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Abstract. In this article we will give a survey on some recent research on associated
and coassociated primes. Some open questions and further directions of research are
presented.

1. Associated Primes

The earliest impulse toward the development of what is now commutative algebra
came from the desire of number theorists to make use of unique factorization
in rings of integers in number fields other than Q. When it became clear that
unique factorization does not always hold, the search for the strongest available
alternative began. The theory of primary decomposition is the direct result of
that search.

Let R be a commutative ring and let M be a non-zero R-module. A non-zero
submodule @ of M is called primary if, for cach a € R, the multiplication by
a on M/Q is either injective or nilpotent. Then p = \/(Ann(M/Q) is a prime
ideal and @ is called p-primary. We say that M has a primary decomposition
if there is a finite number of primary submodules @1, @2, ..., @, such that 0 =
Q1NQ2N---NQ,. One may assume that the prime ideals P; = \/(Ann(M/Q;),
i=1,2,...,n, are all distinct and, by omitting the redundant components, that
the decomposition is minimal. Then the set of prime ideals {p;,92,...,pn } does
not depend on the decomposition, and it is called the set of associated prime
ideals and is denoted by Ass*(M). If M is a Noetherian R-module, then M has
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a primary decomposition. Note that the set of R-modules that have primary
decomposition strictly contains the set of Noetherian R-modules. (In [15] Iroze
and Rush studied several notions of the associated primes of modules over a
commutative ring.)

For a commutative Noetherian ring R, the set of associated prime ideals of
M is denoted by Ass(M) and it is the set of prime ideals p such that there exists
x € M with the annihilator Ann(z) equal to p. In this case, it is easy to see that

Assp(M) = {p € Spec(R)|p = Ann(z) for some non-zero element z € M}

= {p € Spec(R)|p = Ann(C) for some non-zero cyclic submodule C of M}

= {p € Spec(R)|p = Ann(NN) for some non-zero Noetherian submodule N of M}
= {p € Spec(R)|p = Z(K) for some irreducible submodule K of M}.

Here K is irreducible if, for any submodules X and Y of K with 0 = XNY, either
X =0orY =0. Also, Z(K) denotes the set of zero divisors of K. Let Z(M)
the set of the elements r € R such that, the homothety M = M is not injective,
nil(M) be the set of elements r € R such that for each cyclic submodule N of
M, there exists n € N with "N = 0.

The basic properties of associated primes are collected in the next theorem.

Theorem 1.1. Let R be a Noetherian ring. Then the following hold:
(i) If M is a finitely generated R-module, then Ass(M) = Ass* (M);
(ii) Ass(M) is non-empty if and only if M is non-zero;

(ii) If0 - K - M — L — 0 is a short ezact sequence, then

Ass(K) C Ass(M) C Ass(K) U Ass(L);

(iv) Z(M) = UpeAss(M) p;
(v) nil{M) = mpeAss(M) p;
(vi) If S is a multiplicative closed system of R, then

Assg-1(S7'M) = {pS™'R|p € Ass(M) withpN S = 0}.

Now assume R is a commutative (not necessarily Noetherian) ring. For a
Noetherian module M over R we can change the ring R to the ring R/Ann(M)
which is Noetherian and prove all the properties in Theorem 1. Thus, for any
Noetherian R-module M, we have Ass*(M) = Ass(M). Therefore, the new
notion works for a larger set than the set of Noetherian R-modules.

For not necessarily Noetherian modules, the associated primes do not behave
so well. For example, there exist non-trivial modules without associated primes
(see Example 1). In [4] Bourbaki have introduced the notion of weakly associated
prime ideals of M over R. A prime ideal p is called weakly associated to M if
there exists an element £ € M such that p is a prime ideal which is minimal
among the prime ideals containing the annihilator Ann(zx). The set of weakly
associated primes of M is denoted by ASs(M). In [4, p. 165-166], Bourbaki gave
the following properties of weakly associated primes:
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Theorem 1.2. With notation as above, the following hold:
(i) Ass(M) C Ass(M) C Supp(M);
(ii) For any decomposable module M, we have Assp(M) = Assh(M) (cf. [36,
Lemma 1.3));
(iil) Ass(M) = ASS(M) if R is a Noetherian ring, hence Ass(M) = Ass(M) if
M is a Noetherian R-module (cf. [36]);
(iv) ASS(M) is non-empty if and only if M is non-zero,
(v) If0 - K — M — L is a short exact sequence, then

AS(K) C ASS(M) C ASS(K) U ASS(L);

(vi) Z(M) = UpeAs~s(M)p;
(vil) nil(M) = Nycaziar) P
(viii) If S is a multiplicative closed systemn of R, then
Adsg-1(STIM) = {pS™'R|p € AS(M) withp N S = 0}.

