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Abstract. In this article we will give a survcy on some recent research on associated

and coassociated primes. Some open questions and further dircctions of rcsearch arc

presented.

1. Associated Primes

The earliest impulse toward the development of what is now commutative algebra

came from the desire of number theorists to make use of unique factorization

in rings of integers in number fields other than Q. When it became clear that

unique factorization does not always hold, the search for the strongest availablc

alternative began. The theory of primary decomposition is the direct result of

that search.
Let R be a commutative ring and let M be a non-zero R-module. A non-zero

submodule Q of M is called primary if' for cach o e J?,__!}t9 -g]lllication by

a on MIQ is either injective or nilpotent' Then p : /(AnnWlA) is a prime

ideal and Q is called p-primary. We say that M has a primary decomposition

i f  there is  a f in i te  number of  pr imary srrbmodules Qr,Qz, ' . . ,Qn such that  0 :

QrOQzn. . 'n Q,. One may assume that the prime ideals Pi : \KArrrl(AI lq),
' i  : \,2,. . . ,n, are all distinct and, by omitting the redundant components, that

the decomposition is minimal. Then the set of prime ideals {p1 ,F2, . . ., p' } does

not depend on the decomposition, and it is called the set of associated prime

idealsand is denoted by Ass*(M). It M isa Noetherian lt-module, then M has

* This research was supported in part by a grant from University of Tehran, Iran.
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a primary decomposition. Note that the set of rR-modules that have primary
decomposition strictly contains the set of Noetherian r?-modules. (In [15] Iroze
and Rush studied several notions of the associated primes of modules over a
commutative ring.)

For a commutative Noetherian ring .R, the set of associated prime 'ideals of
M is denoted by Ass(M) and it is the set of prime ideals p such that there exists
r € M with the annihilator Ann(z) equal to p. In this case, it is easy to see that

Assp(M) : {p e Spec(ft)lp : Ann(r)for some non-zero element r € M}

: {p e Spec(R)lp : Ann(C) for some non-zero cyclic submodule C of M}

: {p e Spec(ft)lp : Ann(N) for some non-zero Noetherian submodule N of M}

: {p e Spec(rR)lp :Z(K) for some irreducible submodule K of M}.

Here 1( is'irreducible if, for any submodules X and Y of K with 0 : Xt-lY, either
X : 0 or Y :0. AIso, Z(K) denotes the set of zero divisors of K. Let Z(M)

the set of the elements r € R such that, the homothety M \ M is not injective,
nil(M) be the set of elements r € ft such that for each cyclic submodule .A/ of
M, there exists n € N with r'N : 0.

The basic properties of associated primes are collected in the next theorem.

Theorem l.L. Let R be a Noetherian ring. Then the followi'ng hold:

0 A M is a fini,telg generated R-module, then Ass(M): Ass*(M);

(ii) Ass(M) is non-empty if and, only if M is non-zerol

( i i i )  #0- .  K -  M -  L-0 is  a shor t  eractsequence,  then

Ass(K) e Ass(M) I Ass(lf) u Ass(I);

( i v )  Z (M) :  Upe  . r , " . 1u ;F i
(v)  n i l (M) :  |pe , r , . .1 , r2;F i

(vi) f S is a multi,pli,cati,ue closed system of R, then

Asss - ,  n6 - 'M) :  { r , 9 -1 f t 1p  e  Ass (M)  w i t hpn .g :0 } .

Now assume ft is a commutative (not necessarily Noetherian) ring. For a
Noetherian module M over R we can change the ring iR to the ring rR/Ann(M)
which is Noetherian and prove all the properties in Theorem 1. Thus, for any
Noetherian R-module M, we have Ass*(M) : Ass(M). Therefore, the new
notion works for a Iarger set than the set of Noetherian R-modules.

