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Abstract. We are concerned with the problem of maximizing a linear function over
the efficient set related to a multiple-ob.iective linear programming problem. Mathe-
maticallv, this problem is classified as a global optimization problem. We propose an
implementable algorithm, which is hoped to be efficient when the number of criteria is
small relative to the number of variables.

l-. Introduction

The following multiple-objective linear programming (MOLP for short) model
is very important in decision-making:

(MOLP) VMAX Cr subject to r € X,

where C is ap x n-matrix and

X : { r  € l R " :  A x 1 b , " > 0 }

with A being an mxn-matrix and b € IR-. We assume that p)_2.
We recall that an efficient solution for problem (MOLP) is a point r0 € X

such that whenever Cn ) Cno for some r, then Cr : Cxo. By Xn we denote
the set of all efficient solutions for (MOLP). The problem of main concern in
this paper is to find r* which maximizes a quantity (d,r) over Xp,i.e.,

( P )  m a x { ( d , n ) : r e X B )

for some d e IR", This problem has received in recent years increasing attention
from researchers since it has many applications in multiple decision-making (see,
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e.g., l2-4,8, 14,...]). The interested reader is referred to [2] for discussions on
this subject.

Since X6 is non-convex, problem (P) is classified as a global optimization
problem. However, by contrast with other global optimization problems having
non-convex feasible domain, a feasible point of problem (P) can be easily found
by solving a linear program. More precisely, for sufficiently Iarge M, there exists
a simplex

A : {)  € IRP :  )  )  e,  (e,^ l  < M} ( 1 )

(e :  (1,  . . . ,  1)  € Re) such that  ro
to the problem

(P.r)

e Xn if and only if r0 is an optimal solution

m a x { \ r C n t r e X }

for some ,\ e A. Using this fact, Philip in [11] briefly outlined a cutting plane
procedure for solving (P). This procedure requires finding all efficient extreme
points which Iie on this cutting plane in the newly created polyhedron. However,
it is not clear how this main step can be implemented.

Recently, two implementable methods were developed by Benson in [2,3],
which are based on the fact that problem (P) is equivalent to the following
infinitely constrained non-convex optimization problem, denoted bv (Q),

max{(d,  r )  :  \TCr ) -  \ 'Ca,Vy e X,  r  €  X,  )  e  A} .

The only drawback is that in both algorithms, at each step we have to deal
with a bilinear programming problem. Alternatively, Muu in [9] proposed to
formulate problem (Q) bv a convex-concave programming problem

(a) max{ (d ,z )  :9 ( ) )  -  \ rCr  10 ,  n  e  X ,  )  e  A} ,

wnere

s ( r )  :max { \ rCy :yex }  (2 )

is a piecewise-linear convex function, A branch-and-bound algorithm was then
developed, where the simplicial subdivision process is performed in IRp, so Muu's
method is hoped to be efficient if the number of criteria is relatively small with
regard to the number of variables (i.e., n ) p). Some cutting plane methods were
proposed in [6] and [7] for solving (P) in the case when X may be unbounded and
when the objective function can be concave, respectively. Interesting dimension
reduction algorithms were described in [10] that involve only ,k variables, where
k is the rank of the matrix C. Recently, another approach using so-called. d.c.
optimization algorithms were studied in [1]. Despite the efficiency of reported
numerical experiences, it is not clear that a global optimal solution must be
found by these methods.

The purpose of this paper is to develop an algorithm for solving (P) which
is hoped to be efficient in the case rr, ) p. The idea underlying the algorithm is
to use bisection search scheme for locating the optimal value of the considered
problem (cf. [12]). More precisely, starting from an interval ho,0ol containing
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the optimal value d* of (P) we shall reduce this interval each time by half by
solving the following problem:

(P* ) Find r € Xp such that (d, r) ) ap,

where an : ?yx + gt)12. This procedure repeats until 0r -'lx 1 e. It is easily
seen that this procedure is finite.