The next example shows that the inclusion Ass(M) C Ass(M) can be strict.

Ezample 1. Let k be a field and consider the ring R = k" (direct product). Set
a = kW) (direct sum) which is an ideal of R. Set M = R/a. We claim that
Ass(M) is empty. Assume that p € Ass(M). Then a C p = (a : r) for some
T ¢ a. It is easy to find two elements s and ¢ of R such that sr,tr ¢ a and st = 0.
Since str =0 we have st € p. But s ¢ p and t ¢ p and this is a contradiction.

It seems that the next result is the best one to date concerning the equality
of weakly associated and associated primes.

Proposition 1.3. [37] Let M be an R-module and let each weakly associated
prime ideal of M be finitely generated. Then Assgp(M) = Assgp(M).

The next example shows that there exist a non-Noetherian ring and a non-
Noetherian module over it such that the set of associated primes and weakly
associated primes of that module are equal.

Ezample 2. Let D be a domain that is non-Noetherian and let K be its field
of quotients. Then Assp(K) = {0}. Thus Assp(K) = Assp(K) but D is a
non-Noetherian ring and K is a non-Noetherian module.

2. Filtration

Let R be a Noetherian ring and let M be a finitely generated R-module. It is well
known that there exists a chain 0 = My C M; C --- C M, = M of submodules
of M together with prime ideals py,ps,...,p, such that M;/M;_1 = A/p; for all
1 <4< n,cf [19, 6.4] and [14, 3.7]. It is also well known that the associated
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primes of M are among the primes p; appearing in the above filtration. In [14,
p. 93], Eisenbud asked which modules M admit a filtration (as above) where, in
addition, every p; is an associated prime of M. (In [17] Li answered this question
in some special cases.) Such modules are called clean. It is noted in [14, p. 93]
that when R is a domain and M is a torsion free R-module, M is clean if and
only if M is free.

Now assume R is a (not necessarily Noetherian) commutative ring and M
is an R-module. We say that the R-module M has a weakly associated prime
filtration (WAPF for short) if there exists a chain 0 = My C My C --- C
M, = M of submodules of M together with prime ideals p;,ps,...,p, such
that ASs(M;/M;_1) = {p;} for all 1 < ¢ < n. In this case we have Ass(M) C
{p1,p2...pn} by [35, 1.1]. We say that the R-module M has a clean weakly
associated prime filtration (CWAPF for short) if there exists WAPF such that

ASS(M) = {p1,9p2...Pn}
The next example shows that CWAPF is not unique.

Ezample 3. Suppose p is a prime ideal of R and E(R/p) is the injective envelope
of the domain R/p. By using Theorem 1.2 we have Ass(E(R/p)) = {p}. There-
fore, 0 C E(R/p) is a CWAPF of E(R/p). In addition, 0 C R/p C E(R/p) is a
CWAPF.

Theorem 2.1. Let M be an R-module. Then |ASS(M)| < oo if and only if the
module M has a CWAPF.

3. Hom and Tensor Functors

In [4] Bourbaki proved the following theorem.

Theorem 3.1. Suppose R is a Noetherian ring. If M is a finitely generated
R-module, then for any R-module N, we have

Assp(Hompg (M, N)) = {p € Assgr(N)|q C p for some q € Assg(M)}.

The next example shows that the above theorem is not valid if we replace
Ass by Ass.

Example 4. Let R and M be the same as in Example 1. Assume that m €
ASS(M). Then m belongs to the set Max(R) of maximal ideals of R since the
ring R is von Neumann regular. Since m ¢ Ass(M) we have Hom(R/m, M) = 0.

Proposition 3.2. [36] Let M and N be R-modules. If Homp (M, N) # 0, then
there exists p € ASs(M) such that p C q for some q € ASsg(N).

In special cases Theorem 3.1 is valid for non-Noetherian rings. For example,
we have the following result.
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Proposition 3.3. [10] Let Q be a projective R-module and let N be a Noetherian
R-module. Then

Assp(Hompg(Q, N)) = {p € Assg(N)|p 2 q for someq € ASsg(Q)}.

4. Change of Rings
In this section let ¢ : R — S be a ring homomorphism and let M be a S-module.

Theorem 4.1. [19] Let R and S be Noetherian rings. If M is a finitely generated
S-module, then Assg(M) = {¢~1(p) |p € Asss(M)}.

The following theorem is a generalization of Theorem 4.1.

Theorem 4.2. [37] Let M be a S-module. Then

{07 (p) [p € Asss(M)} C Assp(M) € AsSp(M) C {p™ " (p)lp € AsSs(M)}.

The inclusion in Theorem 4.2 may be strict (see [37, p. 2009]). It is clear
that we have equalities in all steps if Assg(M) = AsSss(M). For example, if S
is a Noetherian ring or M is a Noetherian S-module, then we have equalities
in all steps. In addition, if each of the elements in the set Assg(M) are finitely
generated ideal, then we have equalities in all steps.