For not necessarily Noetherian modules, the associated primes do not behave
so well. For example, there exist non-trivial modules without associated primes
(see Example 1). In [4] Bourbaki have introduced the notion of. weakly associated
prime 'ideals of. M over R. A prime ideal p is called weakly associated to M if

there exists an element r €. M such that p is a prime ideal which is minimal
among the prime ideals containing the annihilator Ann(r). The set of weakly
associated primes of M is denoted by Afls(M). In [4, p.165-166], Bourbaki gave

the following properties of weakly associated primes:
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Theorern L.2. With notation as aboue, the following hold:

(i) Ass(M) ! Ais(M) e Supp(M);

(i i) For any decomposable module M, we haue A{sp(M) : Assh(M) (cf. 136,
Lemma 1.31) ;

(iii) Ass(M) : Afls(M) if R is a Noetherianring, hence Ass(M) : Ass(M) if
M ' is a Noetherian R-module (cf. 136]);

(iv) As6(M) 'is non-empty if and onlg i,f M is non-zero;

(") # 0 -- K ---+ M ---+ L is a short eract sequence, then

A' . (K)  q Ass(M) !  A is( I f )u As( I ) ;

(v i )  Z(M) :  UruaGl,vryF;

(v i i )  n i l (M) :  lp6afr lyy F i

(viii) f S is a multiplicatiue closed system of R, then

Aflss-, R6-r M) : {pS-1Rlp e Afrs(M) with p f\ S : 0}.

The next example shows that the inclusion Ass(M) ! Afrs(M) can be strict.

Eaample 1. Let k be a field and consider the ring R: kN (direct product). Set
q : /c(N) (direct sum) which is an ideal of R. Set M : Rlq. We claim that
A s s ( M )  i s e m p t y .  A s s u m e t h a t p  e  A s s ( M ) .  T h e n  o  C p :  ( o : r )  f o r s o m c
r ( o. It is easy to find two elements s and t of -rR such that sr, tr ( o and st : 0.
Since str:0 we have sf € F. But s f p and t (p and this is a contradiction.

It seems that the next result is the best one to date concerning the equality
of weakly associated and associated primes.

Proposition 1-.3. l37l Let M be an R-module and let each weaklg assoc'iated
prime'ideal of M be finitely generated. Then Assp(M) : Aisn(M).

The next example shows that there exist a non-Noetherian ring and a non-
Noetherian module over it such that the set of associated primes and weakly
associated orimes of that module are equal.

Example 2. Let D be a domain that is non-Noetherian and let 1( be its field
of quotients. Then Afls2(K) : {0}. Thus Assp(l() : Aisp(I{) but D is a
non-Noetherian ring and lf is a non-Noetherian module.

2. Filtration

Let R be a Noetherian ring and let M be a finitely generated R-module. It is well
known that there exists a chain 0 : Mo C Mt C ". C Mn : M of submodules
of M together with prime ideals Ft,Fz, . . . ,Fn such that Mt lMt-t = AlFe for all
1 < i < n, cf. [19, 6.4] and lI4, 3.71. It is also well known that the associated
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primes of M arc among the primes pi appearing in the above filtration. In [14,
p.93], Eisenbud asked which modules M admit a filtration (as above) where, in
addition, every pi is an associated prime of M. (In [17] Li answered this question
in some special cases.) Such modules are called clean. It is noted in [14, p. 93]
that when .R is a domain and M is a torsion free R-module, M is clean if and
only if M is free.

Now assume E is a (not necessarily Noetherian) commutative ring and M
is an R-module. We say that the -R-module M has a weakly associated prime

filtration (WAPF for short) if there exists a chain 0 - Mo C M1 C ..- C
Mn - M of submodules of M together with prime ideals Ft,Fz,,..,p' such
that Ais(M6 lM,-t) : {pr} for all | < i < n. In this case we have Afls(M) c

{Ft,pz.:.F,} by [35, 1.1]. We say that the rR-module M has a clean weakly
assoc'iated prime filtration (CWAPF for short) if there exists WAPF such that

The next example shows that CWAPF is not unique.

Example 3. Suppose p is a prime ideal of .R and g@lp) is the injective envelope
of the domain Rlp. By using Theorem 1.2 we have ASs(E(Rlp)): {p}. There-
fore, 0 e E(A/p) is a CWAPF of E(.R/p). In addition, 0 e Rlp C E(R/p) is a
CWAPF.