Bisection search has been successfully applied by the authors to elaborate
algorithms for solving the problems whose feasible set is defined by a system of
d.c. inequalities [12], in particular by a system of quadratic functions. The idea
of bisection search for problem (P) is not new. The interested reader is referred
to two algorithms developed by Benson in [4] and [5] for optimizing over the
weakly effic'ient set and for the case where d is linearly dependent on the rows
of C respectively. It should be noted that in both mentioned methods, the
main computational burden involves concave minimization (or the same) convex
maximization) problems whose objective functions are defined implicitly.

In our method, solving (Pr) at each step is reduced to check the feasibility
of the set

X f r o : { r e  X B : ( d , r )  2 a r } .

Our main contribution is to develop an efficient outer approximation proce-

dure for this problem, which can be easily incorporated into the bisection scheme.
As a result we obtain a bisection search algorithm which does not require solving
completely (Pp) at each step. We first show that Xfik can be identified with a

subset of A which can be viewed as the projection of a difference of two convex
sets (i.e., d.c, set). Thus, solving (Pr ) amounts to finding a point of this d.c. set
and the outer approximation algorithm for solving d.c, feasibility problem, de-
veloped in our early works (cf. e.g. [12]) can be applied. The advantage of this
method is that it works in the pdimensional space so it is hoped that it will be
efficient if the number of criteria is small relative to the number of variables.

In the next section we shall describe the outer approximation procedure for
solving subproplems (P*). The bisection search algorithm for solving (P) is
discussed in Sec. 3. Finally in Sec. 4, we illustrate the algorithm by a small
example.

2. Outer Approximation Procedure for Solving (Pr)

Recall that r € XB if there is a.\ e A such that

\ r C r : m a x { \ r C y t a € X }

so, for a given o, we have

X f i : { r € X p : ( d , r ) > a }

:  { r  €  X  :  (d , r )  2  a , }  €  A ,  \ r  Cr  >  \ '  Ca,Vy  e  X} .

219



220 Thai Quynh Phong and. Hoang Quang Tugen

This section is devoted to the problem of finding a point z € Xfi. Using
function 9(') defined via (2), we can rewrite Xfr u

X f i : f u e X : ( d , r ) ) a , 9 ( ) ) <  \ r C n , ) e A ) .  ( 3 )

Let us introduce the function

h" ()) : max{\r Cr : n € X, (d',n) > a}. (4)

It is easy to see the following properties of the function h"(,\).

Proposition L. The function h" (,\) is a p'iecewise linear conuen funct'ion in RP
whi,ch is decreasing in a, i.e.,

a < a' + h"(l) ) ho,()), V,\ e IR.P.

Moreouer, if d^in and d^u* are the rninimum and maximum of (d,n) on X,
respectiuely, then we haue

o  h " ( ) )  : 9 ( ) )  f o r  a l l  a  1d^ in ,
o h"( , \ )  S g() )  i f  d^ in 1a 1 d^u*.

By setting

O :  { ( ) , t )  e  R e  x  I R :  )  €  A , 9 ( ) ) - t . 0 } ,  ( 5 )

O o : { ( . \ , t )  e  P r  x l R . : t - h " ( ) )  > 0 } ,  ( 6 )

we obtain two convex sets O, Oo such that O C Oo and the following:

Propos i t i on2 .  X f i *A+  O\O"  10 .

Prool. Suppose that n e Xfr. Then there exists a .\ € A such that 9()) < \r Cr.
By taking t : S()) we have

t < \ r C x , r € X ,  ( d , r ) > a

that implies
t ( max{)" Cr : r e X, (d,r) > o} : h" ()).

Thus () , t )  e O \  Oo, i .e. ,  O \  Cr" I  0.
Conversely, assume that (),t) e O\O". By definition we have

e ( ) )  < t ,  ) € A  a n d  t ( h " ( l ) .  ( 7 )

Denoting by z the maximizer of the problem (4), we have

t < h.(^) :  ^r  Cr,  \d, ,)  2 a, x e X,

and in view of (7),

9\^) < \rCr,  t r  € A, (d,")  2 a, r  € X,

which means (2,,\) € Xfr, i.e., Xfi I A.
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Thus, solving (Pr) is reduced to finding an element of the d.c. set (-)\Oo.

