(i) Hom;(F;M) is l inearly compact,

( i i )  Ext i (F;  M) :0,  for  a l l  i  >  0 '

The following immediate consequence of Theorem 2.2, which is a generaliza-

tion of Proposition 2.4 in [9], is often used in the sequel.

Corollary 2.3. Let

0 ------ M' --- M ----'- M" - 0

be a short exact sequence of linearly compact R-modules and F a fi'at R-module.
Then the deriued sequence

0 -------+ HomR (F;M') -r Homa(F;M) '---- Homp(F; M") '----- 0

is also exact.

3. Representability of Homp(F;M)

In this section we need the notion of secondary representation which is due to

Macdonald [6]. This concept is in some sense dual to that of primary decom-
position. An .R-module M l0 is said to be secondary if., f.ot any n e fi, the

multiplication by r on M is either surjective or nilpotent. The radical of the

annihilator of M is then a prime ideal p and we say that M is p-secondary.

Let M be an R-module. A secondara representation of. M is an expression

of. M as a finite sum of secondarv submodules, say,

M : M t * M z + . . ' * M " ' ( * )
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Suppose that Ma is p1-secondary foli : I,... ,n. Then the representation (x)
is said to be minimal if (i) the prime ideals p1 are all distinct and (ii) none
of the summands M; is redundant. Any secondary representation of M can
be refined to a minimal one. The prime ideals pa depend only on M, but not
on the minimal secondary representation of M. So we denote by Atta(M) the
set  {p1 ,F2, . . . ,F, } .  I t  is  ca l led the set  of  pr ime ideals at tached to M. The
summand M;, i : I,... ,fr, is called secondary component of M. If M has a
secondary representation, then we say that M is representable. For convenience,
we stipulate that the zero module is representable.

The theorem below is the main result of this section.

Theorem 3.L. Let F be a fl,at R-module and M a repesentable I'inearly compact
R-module. ThenHomp(F;M) is a representable l inearly compact R-module.

To prove this theorem we need two following lemmas.

Lemma 3.2. Let F be a fl,at R-mod,ule and M a l,inearlg cornpact R-module. If
M ' is p-secondary, thenHomp(F; M) is either 0 or p-secondary.

Lemma 3.3. Let M be a representable linearly compact R-module. Then there
etists a m'inimal second,arA representation of M in whi,ch all the secondary com-
ponents are linearly cornpact submodules.

4. Co-Localization

We recall first the notion of co-localization which is due to Melkersson and
Schenzel [9]. Let M be an r?-module and ^9 a multiplicative subset of ,R. The co-
localization of M with respect to 5 is the module Homa (Rs ; M) . It follows from
[9] that the co-localization of an Artinian module is almost never Artinian. It
even does not finite Goldie-dimension in general, but it is always a linearly com-
pact R-module by Theorem 3.1. This shows that the set of Artinian .R-modules
is a proper subset of representable linearly compact .R-modules. However, many
good properties of Artinian modules can be found in representable linearly com-
pact modules.

We can generalize Melkersson-Schenzel's result [9, Theorem 3.2] for repre-
sentable linearly compact modules as follows:

Theorern 4.L. Let S be a multiplicatiue set of R and M a representable I'inearly
compact R-module with

M : M r - f M z l . . . I M ,

a m'inimal secondary representation in which all Mi are linearly compact. Let
F t  :  Rad (AnnpMl )  f o r  i  :  1 , . . . ,  n  and  assu rne  tha t  S | r f u  :  A  f o r  i  :  1 , . . . ,m ,
and  S  Op t  #  A  fo r  i  :  m  *  7 , . . . , f l , r espec t i ue l y .  Then

Homa(J?s;  M) :  Homa(r ts ;  ut )  + Homn(-rRs;  uz)  +. . . *  Homa(Rs;  M*)
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is a rninimal second,ary representation of HomR(Rs;M). In particular, we haue

A t t a ( H o m a { . ; R s ; M ) ) :  { p  e  A t t n ( M ) : p  o , 9 : 0 } '

To prove this result, we apply Theorem 3.1 and the following lemma.

Lemma 4.2. Let S be a multiplicatiue subset of R and M a I'inearlg compact

R-module. Let

9:  Homp(Rs;M) - -+ M

be a homomorphism d,efined bU pU): /(1), for ang / e Homp(l?s;M). Then

. AImp: I I  tM.
s g , 9
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