Theorem 2.1. Let M be an R-module. Thenl[{s(M)l < * if and only i,f the
m o d u l e M h a s a C W A P F .

3. Hom and Tensor Functors

In [4] Bourbaki proved the following theorem.

Theorem 3.'1,. Suppose R is a Noetherian ring. If M is a finitely generated
R-module, then lor any R-module N, we haue

Assa(Homp(M,N)) :  {p e Assa(N) lq gp for  sorneq e Assa(M)} .

The next example shows that the above theorem is not valid if we replace
Ass by Afls.

Example /1. Let R and M be the same as in Example 1. Assume that m €
Ais(M). Then m belongs to the set Max(R) of maximal ideals of ft since the
ring rR is von Neumann regular. Since m I Ass(M) we have Hom(-rR/m, M) : O.

Proposition 3.2. 136] Let M and N be R-m,odules. If Homft(M, N) 10, then
there existsp € Ass(M) such that p 9 q for sorne q e Aflsa(N).

In special cases Theorem 3.1 is valid for non-Noetherian rings. For example,
we have the following result.
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Proposition 3.3. [I0] Let Q be a projectiue R-rnodule and let N be a Noetherian
R-module. Then

Assa (Hom6(8 , l / ) ) :  { p .  Ass6 ( l / ) l p  I  q  f o r  someq  e  A f r sa (Q) }

4. Change of Rings

In th is  sect ion le tg:  R -  Sbear inghomomorphism and let  Mbea S-module.

Theorem 4.1. l19l Let R and S be Noetherianrings. If M is afinitelgl generated
S-module, then Assp(M) : {p-' (p) lp e Asss(M)}.

The following theorem is a generalization of Theorem 4.1.

Theorem 4.2. l37l Let M be a S-module. Then

{p- ' (p)  lp  e Asss(M)}  e Assn(M) c AsFrf t (M) g { ,p- ' (p) lp  e Aiss(M)} .

The inclusion in Theorem 4.2 may be strict (see [37, p. 2009]). It is clear
that we have equalities in all steps if Asss(M) : Afrss(M). For example, if ,9
is a Noetherian ring or M is a Noetherian ,9-module, then we have equalitics
in all steps. In addition, if each of the elements in the set Aflss(M) arc finitely
generated ideal, then we have equalities in all steps.

The ^9-module M is called ,S-fine if Aiss(M) : Asss(M). T[re next theorem
is a generalization of Proposition 3.3.

Theorem 4.3. [37] Let M be an S-fine module that' is decomposable. Then for
ang projectiue R-module Q,

ASss (Homa(Q,M) ) :  {R  e  A f r ss (M) lp - t (p )  )  q  f o r  so rneq  e  A f i sa (Q) }

5. Asymptotic Associated Primes

In [5] Brodmann showed that if rR is Noetherian and M is a finitely generated
.l?-module, then the sets Asss(MloM) and Ass({Mf o"+1 M) are independent
of n for all large n. This was in response to a question of Ratliff who had shown
in [28] that the sets Ass(,R/oh) are non-decreasing with n and constant for large
n, where the bar denotes integral closure. Let As# (o, M) and Bs# (r, M) denote
their ult imate constant values respectively. Then As# (o,M) - Bs#(o, M) S
Ass(M) [21, Corollary 13]. There are several attempts to extend the above
result. We list some of them.

Theorem 5.1.  [16]  Let  11,12, . . . ,1"  be ideals of  the r ing R,  M a Noether ian
R-module,  and N a submodule of  M .  I f  ( t * ( l ) , t * (2) ,  . . . , t -  (s) ) -ex ?.s a seq'uer lce
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of s-tuples of non-negat'iue integers whi,ch is non-decreasing in the sense that

tr(i l  3 tr+{j) for att j : 7,2, . . ., s and,all i  e N, then Assp(M I f i" 
{t l . . . 1:" 

(") 
lr)

is independent of n for all large n.

Theorem 5.2. [31] If M is a Noetherian module and, N is a submod,ule of M,

then the sequence Ass(o" Mf { N) 'is constant for large n.

