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Abstract. First-order sufficient optimality conditions are given when the obiective
function of a minimization problem is pseudo-invex and second-order sufficiency opti-
malitv conditions are established when the constraint mappings are invex.

L. Introduction

In the last three decades, theory of sufficient optimality conditions for opti-
mization problems has been the subject of much development. The classical
second-order sufficiency conditions for mathematical programs can be found in
the works of Hestenes [9] and McCormick [14], These results have been extended
to Banach space by Ioffe [10], Ioffe and Tikhomirov [11], Maurer and Zowe [13],
etc. Second-order sufficient optimality conditions for the mathematical programs
comprised of locally Lipschitz functions were studied by Chaney [1].

To meet the demand of the theory of extremum problems, theory of invex
functions came into being in 1981 (see, e.8., [3, 15]). Under invexity hypotheses,
Craven and Luu [4- 6] established optimality conditions for constrained minimax.
Note that in sufficiency conditions given by Craven [3], Reiland [15], Craven and
Luu [4-6], the objective and constraint functions are invex all together.

In this paper, sufficient optimality conditions will be derived under invexity
hypotheses only on the objective function or only on the constraint functions.

The paper is organized as follows. After the introduction, Sec. 2 gives some
preliminaries on invex functions and the various cones studied by Dubovitsky and
Milyutin [7], together with some related results. Section 3 deals with a sufficient
optimality condition for problems comprising pseudo-invex objective functions
and convex constraint sets. Section 4 is devoted to the studv of the problems



228 Do Van Luu and, Pham Tlung Kien

with invex constraint mappings. If the constraint mapping is K-invex, we shall
show that the corresponding feasible set can be approximated in the sense of
Maurer and Zowe [13]. Moreover, a constraint mapping g satisfying a stability
condition of Robinson type at a point r will be K-invex at f with respect to the
scale mapping u(r,i) -- r - n + o(lln - tll). From these results, second-order
sufficient optimality conditions are derived for minimization problems with invex
constraint mappings.

2. Preliminaries

Let X be a Banach space. Let / : X ---+ R be a function which is Fr6chet
differentiable at u € X.

Following [3] the function / will be called inuex with respect to a scale map-
p i n g T : X x X - - . X i f

f  (") - f  (u) >- J'@)n@,u) (Yx,u e X). (1)

If u is fixed, then / will be called invex at u.
Note that if / is convex , then / is invex with the scale function ry(r,u) ::

r - u. Indeed, with the chosen function 4, (1) holds automatically.
Let Y be a Banach space and K a convex cone in Y. A Fr6chet differentiable

mapping F: X --+ Y wil l be called K-invex atue X with respect to ascale
m a p p i n g q : X x X - + X i f

F ( r ) - F ( " ) - F ' ( u ) r 1 @ , u ) e K  ( v r e X ) .  ( 2 )

If (2) holds whenever ll" - "ll 
is sufficiently small, then / will be called 1{-

invex with respect to a scale mapping 4 in a neighborhood of u. If (2) holds for
all r in a subset A containing u, then / is called K-invex at u on A.

In the case where / and r' are only assumed to be directionally differentiable,
(1) and (2) are replaced, respectively, by the following (1') and (2'):

f  (") - f  (") 2 f '(u;q(r,u)) (Yr,u e X),
F ( r ) -  F ( " ) -  F ( u ; r 1 ( x , u ) ) e K  ( V r e  X ) ,

( 1  ' )

(2',)

where f '(u;d and F/(u;4) stand for the directional derivatives of / and F atu
in direction 4, respectively.

