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Abstract. First-order sufficient optimality conditions are given when the objective
function of a minimization problem is pseudo-invex and second-order sufficiency opti-
mality conditions are established when the constraint mappings are invex.

1. Introduction

In the last three decades, theory of sufficient optimality conditions for opti-
mization problems has been the subject of much development. The classical
second-order sufficiency conditions for mathematical programs can be found in
the works of Hestenes [9] and McCormick [14]. These results have been extended
to Banach space by Ioffe [10], Ioffe and Tikhomirov [11], Maurer and Zowe [13],
etc. Second-order sufficient optimality conditions for the mathematical programs
comprised of locally Lipschitz functions were studied by Chaney [1].

To meet the demand of the theory of extremum problems, theory of invex
functions came into being in 1981 (see, e.g., [3,15]). Under invexity hypotheses,
Craven and Luu [4 - 6] established optimality conditions for constrained minimax.
Note that in sufficiency conditions given by Craven (3], Reiland [15], Craven and
Luu [4- 6], the objective and constraint functions are invex all together.

In this paper, sufficient optimality conditions will be derived under invexity
hypotheses only on the objective function or only on the constraint functions.

The paper is organized as follows. After the introduction, Sec. 2 gives some
preliminaries on invex functions and the various cones studied by Dubovitsky and
Milyutin [7], together with some related results. Section 3 deals with a sufficient
optimality condition for problems comprising pseudo-invex objective functions
and convex constraint sets. Section 4 is devoted to the study of the problems
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with invex constraint mappings. If the constraint mapping is K-invex, we shall
show that the corresponding feasible set can be approximated in the sense of
Maurer and Zowe {13]. Moreover, a constraint mapping g satisfying a stability
condition of Robinson type at a point Z will be K-invex at Z with respect to the
scale mapping w(z,z) = z — Z + o(|lz — Z||). From these results, second-order
sufficient optimality conditions are derived for minimization problems with invex
constraint mappings.

2. Preliminaries

Let X be a Banach space. Let f : X — R be a function which is Fréchet
differentiable at v € X.

Following [3] the function f will be called invex with respect to a scale map-
pingn: X x X —» X if

f(@) = f(w) 2 f'(wn(z,u) (Vo,u € X). (1)

If u is fixed, then f will be called invex at u.

Note that if f is convex , then f is invex with the scale function n(z,u) :=
x — u. Indeed, with the chosen function 7, (1) holds automatically.

Let Y be a Banach space and K a convex cone in Y. A Fréchet differentiable
mapping F' : X — Y will be called K-invex at v € X with respect to a scale
mapping : X x X — X if

F(z) — F(u) — F'(u)n(z,u) € K (Vz € X). (2)

If (2) holds whenever ||z — u|| is sufficiently small, then f will be called K-
invex with respect to a scale mapping 7 in a neighborhood of u. If (2) holds for
all z in a subset A containing u, then f is called K-invex at u on A.

In the case where f and F are only assumed to be directionally differentiable,
(1) and (2) are replaced, respectively, by the following (1’) and (2'):

f(z) = fw) = f'(wn(z,u) (Vz,ue X), (1)
F(z) - F(u) — F'(u;n(z,u)) € K (Vz € X), (2)

where f'(u;n) and F'(u;n) stand for the directional derivatives of f and F' at u
in direction 7, respectively.

Suppose now that f has directional derivatives at u € Q C X. The function f
is said to be pseudo-invez at u on @ if there exists a scale mappingn : X xX — X
such that, for all z € Q,

f'(un(z,u)) 2 0= f(z) - f(u) 2 0. 3)

The function f is said to be quasi-invez at u on @ if there exists a scale
mapping 1 : X x X — X such that for all z € Q,

f(z) — f(w) 0= f'(u;n(z,u)) <O0. (4)

Taking n(z,u) = £ — u, (3) and (4) become the definitions of pseudo-convex
and quasi-convex functions, respectively.
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From the definition it follows that f is pseudo-invex at zq € Q if and only if
there is a scale mapping 7 : X x X — X such that, for all z € Q,

f(z) < f(zo) = f'(zo;m(z,20)) < 0.

If f is invex, f is pseudo-invex. Thus, if f is convex, it is invex, hence it is
pseudo-invex .