Theorem 5.3. [23] If R is Noetherian and M is a fi'nitely generated R-module,

then, for a giuen i ) 0, the sequences of finite sets of associated primes

Ass(Torf (,R ls" , M)) and Ass(TorP (r" lo"*' , M)) become 'independent of n for
large n.

Theorem 5.4. [10] If Q X a projectiue R-module, M a Noetherian R-module

and N a submodule of M, then the two sequences of associated primes

Ass(Hom(Q, M)f o"Hom(Q, N)) arzd Ass(o"Hom(Q, M)lo"Hom(Q, N)) become

euentually constant.

Proposition 5.5. [10] .I/ R is Noetherian, Q a projectiue R-module and M

a finitetg generated R-module then, for each i ) 0, the two sequences of sets

of assoc'iated, primes Ass(Torf (,R f o" ,Hom(Q , M))) and Ass(To rf; (o" f o"+1 ,
Hom(Q, N))) become euentually constant.

(For the functorial generalizations of Theorem 5,4 and Proposition 5.5, see

[13] . )

Theorem 5.6. [1] If R is Noetherian and M is a finitely generated R-module,
then the ,"qu"r"it of sets Ass(MeN/o"(MoN)) and Ass(t"(MAN)lo"+r(MA
N)) are ultimately constant in the following cases:

(i) N is a finitelg generated R-module'

(ii) N is an injectiue R-rnodule,

(iii) ,A,r is an Artinian R-module.

(iv) N i.s a flat R-module.

Proposition 5.7. lll Let R be a Noetherian ring and let M be a finitely gen-
erated R-module, N an Artinian R-mod,ule, and F a fl'at R-rnod'ule' Then for a
giueni) 0, the sequences of the sets of assoc'iated, primes Ass(Torfl(,Rf o",N I
F)) and Ass(Torf;(o" /on*',N S F.)) are ult' imatelg constant.

Let M be an -R-module and let o be a proper ideal of rR. Set R: gr6(-rR) :

@nros" /sn*l , and 111 : gro(M) - gn>so"Mf on+\ M' Then R is a graded ring
and M is a graded R-module. Let tp : R -- R denote the composition of the
natural homomorphisms E - Rls --+ R.

Theorem 5.8. [39] If the setA{sn(M) is finite, thenthe setlJ,'o A{IR(Mf s"+r
M) is finite,
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We have

A{sp(t"Mlo"+1M) e ASsn(,e4) e {v-' (p)lp e Afrsr1(M)}.

Question 5.9. Is the sequence of sets A{IR(Mf s"+ 1M) independent of n for n
large enough if the set A{sn(M) is finite?

6. Attached Primes

There have been several attempts to dualize the theory of associated primes. The
first one was made by Macdonald in [18] by defining the set of attached prime
ideals and secondary representation of a module, which is (in certain sense) a
dual to the theory of associated prime ideals and primary decomposition. A
non-zero -R-module M is called secondary if, for each a € R, multiplication by
a on M is either surjective or nilpotent. Then nil(M) - p is a prime ideal
and, M is called p-secondary. We say that M has a secondary representation
(representable) if there is a finite number of secondary submodules St, Sz,. . . , ̂ 9,
such that  M :  St  *^92 * . . .+S".  One may assume that  the pr ime ideals
ni l (Sr)  :  p i l i  :  7 ,2, . . .1r1,  are a l l  d is t inct  and,  by omit t ing the redundant
summands, that the representation is minimal. Then the set of prime ideals

{pr,Fz,...,pr} does not depend on the representation, and it is called the set
of attached prime ideals and is denoted by Coass* (M) (in [18] it is denoted by
At t (M)) .

In [18] Macdonald showed that every Artinian R-module is representable.
But the set of representable R-modules strictly contains the set of Artinian
.R-modules. For example, the injective modules over Noetherian ring are repre-
sentable (cf. [32]). This result was extended by Ansari and Sharp.