Suppose now that / has directional derivatives at u e Q C X. The function /
is said tobe pseudo-inuexatuonQ if there exists a scale mappingq I XxX --+ X
such that, for all n € Q,

f '  (u;rt(r,")) > 0 + f(n) - /(") > 0. (3)

The function / is said to be quasi,-'inuex at u on Q if there exists a scale

mapping rl'. X x X --+ X such that for all n € Q'

f  ( " )  -  f  ( " )  Ss a f t (u ;4(r ,u) )  < 0.  (4)

Taking n@,u) : n -,ttrt (3) and (4) become the definitions of pseudo-convex

and quasi-convex functions, respectively.
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Flom the definition it follows that / is pseudo-invex at rs e Q if and only if
there is a scale mapping r7 ; X x X ---+ X such that, for all r e Q,

f ( " )  <  f ( r s )  +  f ' ( xo ;q ( t , " ' ) )  <  0 .

If / is invex, / is pseudo-invex. Thus, if / is convex, it is invex, hence it is
pseudo-invex .

Following [7], a vector o € V will be called a decreasing direct'ionof f at rs
if there are a neighborhood U of u, and numbers o < 0 and es > 0 such that,
for every € € (0, es) and u € U,

I @ o + e u ) < f ( x s ) + € a .

The set of all the decreasing directions of f atus is an open cone with vertex
at the origin. The function / is called regularly decreasing at no if the cone of
decreasing directions at z9 is convex .

LeL Q1 be a constraint of the inequality-type of an optimization problem.
A vector u € X is said to be an admissible d,'irect'ion of Q1 at re if there are a
neighborhood U of u and a number e6 ) 0 such that, for every € € (0,e6) and
u € U ,

r s l e u € Q 1 .

Note that the cone of admissible directions at r0 is open with vertex at the
origin. The constraint Q1 of the inequality-type is called regular at zs, if the
cone of admissible directions is convex.

Let Q2 be a constraint of the equality-type (or the inequality-type) of an
optimization problem. A vector u € X will be called a tangent direction of Q2
at rs, if there is e6 ) 0 such that, for every e € (0, €0), there exists z. e Q2 so
that

r e : r o * e u a 1 7 6 1 ,

where r(e) e X is such that, for every neighborhood t/ of the origin, r(e)le e U
for all sufficiently small e > 0.

Note that the cone of tangent directions at e6 may fail to be open or closed.
The constraint Q2 of the equality-type is said to be regular at rs if the cone of
tangent directions is convex.

It should be noted here that any admissible direction is also a tangent di-
rection as well, Indeed, if u is an admissible direction of the inequality-type
constraint Q1 at ns, by definition, there is es ) 0 such that, for every 6 € (0, e6),

t r e i : f r y * e u € Q 1 ,

which means that u is a tangent direction of Q1 at rs (with r(e) :0).

We recall some results from [7,8, 13] which are needed for the next few sec-
tions.

Proposition 2.L. [8] Let f be a real-ualued funct'ion defined on X. Assume
that f is locally Lipschitz ati; f has d'irect' ional deriuatiae f '(n;u) ati ' in the
direct' ionu e X and f'(n;?r) < 0. Thenu is a decreas'ing direction of f ati.
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Proposi t ion 2.2.  l7 l  Assume that  K1, . . . ,K, ,Kn41 are conuer cone's  u i th

uertices at the origin. Suppose, furthermore, that the cones K1,...,Kn are

open.  Then,  | | i ! |  x ,  :  A i f  and only i f  there ex ' is t  {a e K;  ( i -  1 , . ' . ,n  *  1) ,

not all zero, such that

€ r  *  " ' *  ( ' + r  :  0 ,

where Ki 'is the futal cone of Ki:

Ki : {t € X* : (€,") 2 0, Vn e Ki}.

Proposition 2.3. $Sl fet T be a continuous linear mapping from X into Y.

Assume that

T X + K : Y ,

Then there erists a nutnber a ) 0 such that

By (0,  1)  c  a(TBv(O, 1)  + (K n BY (0,  1)) )

where By(0,1) and By(0, 1) are un'it balls of X andY, respectiuelE; K i 's a

closed conuex cone in Y.