The idea underlying our method is to construct a sequence of polyhedral convex
sets ,9; approximating f,) more and more closely from outside in such a way that
u : (0, 1) is a unique direction of recession of ,56, i.e., the recession cone of ,56
has the form

O *  S p  :  { 0 u :  u :  ( 0 , 1 ) ,  d  >  0 } .

Let Vp be the vertex set of ,56 and define

Wk :  { (^ , t )  e  Vk :  t  -  ho() )  < 0} .

Lemma l .  I f  Wr : f i ,  t hen  C I  \  O .  : 0 .

Proof. Since Sr has only one recession direction along axis f, from 113], one has
that

min{ i  -  h"( . \ )  :  ( ) , t )  €  Sr}  :  min{ f  -  h"( ) )  :  ( I , l )  e  V6} .

Therefore, Wn :0 implies that

min{ t  -  h"( ) )  :  ( ) , t )  €  V*}  > 0

or  
min{ f  -  h"( ) )  :  ( , \ , t )  €  Sr}  > o.

This means,  for  a l l  ( ) , r )  €  O,  we have t -  ho( l )  > 0 or  O\  Qo :4.

Thus, if Wt : A, then Xfi : 0. Otherwise we can choose a (Ak,t1,) eW1,.

o  I f  ( ) k , t x )  e  O ,  i . e . ,  t r k  e  A  and  9 ( ) k )  (  t 6 ,  t hen  ( ) k , t r )  €  O \O"  and  an
optimal solution rk of the linear program

max{( . lk) rCr i  n  e X,  (d, r )  < a}

will belong to Xfi.

o Otherwise denote by yk an optimal solution of the Iinear program

max{ ( ) k ) rCy :  s  e  X } .

Then the hyperplane {(),t) : ^rCyk - t:0} wil l separate strictly (I*,i*)
from Q. We define 5r+r as a subset of Sp defined by this hyperplane.

By repeating the above procedure we generate a sequence of polyhedral sets

C I  C  . . .  C  ^ 9 *  C . . .  C , 9 r  C  ^ 9 0

a longw i thasequenceo f  po in t s ( "0 , t 0 ) ,  ( " r , t r ) , . . . , ( *n , t s ) , . . .  such tha t  ( r f t , t p )  e

The choice of (.\k,f;) can be done at least by one of the following methods:
(1) For each A € A, denote by z1 an optimal solution of the problem (P1 ). Then

we can take

( t r u , t * ) €  a r g m a x { ( d , r s l :  ( A , t )  €  W h } .

This choice may be useful because we wish to maximize (d, r) over X B .
(2) ()*,f7,) solves the following problem:
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d:  min{ t  -  h"(^)  :  ( . \ , i )  aVx} .

It should be noted that if 0 > 0, then Wn : A.

The above discussion leads to the following algorithm for solving (P6).

OA Procedure

Initialization. Take u € X : Cu *0. Set

56 :  { ( ) , t )  :  )  e  L,  \ rCu < t }

and denote by Vo the vertex set of Se. Set k:0.

I terat ion k :0,1, . . .

(1) Solve the problem

d :  min{ t  -  h .  ( } )  :  ( ) , , t )  e  Vp}

for 0,\k,t; where h"()) is defined via (4). If P > 0, then stop: Xfr :A o,
(Pp) has no solution. Otherwise go to 2.

(2) Solve the linear program

max{ ( I k ) "Cy :  s  e  X )

to obtain an optimal solution yk and the optimal value 4. If q < ts, then
stop: ()k,t;,) e Q \ Oo and XE + A. Otherwise go to 3.

3) Set
Sk+r : ^9k n {(^, il |  ̂ r Cyk < t.

Compute the vertex set VE of ,Sr and go to 1.