Following [7], a vector v € V will be called a decreasing direction of f at zg
if there are a neighborhood U of v, and numbers @ < 0 and ¢ > 0 such that,
for every € € (0,¢p) and u € U,

flzo + eu) < f(zg) + €.

The set of all the decreasing directions of f at xg is an open cone with vertex
at the origin. The function f is called regularly decreasing at zq if the cone of
decreasing directions at zg is convex .

Let 1 be a constraint of the inequality-type of an optimization problem.
A vector v € X is said to be an admissible direction of Q; at zg if there are a
neighborhood U of v and a number ¢y > 0 such that, for every € € (0,¢) and
u € U,

To +eu € Q.

Note that the cone of admissible directions at zj is open with vertex at the
origin. The constraint @Q; of the inequality-type is called regular at zg, if the
cone of admissible directions is convex.

Let @2 be a constraint of the equality-type (or the inequality-type) of an
optimization problem. A vector v € X will be called a tangent direction of Qs
at o, if there is g > 0 such that, for every e € (0, ¢), there exists z. € Q5 so
that

ze =g + ev + 7(e),

where r(e) € X is such that, for every neighborhood U of the origin, (€)/e € U
for all sufficiently small € > 0.

Note that the cone of tangent directions at 2y may fail to be open or closed.
The constraint )y of the equality-type is said to be reqular at z, if the cone of
tangent directions is convex.

It should be noted here that any admissible direction is also a tangent di-
rection as well. Indeed, if v is an admissible direction of the inequality-type
constraint Q1 at zg, by definition, there is ¢y > 0 such that, for every € € (0, ¢),

Ze i =Tg +ev € @,

which means that v is a tangent direction of @ at z¢ (with r(e) = 0).
We recall some results from [7, 8, 13] which are needed for the next few sec-
tions.

Proposition 2.1. (8] Let f be a real-valued function defined on X. Assume
that f is locally Lipschitz at T; f has directional derivative f'(%;v) at T in the
direction v € X and f'(Z;v) < 0. Then v is a decreasing direction of f at .
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Proposition 2.2. [7] Assume that Ki,... ,K,,Kn1 are conver cones with
vertices at the origin. Suppose, furthermore, that the cones Ki,...,K, are
open. Then, ﬂ?:ll K, = 0 if and only if there exist & € Kf (i=1,...,n+1),
not all zero, such that

&+ b1 =05

where K} is the dual cone of K;:
Kf={teX*:{,zz) >0, Vx € K;}.

Proposition 2.3. [13] Let T be a continuous linear mapping from X into Y.
Assume that

TX+K=Y.
Then there exists a number o > 0 such that
By (O, 1) G OZ(TBX (0, 1) + (K N By (0, 1)))

where Bx(0,1) and By (0,1) are unit balls of X and Y, respectively; K is a
closed convezx cone in Y.

3. Optimization Problems with Pseudo-Invex Objective Functions

Let X be a Banach space and let f be a function defined on X. Let Q1,... ,@Qn+1
be subsets of X. In this section we are concerned with the following problem:

(P1) { zlienigize f(z),

where Q = N Q.

This problem was studied by Dubovitsky and Milyutin [7].

Let Z € Q. Denote by Kj the cone of decreasing directions of f at Z; denote by
Ki,... K, the cones of admissible directions of the inequality-type constraints
Q1,...,Qn at T, respectively; denote by Kn1 the cone of tangent directions of
the equality-type constraint Q41 at Z.

A sufficient condition for optimality can be stated as follows:

Theorem 3.1. Assume that
(a) The function f is locally Lipschitz at Z and it has directional derivative at
T in any directions; f is pseudo-invez at T on @ with the scale function:

w(z,z) =z - I +r(z,I),
where

lr(z,Z)||/llz — || — O whenever |z — z|| — 0;

(b) Q1,... ,Qns+1 are conver sets such that there exists
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ze

=,

(int Qi) N Qny1,

i=1

where int Q; denotes the interior of the set Q; (i =1,... ,n);
(c) There ezist & € K} (i=0,1,...,n+ 1), not all zero, such that

o+& +...+8&+1=0.
Then T is a local minimum of f over Q.