3. Optimization Problems with Pseudo-Invex Objective Functions

Let X be a Banach space and let / be a function defined on X. Let Qr,. . . ,Qn+t
be subsets of X. In this section we are concerned with the following problem:

I minimize /(r),(P1)  
t  " .  O

where Q:)7! iQo.
This problem was studied by Dubovitsky and Milyutin 17]'
Let r € Q. Denote by Ks the cone of decreasing directions of / at r; denote by

Kt, . . . , Kn the cones of admissible directions of the inequality-type constraints

Qr,... ,Qn dt -, respectively; denote bY Kn+t the cone of tangent directions of

the equality-type constraint Qna,1 at n.

A sufficient condition for optimality can be stated as follows:

Theorem 3.I. Assume that
(a) The function f is locallg Lipschitz at x and'it has direct'ional deriuatiue at

r in any directions; f i's pseudo-inuen at i on Q with the scale function:

u ( t , i ) : n - t r t r ( r , i ) ,

where , /
xrs,i) l l l l l r  - t l l  + 0 wheneuer l lr  - t  l l  -- 0;

(b) Qr ,... tQn+1. are conuet sets such that there erists
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n

a .  f l ( i n tQ ; )  tQ ,+ t ,
x : l

where intQi denotes the interior of the set Qt (i. : I,. . . ,n);
(c)  There edst{6 e Ki  Q:0,  1,  . . .  ,n I l ) ,  not  a l l  zero,  such that

{ o  *  { 1  + . . .  +  ( ' + r  :  0 .

Then i is a local min'imum of f ouer Q.

Proo/. Suppose that r is not a local minimum of the function / over Q. Then,
for every neighborhood B of r, there exists 11 e Q a B such that

f  ( " t )  <  l@).  (b)

Especially, taking B: X, the inequality (5) holds for x1 eQ.
F o r  )  €  ( 0 ,  1 )  w e  d e n o t e  r s : :  A f r  + ( 1 - A ) r 1  .  F o r  i :  I , . . . t n ] _  1 ,  s i n c e  e ;

is a convex set, i € Q.; and nt € Qt., it follows that 11 € Qt. Hence, ns € Q.
S ince  f  € i n tQ i ,  i t  f o l l ows  tha t  z1  €  i n tQ l  ( i , : I , . . .  , n )  f o r  any  )  e  (0 ,1 ) .

In view of the continuity of /, for sufficiently small ) > 0,

f @ t ) < f ( n ) ' (6)

According to the hypotheses, / is a pseudo-invex function at i € Q over Q,
with the scale function

u ( r , i ) : r - i l r ( x , i ) ,

in which llr(r,n)lllllr - tll ----- 0 as n --+ i.
We now prove that, for sufficiently small A ) 0, a(ns,ft) : rs-n*r(rs,r) €

Ks.
Assume the contrary that a,'(r1 ,i) € Ks, i,e., u(ns,r) is not a decreasing

direction of f at r. Then, by virtue of Proposition 2.1, we get

f ' ( r ; a ( r 1 , - ) )  >  0 .

By the definition of pseudo-invexity,

f ( r ^ ) >  f ( n ) ,

which conflicts with (6),
We now prove that u(ns, i )  € Ki ( i :1, . .  .  ,n- l l ) .  For e € (0, 1) we have

n * e(rs -  r)  € Qna1, and

i  I  ew( rs , i )  :  n*  e ( r ;  -  t )  +  e r (ns , i ) '

H e n c e '  
i  r e u ( r s , r ) + e ( - r ( r t , r ) )  e  Q n + r ,

where  r (ns ,n ) :  o ( l l r . r  -  t l l ) .
Consequently, u(nt,r) is a tangent direction of Qr+t at i,i.e., u(ns,i) e