Theorem 6.1. [2, Theorem 2.7) Let R be a Noetherian ri,ng, M a finitelg
generated, R-module and E an injectiue R-module. ThenHomp(M,E) is a rep-
resentable R-module,

In 122] Melkersson and Schenzel succeeded to drop the Noetherian condition
for R:

Theorem 6.2. [22] Let R be a ring, M a Noetherian R-module, and E an
injectiue R-module. ThenHomp(M,E) is a representable R-module.

In addition there are other attempts to find more representable modules. For
example, we have the following theorems.

Theorem 6.3. 126) II R is a Noetherian ring, M an Artinian, and F a fiat
R-modules, then the module Hom(.F, M) is representable.

Question 6.4. Let fi be a Noetherian ring, M a representable R-module, and
F a flat R-module. Is the module Hom(F, M) representable?

207



202 Siamak Yassem,i

The attached primes is particularly well-behaved when M has a secondary

representation. However, in general this theory is not completely satisfactory'

7. Coassociated Primes

X : N o r Y : N . )

The next attempt was made by Zoshinger in [40,41]. He defined coassociated

primes of the ft-module M to be the set of prime ideals such that there exists

an Artinian homomorphic image L of. M with p : Ann(tr)' He noted that

this definition is equivalent to Chambless' definition, and gave some related

fundamental results about this concept.

Finally, in [35] the present author introduced the concept of cocyclic modules

which is a dual to cyclic modules, and we used it to define coassociated prime

ideals of modules over Noetherian rings. Then in [36] we extended this notion

for modules over commutative (not necessarily Noetherian) rings.

Definit ion 7.L. An R-mod,ule L is said,to be cocyclic if L is' isomorphic to a

submodule of E(Rln) for some m € Max(R).

Remark,l, If (,R,m) is a complete local Noethe ing then M is cocyclic if

and only if there exists an ideal o of R such that Homp (,R/o, E(n/m)) (cf'

[35, Remark after (1.2)]).

It is well known that every finitely generated module is a homomorphic image

of a finite direct sum of cyclic submodules of itself. An R-module M is said to be

finitely cogenerated (the dual notion of finitely generated) if E(M) is isomorphic

to a direci sum of finitely many injective envelope of simple modules. Now we

bring a dual of this result.

Theorern 7.2. l38l Euerg finitelg cogenerated module can be embedded in a

finite d,i,rect sum of cocyclic homomorphic images of itself'

Theorem 7.3. [38] BuerE cocyclic R-module is Artinian (resp. Noetherian) if

and, only r'f Rn i's Noetherian (resp. Artinian) for eueram e Max(R)'

There is a characterization of von Neumann regular rings with using cocyclic

modules.

Theorem 7.4. 138) The ring R is uon Neumann regular if and onlg if each

cocyclic R-module is simPle.
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Definition 7.5. Let M be an R-mod,ule. A prime ideal p of R is called, a
coassociated (resp. weaklg coassociated) prime of M if there erists a cocyclic
homomorphic image L of M such that F : Ann(tr) (resp. p e Min(Ann(I)/,
the minirnal prime id,eals contain Ann(I). The set of coassociated (resp. weaklg
coassociated) prime ideals of M is d.enoted' by Coass(M) (rup. C6itss(M)).

Definition 7.6. Let M be an R-module. The cosupport of M, written as
Cosupp(M) , is the set of prime ideals p such that there exists a cocyclic ho-
momorphic image L of M withp f Ann(.L).

The following theorem is an important tool in the study of coassociated
prime ideals.

Theorem 7.7. 136l Let M be an R-module. The following are equiualent:

(i) p e C5ds's(M);
(i i) Thereexistsm € Max(,R) containingp suchthatp e Afls(Homa(M,E(rR/m))).

Theorem 7.8. [35] Consider the following statements:

(i) p e Ass(M);
(ii) There etists m e Max(R) containing p such that p e CG-ss(Homa (M,

e(n/m))). For any R-module M, (i) 'implies (ii) and if M is Noetherian,
then (ii) impli.es (i).

Denote by W(M) the set of the elements r e R such that the homothety

M \ M is not surjective; Conil(M) the set of all elements r € ft such that, for
each cocyclic homomorphic image L of M, there exists n, € N with rnL:0.