Proof. Suppose that 7 is not a local minimum of the function f over Q. Then,
far every neighborhood B of %, there exists z; € N B such that

f(z1) < f(2). (5)

Especially, taking B = X, the inequality (5) holds for z; € Q.
For A € (0,1) we denote z» := A2+ (1 — A)zy. Fori=1,... ,n + 1, since Q;
is a convex set, £ € Q; and z; € @, it follows that =) € Q;. Hence, z) € Q.
Since £ € int Q;, it follows that z) € intQ; (i =1,... ,n) for any X € (0,1).
In view of the continuity of f, for sufficiently small A > 0,

flzy) < f(@). (6)

According to the hypotheses, f is a pseudo-invex function at Z € Q over Q,
with the scale function

w(z,Z) =z — Z +r(z, 3),

in which ||r(z,Z)|/|lz — Z|| — O as z — Z.

We now prove that, for sufficiently small A > 0, w(z),Z) = z) —~Z+r(z,,Z) €
K.

Assume the contrary that w(xx,Z) € Koy, i.e., w(z),Z) is not a decreasing
direction of f at Z. Then, by virtue of Proposition 2.1, we get

[ (Zw(za, T)) > 0.
By the definition of pseudo-invexity,
f(m/\) > f(j)’

which conflicts with (6).
We now prove that w(zx,Z) € K; (i =1,... ,n+ 1). For € € (0,1) we have
T+ €@y —Z) € Qny1, and

T+ ew(zy,T) =1+ €(ry — )+ er(zy, I).

Hence,
T+ ew(zy,Z) + e(—7(2x,2)) € Qni1,

where 7(z),Z) = of||lz) — Z||).
Consequently, w(zy,Z) is a tangent direction of Qn41 at Z, ie., w(zy,Z) €
Kn+1~
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Moreover, by the aforementioned proof, for each ¢ = 1,... ,n, one has z, €
int @; for sufficiently small A > 0. Therefore,

Z + ew(Tr,Z) =T +€(zr — Z) + er(zy,T) € int @,
for sufficiently small € > 0. Hence,
w(zy, ) € %(intQi -Z)(t=1,...,n).
Since Q; is convex, by Theorem 8.2 of [8], we have

%(intQi——:E) C K; (’L=1, ,n).

So we get
w(zy,Z) € K; (i=1,...,n).
Hence,
n+l
w(z, %) € [) Ki,
=0
or
n+1
[ K: # 0.
i=0

By virtue of Proposition 2.2, one cannot find § € K} (1 =0,1,... ,n+ 1),
not all zero, such that
€0+ &+t Enrr =0,

This contradicts Assumption (c). The proof is complete. n

Remark. It is worth noting that a convex function is invex, and hence it is
pseudo-invex. So Theorem 3.1 is valid for problems with convex objective func-
tions.

4. Optimization Problems with Invex Constraint Functions

Let f be a real-valued function defined on a Banach space X. Let g be a mapping
from X into another Banach space Y and let K be a closed convex cone in Y.
In this section we shall deal with the following problem:

ey {

Denote by M the feasible set of (P2), i.e.,
M:={zeX: g(z) € -K}.

minimize f(z),
subject to g(z) € — K.

Assume that f and g are Fréchet differentiable of first and second-order at
Z € M with first-order Fréchet derivatives f'(Z),¢'(Z) and second-order ones
(z),9" (@)

Denote by Ty (Z) the sequential tangent cone of M at Z:
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Tn — T

1', InEM},

Tu(x) ={veX:v =tljrlr(1)

and denote by Ly (Z) the linearizing cone of M at Z:
Ly@)={veX:g@ve—-Kyl
where
Kyz) = K+ {)\g(Z) : A € R}.
Note that if Kz is closed, then
T (Z) C Ly (2)

(see [13]).
Following [13], the feasible set M is said to be approximated at Z € M by
L (%), if there exists a mapping & : M — Ly (Z) such that, for every z € M,

[€(z) = (z = 2)|| = o(llz — Z|)).

Theorem 4.1. Assume that the mapping g is K-inver at T on M, with respect
to a scale mapping w satisfying:

w(z,z) =z —Z +r(z,I),

where ||r(z,2)||/||lz — Z|| — 0 as x — . Then M is approzimated at T by
LM(E)

Proof. According to the hypothesis, the mapping g is K-invex at Z on M, that
is,

9(z) — 9(z) — ¢/ (@)w(z,Z) €K (Vz € M)
which implies that, for every z € M,
9(2) + ¢'(z)w(z,Z) € K + g(z)
Cc-K-KcC-K,

as K is a closed convex cone.
Hence, for every = € M,

g (@)w(z,z) € —K — g(Z)
C—-K-{)(&): )€ R} =-— ¢(%)>

whence
w(z,Z) € Ly (Z).