Kn+r ,

231
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Moreover, by the aforementioned proof, for each i : 1,. . . tn1 orre has rr1 €
int Q1 for sufficiently small A > 0. Therefore,

n j  eu(rs,  i )  :  i  *  s( r , \  -  n)  + er(ns,  r )  €  in t  Qa,

for sufficiently small e ) 0. Hence,

u ( r s , E ) .  l 1 i n t  Q r  -  z )  ( i  :  1 ,  . . .  , n ) .'  e '

Since Qa is convex, by Theorem 8.2 of [8], we have

1 ( i n t  O n  -  n )  c  K i  ( i  : 7 , .  .  .  , n ) .
r '

So we get
u ( r s , n )  e  K i  ( i :  1 , ' . . , n ) .

Hence,
n * l
4 r zu \ r s , r ) e l  l t < r ,

or  
n+ ,  

i=0

) x n + a '
i =0

By v i r tue of  Proposi t ion2.2,  one cannot  f ind { ;  e  Ki  $:0,  1, . , .  ,n*  1) ,
not all zero, such that

4 o * € r + " ' + € ' + t : 0 '

This contradicts Assumption (c). The proof is complete. I

Remark. It is worth noting that a convex function is invex, and hence it is
pseudo-invex. So Theorem 3.1 is valid for problems with convex objective func-
tions.

4. Optimization Problems with Invex Constraint Functions

Let / be a real-valued function defined on a Banach space X. Let g be a mapping
from X into another Banach space Y and let K be a closed convex cone in Y.
In this section we shall deal with the following problem:

f minimize /(z),(Pt\ I\- -/ 
| subject to g(r) € -K.

Denote by M the feasible set of (P2), i.e.,

M : : { r e X :  g ( r ) e - K } .

Assume that / and g are Fr6chet differentiable of first and second-order at

r € M with first-order Fr6chet derivatives f'(n),g'(n) and second-order ones

f" (*) , g" (i).
Denote by Tu (z) the sequential tangent cone of M at i:
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Tu(n) ' :  { ,  e  X :  u  :  t :nT,  rn  e  M),

and denote by Ly(n) the linearizing cone of. M at n:

L u ( z ) ; :  { u  €  X : 9 ' ( n ) u  e  - K s @ 1 } ,

where
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Ks61 i: K + {\g(t) : A e rR}.

Note that if Kn61 is closed, then

Tu(n) c LM(r)

(see [13]).
Following [13], the feasible set M is said to be approximated at r € M by

Lu@), if there exists a mapping (: M --+ Lu(n) such that, for every r €. M,

l l{(") - (r - z)l l : o(l ln - t l l).

Theorem 4.1. Assume that the mapping g is K-inuex at x on M, with respect
to a scale mapping u satisfying:

w ( r , i ) : n - f r a r ( n , r ) ,

where llr(r,A)lllll" - zll ------+ 0 as r ---+ n. Then M is approximated at n bg
Lu(n) .

Proof. According to the hypothesis, the mapping g is l(-invex at r on M, that
is,

g (x ) -  s@) -  s ' (z )u ( r ,n )  eK (Vn e  M)

which implies that, for every r €. M,

s@) + e' @)u(x,i) e -K + s@)
c - K - K c - K .

as I{ is a closed convex cone.
Hence, for every r € M,

9 ' ( n ) w ( r , n ) e - K - s ( i )
c -K - {}g('r) : ) e rR} : -Ks@1,

whence
u (x ,E )  €  LM( i ) .

So we get a mapping u(.,fr) : M - Lya(r) with

a ( r , i ) : t - f r * r ( t , n ) .



234 Do Van Luu and Pham Trunq Kien

By hypothesis

l lu(r ,n)  -  (x -  e) l l  :  l l r (2,  e) l l  :  o( l l "  -  t l l ) ,

hence, M is approximated by Ly(n) ar d. I

A sufficient condition for K-invexity can be stated as follows.