Theorem 7.9. [36] Let M be an R-module. The following hold

(a) Coass(M) e C5d:ss1lz) I Cosupp(M);

(b) # M is representable, thenC6a-ss(M) : Coass*(M);

(c) If R is a Noetherian ring, then C6Es(M) : Coass(M);

(d) f M is an Artinian R-module, thenC6Ns(M) : Coass(M);

(e) # 0 ---+ K --+ M -- L is a short exact sequence, then

C6a-ss (I) ! Coilss(M) ! C5Fs (lr) C5ilss( I) ;

( f )  W(M) :  UFecoi ' *1y;F;

(g) Conil(M) : np.c;l-*1,rzyFi

(h) # M is representable, then C56s(M) has fini'telg many elements. In par-

ticular, if M is an Artinian R-module, then C6Ns(M) is a fi,nite set;

(i) If M ,is representable, then Afls(l?/Ann(U)) S CoEils(M) and the sets

V(Ann(M)), Afrs(R/An"(M)), and C6Ns(M) haue the same minimal

elements.
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E. Coassociated Primes with Hom and Tensor Functors

First we bring the dual of Theorem 3.1.

Theorem 8.1. [35] Suppose R is a Noetherian ring. If M is a fini,tely generated
R-module, then for any R-module N, we haue

Coass(M I N) : {F e Coassn(lf) | q e p for son'rc qe Assa(M)}.

In the following theorems we will specify the set of attached primes for some
representable modules.

Theorem 8.2. l2l Let R be Noetherian and let M be a finitelg generated R-
mod,ule. If E is an injectiue R-module, then

A t t (Hom(M,E) ) :  { r  e  Ass (M) lp  g  q  f o r  someq  e  Ass (E ) } .

Theorern 8.3. [22] Let R be a ring and let M be a Noetherian R-module. If E
is an injectiue R-module then

A t t (Hom(M,E) ) :  { n  e  Ass (M) lp  q  q  f o r  some  q  e  Ass (E ) } .

Remark 2. Let M be an R-module and let -E be an iniective R module. Then

C5Fs(Hom( M,E)) I {p e Afls(M) lp g q for some q e Afrs(,E)},

and the equality does not hold in general (cf. [35, Example after (1.8)]).

Lemma 8.4. [10] Let Q be a projectiue R-module, M a Noetherian and N an
Artin'ian R-modules. Then

Att (Hom(Q,N)) :  {n e l t t1 ,n ' r ; lp  I  q  for  some q € As6(8)} .

Theorem 8.5. [1] Let R be a complete local ring. Let F be a fl,at and N an
Artinian R-modules. Then

Att(Hom(F,lr))  :  { f  e Att lLr; lp g q for someq e CodFs(F)}.

The above theorem is still valid if we replace the condition "complete local
ring" by "Noetherian ring" (see [11, 3.3]).

Question E.6. Is the above theorem valid for arbitrary commutative ring rR?
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9. Coassociated Primes IJnder Change of Rings

Let Q: R -* s be a homomorphism of rings. Let M be a,s-module. There is no

general result which determinbs whether weakly associated primes of s-module

i4 ,r""".rurily contract to weakly coassociated primes of M as an .R-module'

However there are some results in special cases'

Proposition 9.1. 125) Let the s-rnod,ule M haue secondary representation.

Then

C5i lssp(M) :  {O-t  (P) lP e CoFss(M)} '

In general we do not have the equality in the above proposition, as the next

example shows.

Example 5. [12] Let ft be a Noetherian integral domain and let p be a prime

ideal such that'p I Max(R) U Min(n). Let /: R * ftp be the natural map.

Then C5ilssn(ftp) * {Q 
tb)lp e C5Fspo(Rn)}'

Theorem 9.2. l37l Let M be an R-module and let p be a prime ideal of R.

Then

C5df ,spo Mr:  {a&v lq e Afrsp(Homp(M,e(a/p)) } '

10. Asymptotic Attached Primes

extend this result. We list some of them'

fr"tt l .. . f3" t '1, is independ,ent of n for all large n.