So we get a mapping w(., &) : M — Ly (Z) with

w(z,Z) =z — T +r(z,I).
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By hypothesis
lw(z,2) — (z — 2)|| = Ir(z, 2)l| = ofllz — =]),
hence, M is approximated by Ly (Z) at z. m

A sufficient condition for K-invexity can be stated as follows.

Theorem 4.2. Assume that the following stability condition of Robinson-type
18 fulfilled:

0 €int {¢'(Z)X + K}. (7
Then the mapping g is K-inver at T on M with a scale mapping of the form:

w(z,Z) =z —Z+o(flz — Z|).
Proof. Tt is easy to see that condition (7) is equivalent to the condition
JEX+K=Y. (8)
Since g is Fréchet differentiable at Z, we have

9(z) — 9(z) = ¢'(&)(z — 2) + (2, 2),

where ||7(z,Z)||/|lz — Z|| — 0 as z — Z or, the same, r(z,%) = of||x — Z|).
By Proposition 2.3, there exists @ > 0 such that, for every z € M, there
exist elements y = y(z) € —K and z = z(z) € o||r(x, Z)||B(0, 1) such that
r(z,Z) =g (T)z — y.
Putting
w(z,Z)=z—-Z+ 2,

one gets
lw(z,2) - (z - 2)|| < a|r(z,2)]

This implies ||w(z,Z) — (z — Z)|| = o(||lz — Z||).

Moreover,

g (@)w(z,z) = ¢ (Z)(z - %) + ¢'(Z)z
=g'(@)(z-2)+r(z,Z) +y
=g(z) — 9(Z) +y.

Hence,

9(z) - 9(z) - ¢ (F)w(z, %) = —y € K.

Thus ¢ is K-invex at Z with the scale mapping
w(z,Z) =z - Z+r(z,T). n

Denote by L(z,y*,\), the Lagrange function for problem (P2):
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L(z,y*,A) = Af(z) + (y*, 9(2)).

We shall need the following auxiliary result.

Theorem 4.3. [13] Let £ € M. Assume that the following conditions are fulfilled:
(a) The feasible set M is approzimated by Ly (%) at T;
(b) There exists §* € Y* such that

L (z,5*,1) =0,

(7", 9(2)) = 0;
(c) There are numbers 6 > 0 and 8 > 0 such that

Ly, (2,5, 1)(v,v) 2 6]jo])®
(Vv € Ly (Z) 0 {v: (7", g'(@)v) < Bllvll}).
Then, there exist numbers a > 0 and p > 0 such that
f(z) 2 f(@) +alz -2z (Vze MnB(zp),

which means T is a strictly local minimum of Problem(P2), where B(Z; p)
stands for the closed ball around T with radius p > 0.

Now we can formulate second-order sufficient optimality condition for mini-
mization problems with invex constraint functions.

Theorem 4.4. Let T € M. Assume that Assumptions (b), (c) of Theorem 4.3
hold. Suppose, in addition, that the mapping g is K-inver at £ on M with a
scale mapping w satisfying

w(z,Z) =z —-Z+r(z,z) (Ve M),

where ||r(z,Z)||/lz — Z]| — 0 as z — Z. Then there exist numbers a > 0 and
p > 0 such that

f(z) 2 (@) +alz—z|| (Ve MnB(Ep).

Proof. Since the mapping g is K-invex at £ on M, it follows from Theorem 4.1
that M is approximated at Z by La(Z). Then all the hypotheses of Theorem
4.3 are satisfied. Applying this theorem, the conclusion follows. »

Theorem 4.5. Let T € M. Assume that Assumptions (b) and (c) of Theorem
4.3 hold. Suppose, furthermore, that the following condition is fulfilled:

0 €int {¢'(Z)X + K}.
Then there exist numbers a > 0 and p > 0 such that
f(x) 2 f(@) +ollz -zl (Vz € M N B(Z;p)).
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Proof. Due to Theorem 4.2 the mapping g is K-invex at & on M with a scale
mapping w(z,Z) = x — Z +o(||z — Z||). So all the hypotheses of Theorem 4.4 are
fulfilled. Applying this theorem the conclusion follows. "
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