Since g()) is a piecewise linear convex function, O is a polyhedral convex set
in IRp+l. By construction, Sp is a polyhedral convex set approximating O from
outside such that S6a1 is obtained from .9r by adding a cutting plane t : ^T CAk .
Note that yk is a vertex of the polytope X whose number is finite, so Step 3 in
the above algorithm cannot repeat infinitely many times. We have the following

Proposition 3. OA procedure terminates after a finite nurnber of steps either
yi,elding a solut'ion to (P1,) or showing that it has no solution.

Comment.

1. Denote by rk a solution of problem (4). Then if r7 < tp in step 2, we have
rl e Xg. Note that, in general, rft needs not be a vertex of X. The point

A* € Xn fl X"" but need not belong to Xft.

2. It is not difficult to see that the above procedure is in fact an outer approxi-
mation algorithm for minimizing a concave function t - h' (I) over a convex
set  { ( ) , t ) :  A e A,  g() ) - t  < 0}  which isequivalent tothefo l lowingproblem:

m i n i e ( I )  - h " ( ) )  : ) e A ) .

The advantage of the above procedure is that it can be easily incorporated into
the bisection search scheme. As a result we shall obtain an algorithm for solving
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problem (P) without requiring solving completely a subproblem (Pr) at each
iteration.

3. Bisection Search Algorithm

Now we are in position to describe the algorithm for solving (P),

Algorithm

Initialization. Find any point r0 e XBf)X",.Set 7s: (d,r0) and

0 :  d^u* :  max { (d ,  n )  :  n  e  X } .

Define
, 9 s : { ( ) , t )  : ) e  L , ^ r c f  < t }

and compute the vertex set Vs of ^9s, Chose e ) 0 and set zoPt : n0, k:0.

I t e ra t i on  k  : 0 ,  1 , . , .

kIIf Bk -1x 1e, then stop. Otherwise go to Step k2,

k2 Let on : 712(0x * lr) and solve the problem

0 : min{t - h"* (}) : (.\, t) € Vp }

t o  ob ta in  0 , \ k , t 1 r .

k3 If. 0 ) 0, then set

,S*+r  :  Sx,  Vx+t  :  Vx,  \x+t  :  ak,  ^Yk+t  : ' fk

and k : k + 1. Go to Step ,k1.

k4 Otherwise, find and optimal solution yk and the optimal value 4 to the linear
program

max{ ( I k ) rCs :  y  e  X } .

If. 11 1tp, find the best efficient point r"Pt and set

S t + r  : , S t '  V k + t : V n ,  \ U + t :  a k ,  1 k + L :  ( d , r o P t ) '

Set k : k+ 1 and go to Step kl.

k5 If rl ) t6 then set

gx+ t  :  A * ,  . yx+ t  :  j * ,  S t  + t :  S r  [ l { ( I , r )  :  A rCyk  < t } .

Compute the vertex set V6 of .9r. Set k: k* 1 and go to Step k2.

Theorem 1. The B'isection Search Algorithm finds an approximately optimal
solution for problem (P) after a fini,te number of iterations. If at each'iteration
we choose roPt to be a uerten of X, then, for e sufficientlg small, the obtained
solution is an eract optirnal solution.

Proof. The finiteness of the Algorithm follows from the finiteness of the bisection
scheme and the OA procedure for solving (Pr).
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Suppose that r"pt is chosen to be a vertex and d* is the optimal value.
We want to prove that, for e sufficiently small, r"Pt is exact in the sense that
(d, r "Pr)  -  d* ,

First we observe that if we denote by

V* :  {n € XB n X",  :  (d, r )  :  d*} ,  (8)

then for all y e XB )X", which do not belong V* wemust have d* - (d',Al >- 6

for some 6 > 0. In fact, from (8) we have

d *  > A : m a x { ( d , r ) : r €  c o n v [ ( X 6  n X " " )  \ y - ] ]

that means for all A e (Xn n X"') \ I/* we have

d *  - ( d , y ) > d .  - d : 6 > 0 ,

It is easy to see that, for e 16, if the algorithm terminates at Step kl, then
there does not exist arry A e (Xn n X"") \ V* such that (d, A) e llx,pt]. Thus
we must have 76 : troPt : d* that completes the proof. I