Theorem 10.2. [3i] // M is Artinian and N' g N are submodules of M,

then the sequence Att(N :7a onf Nt :u s") is constant for largen' In add'it ion,

Att(N :u s") is constant for large n'

Theorem 10.3. [23] Let R be Noetheri.an and let M be an Artin'ian R-rnodule'

For a giuen i
Att(ExJ(-R/ o^,M)) and Att(Exttlon f on+r,M)), n € N, becorne Jor large n in-

depend,ent of n.
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Theorem 10.4. lTOl Let Q be a projectiue R-module. Let M be an Art'inian
R-module and let .ly'' g l/ be submodules of M. Then the sequences

(i) Att(Hom(Q,l/) i1om(e,M\ o"), n € N,

(i i) Att(Hom(Q,l/) iHom(e,M\ o" l(Hom(Q,l[ ') :no-(e, M) q")), n € N,

become euentually constant. In particular the sets of attached primes
Att (0 :go-1q,M) a")  and At t (O:Hom(e,M) s"+r  l0 :Hom(e,M) s") ,  n  € N,  becorne

euentual ly  constant  and i f  At+(o,Hom(Q,M))  and Bt#(o,Hom(Q,M))
denote, respectiuelA, thetr ulttmate constant uq'Iues, then At# (o,Hom(Q,M))
-Bt# (q, Hom(Q, U)) S Att(M) n Supp(Q).

Theorern 1O.5. [10] Let R be Noetherian, Q a projectiue and M an Artinian
R-modules. Then the sequences of sets

( i )  At t (Ext t  (Rlo" ,Hom(Q, M)) ,  n  e N,

( i i )  At t (Extn(o"  1o"* ' ,  Hom(Q, M)) ,  n  e N,

becorne euentuallg constant,

There is a functorial generalization of Theorems 10.4 and 10.5 (see [13]),

Theorem 10.6. [1] Let N, M, and E be respectiuelg a finitely generated', an
Artinian and an inject'iue R-module. Then for a giuen i ) 0, the sequences of
the sets

( i )  At t (Ext i  (Nlo"  N,M)) ,  n  e N,

( i ' )  At t (Ext i ( t "Nf  o"+1N,M)) ,  n e N,

( i i )  Coass(Ext i (Rf  a" ,Hom(N,E))) ,  n ,  e N,

(i i ') Coass(Exti(o" f o"+1, Hom(N,.O))), n e N,

are ultimatelE constant,

Corollary 10.7. [1] Let R be a Noetherian ring, M an Artinian and F a fl.at
R-modules. Let Nt e N be submodules of M. Then the sequences of the sets of
attached primes

( i )  At t (Hom(4 N) :Hom(F,M) c ' ) ,  n  € N,

( i i )  At t (Hom(4N) :Hom(F,M) o") / (Hom(F,N')  :no-( r , ,y ;  a") ,  n  € N,

are ultimately constant.

1-1. Colocalization

It is well known that the prime ideal p belongs to Supp(M) if and only if the
localization Mp is non-zero. It is natural to believe that the dual of this result is:

"The prime ideal p belongs to Cosupp(M) if and only if Homft(Rp,M) is non-
zero." In fact "if '  does hold (see [35,2.16]), while "only if '  holds for Artinian
modules (see [24, 7.3]) and for injective modules (see [35, 2.18]) but it does not
hold in general (see [24, p. 9]).

Question 11.1. Let M have a secondary representation. Is it true that the
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prime ideal p belongs to Cosupp(M) if and only if Hom4(-Rp,M) is non-zero?

On the other hand, Smith inl22, p.23] noted that, for a local ring (.R,m),
the functors Hom(Hom(-,E(rR/m)),n@lp)) for p € Spec(.R) have properties
dual to localization. The next theorem is another kind of colocalization.

Theorem 11.2. [35] Let M be an R-mod,ule. Then p € Cosupp(M) if and only
i/ Hom(f[n .Max(R) Hom(M,E(ft/rn)), n@ I e)) I O.

Ackrtowled,gentent. The author would like to thank the referee for his comments.
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