Theorem 4.2. Assume that the following stability condition of Robinson-type
is fulfilled:

0 e int {s'@)X + K}. (7)

Then the mapping g is K -inuer at n on M with a scale mapping ol the form:

w(n , f r )  :  n  -  E+  o ( l l r  -  t l l ) .

Proof. It is easy to see that condition (7) is equivalent to the condition

7 ' @ ) X * K : Y .  ( 8 )

Since g is FY6chet differentiable at n, we have

s@) - s@) : s' @)(* - n) + r(n,n),

where l l r (n,z) l l l l l r  -  el l  *  0 as r  --+ n ott  the same, r(r ,E):  o( l l r  -  t l l ) .
By Proposition 2.3, there exists o > 0 such that, for every n e M, therc

exist elements y - y(n) e -K and z : z(n) e ollr(r, -)llB(0, 1,) such that

r ( r , E ) : g ' ( z ) z - A .

Putting
w ( t , i ) : t - E * z t

one gets

l lu(r,n) - (r - e)l l S allr(2, r)l l .

This implies llw(n,a) - (r - e)ll : o(llo - tll).
Moreover.'  

g'(n)u(r,n) : s'@)(n - t) + s'(a)"
t r - \ /  - \  .  /  - \  .-  I  \ r ) \ n - r ) + r w ' , r ) + a

: e@) _ g(n) + y.

Hence,

s@) - s@) - s'  (n)a(t ' i )  :  -Y e K'

Thus g is K-invex at r with the scale mapping

a ( r , E ) : t - i * r ( n , E ) .  I

Denote by L(r,U*,I), the Lagrange function for problem (P2):
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L( * , y * , ) ) :  ) / ( z )  +  (Y . ,5@)1 .

We shall need the following auxiliary result.

Theorem 4.3. [13] Let r € M. Assume that the following conditions a,re fulfilled:
(a) The feasible set M is approximated bg Ly(r) at ii
(b) There exists y* € Y* such that

L ' r ( ' , a * ' 1 )  : o '

(v. ,s@D : o;

(c) There are numbers 6 > 0 and B > 0 such that

L 'J , (n , ! *  ,7) (o,u)  2  6 l lo l l2

(Vu e Ly (e)n {u :  (g* ,s ' (n)a)  < f  l l r l l } ) .

Then, there erist nurnbers a ) 0 and p > 0 such that

f (") > /(t) + allx - nll (Yr e M n B(r; p)),

which means n is a strictly local minimurn of Problem(P2), where B(z; p)
stanils for the closed ball around n with rad,ius p > 0.

Now we can formulate second-order sufficient optimality condition for mini-
mization problems with invex constraint functions.

Theorem 4.4. Let i e M. Assume that Assumptions (b), (c) of Theorem 4.3
hold, Suppose, in addition, that the mapping g is K-inuea at n on M with a
scale mapp'inn' tot*rrT,nu: 

n - E *r(r,fr) (yr e M),

where llr(r,n)lllll" - nll - 0 as x -+ r. Then there exist numbers a ) 0 and
p ) 0  s u c h t h a t

f (") >- f (E) + alln - all (Yr e M n B(n; p)).

Proof. Since the mappingg is l{-invex at r on M, it follows from Theorem 4,1
that M is approximated at r by Ly(n). Then all the hypotheses of Theorem
4.3 are satisfied. Applying this theorem, the conclusion follows. r

Theorem 4.5. Let E e M. Assume that Assumptions (b) and (c) of Theorem
4.3 hold. Suppose, furthermore, that the following condition is fulfilled:

0 e int {s'@)X + K}.

Then there erist numbers o > 0 and p ) 0 such that

f (") >- I@) + alln - nll (Vn e M n B@; p)).
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Proof. Due to Theorem 4.2 the mapping g is /{-invex at t on M with a scale
mapping a(r,E) :  n - r  + o(l lz - r l l ) .  So al l  the hypotheses of Theorem 4.4 are
fulfilled. Applying this theorem the conclusion follows. r
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