Comment. Usually in k4 we take z"Pt to be an optimal solution rk of the linear
program

max{()k)"Cr i  n  € X,  \d ,n)  > o,k}

which may not be a vertex of X. We can get an efficient point better than rk
that is a vertex by using Local Optimum Search Procedure proposed by Benson
in [4]. This procedure is based in the fact that X; is simply connected, i.e', if
an efficient point r belongs to some efficient edge e of X' then e C X6. If zk is
not a vertex, then we can find an extreme point of the edge containing u k which
is better than r&, i.e., a point A e Xn OX", such that (d, y) > (d',zft) ' Further,

for each efficient edge emanating from 3r, if there is an extreme point y' such
that (d, A') > (d,,y), then we set y: At.This process is continued unti l y cannot

be improved.

4. Example

Consider a small example. We want to maximize frt - 12 * 13 over the efficient

set of the vector optimization problem

max{r1 - ts, nz}

subject to

f r t  *  n z <  3 ,  0  (  1 1  (  2 ,  0  I  1 2  < . 2 , 0  I  r z  3 2 .

Let us define
-11
0 l

^  f r  od : ( 1 , - 1 ,  1 ) ,  
" : L o  1

and
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D  :  { ( * t , n z , r s )  i  n r  - f  r z  (  3 ,  0  1  1 1  1 2 ,  0  (  r z  1 2 , 0  <  4  < 2 } .

Initial'izat'ion. We take

A  :  { ( ) r ,  12 )  :  ) 1  *  } z  (  10 ,  ) 1 ,  ) z  >  0 } .

By solving

m a x { ( d , r ) : r e D } ,

we get an upper bound go:4. For )0 : (10,10), we solve

max { ( )o ) "C r :  r  €  D }

to obtain an efficient point r0 : (I,2,0). We set 7s 
- (d,*0) - -1, noPt :

( 1 , 2 , 0 ) .
We define

. 9 6 :  { ( ) , t )  :  )  e  A ,  ) 1  * ) 2  - t  <  0 }

and compute the vertex set

V s :  { a L :  ( 1 ,  1 ,  3 ) ,  u 2  :  ( 1 ,  9 ,  1 g ) ,  , 3  :  ( g ,  l ,  1 1 ) } .

I terat ion 1.  Let  os :  1 .5,  For  u l  :  ( )1, t1)  :  (1,1,3)  we solve the l inear
program

m a x . { ^ l C x i n e D )  ( d , r )  )  1 . 5 }

to get h"o()o) : 2.5 so t1 - h"s(.\ l) - 3 - 2.5 : 0.5. Analogously for other
vertices we compute tz - hoo()') : 4 and ts - hoo()3) : -7.5. Since

min { t  -  h , .  (A )  :  o  :  ( ) ,  t )  eUo :  -7 .5  <  0 }

at )3 : (9, 1), we solve

max { ( )3 ) rC r :  r  e  D )

to obtain yt : (2,1, 0) and construct a new constraint

h ( . \ ' t ) : 2 ) t * ) 2 - r < 0 .

Set ,9 r  :  So  f l { (A , t )  : 11 ( ) , t )  <  0 }  and  compu te

V 1 :  { u t  
-  ( 1 ,  1 ,  3 ) ,  u 2  :  ( 1 , 9 ,  1 9 ) ,  t 3  :  ( 9 ,  1 ,  1 g ) ,  o a  :  ( b ,  b ,  1 b ) } .

We set At : 4, ?r : -1.

Iteration 2, Let ar : 1.5. Analogously, we compute

min{ i  -  h" ,  ( l )  '  ,  :  ( ) ,  t )  € I /1} :0.5 > 0.

Since 0.5 ) 0, we set ,92 : St, Vz : I/1, and 0z : I.5, 'lz : -I.

With e - 0.1, the algorithm terminates after 11 iterations proving that
troPt : (1, 2, 0) is in fact the optimal solution of the considered problem.
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