The S-module M is called S-fine if ASSg(M) = Assg(M). The next theorem
is a generalization of Proposition 3.3.

Theorem 4.3. [37] Let M be an S-fine module that is decomposable. Then for
any projective R-module Q,

As (Homg(Q, M) = {p € A&s(M) ¢~ (p) 2 q for some q € ASR(Q)}.

5. Asymptotic Associated Primes

In [5] Brodmann showed that if R is Noetherian and M is a finitely generated
R-module, then the sets Assg(M/aM) and Ass(a™ M /a"*! M) are independent
of n for all large n. This was in response to a question of Ratliff who had shown
in [28] that the sets Ass(R/a™) are non-decreasing with n and constant for large
n, where the bar denotes integral closure. Let As* (a, M) and Bs* (a, M) denote
their ultimate constant values respectively. Then As* (a, M) — Bs#(a, M) C
Ass(M) [21, Corollary 13]. There are several attempts to extend the above
result. We list some of them.

Theorem 5.1. [16] Let Iy, Is,...,I; be ideals of the ring R, M a Noetherian
R-module, and N a submodule of M. If (tm (1),tm (2), ..., tm (8))men 5 a sequence
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of s-tuples of non-negative integers which is non-decreasing in the sense that
ti(j) < tiz1(j) forallj =1,2,...,5 and alli €N, thenAssR(M/If"(l) Y (S)N)
is independent of n for all large n.

Theorem 5.2. [31] If M is a Noetherian module and N is a submodule of M,
then the sequence Ass(a™M/a™N) is constant for large n.

Theorem 5.3. (23] If R is Noetherian and M is a finitely generated R-module,
then, for a given i > 0, the sequences of finite sets of associated primes
Ass(TorR(R/a™, M)) and Ass(Torf(a"™/a"*!, M)) become independent of n for
large n.

Theorem 5.4. [10] If Q is a projective R-module, M a Noetherian R-module
and N a submodule of M, then the two sequences of associated primes
Ass(Hom(Q, M)/a"Hom(Q, N)) and Ass(a”Hom(Q, M)/a"Hom(Q, N)) become

eventually constant.

Proposition 5.5. [10] If R is Noetherian, Q a projective R-module and M
a finitely generated R-module then, for each i > 0, the two sequences of sets
of associated primes Ass(TorR(R/a",Hom(Q,M))) and Ass(Torf(a™/a™*1,
Hom(Q, N))) become eventually constant.

(For the functorial generalizations of Theorem 5.4 and Proposition 5.5, see
13].)

Theorem 5.6. [1] If R is Noetherian and M is a finitely generated R-module,
then the sequences of sets Ass(M®@N/a"(M®N)) and Ass(a® (M @N)/a" 1 (M@
N)) are ultimately constant in the following cases:

(i) N is a finitely generated R-module.

(ii) N is an injective R-module.
(iii) N is an Artinian R-module.
(iv) N is a flat R-module.

Proposition 5.7. [1] Let R be a Noetherian ring and let M be a finitely gen-
erated R-module, N an Artinian R-module, and F' a flat R-module. Then for a
given i > 0, the sequences of the sets of associated primes Ass(Tor? (R/a", N ®
F)) and Ass(Torf(a" /a™*!,N ® F)) are ultimately constant.

Let M be an R-module and let a be a proper ideal of R. Set R = grq(R) =
Bn>0a" /a1, and M = gro(M) = @nza™ M/a"*! M. Then R is a graded ring
and M is a graded R-module. Let ¢ : R — R denote the composition of the
natural homomorphisms R — R/a — R.

Theorem 5.8. [39] If the set ASsg (M) is finite, then the set|J, - ASsp(M/am+!
M) is finite.
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‘We have

ASSg(a®M/a" 1 M) C Assp(M) C {p 1 (p)|p € ASsr (M)}.

Question 5.9. Is the sequence of sets Assg(M/a"*! M) independent of n for n
large enough if the set ASsg (M) is finite?

6. Attached Primes

There have been several attempts to dualize the theory of associated primes. The
first one was made by Macdonald in {18] by defining the set of attached prime
ideals and secondary representation of a module, which is (in certain sense) a
dual to the theory of associated prime ideals and primary decomposition. A
non-zero R-module M is called secondary if, for each a € R, multiplication by
a on M is either surjective or nilpotent. Then nil{(M) = p is a prime ideal
and M is called p-secondary. We say that M has a secondary representation
(representable) if there is a finite number of secondary submodules Sy, S5, ..., S,
such that M = S; + S +--- + S,. One may assume that the prime ideals
nil(S;) = pi,¢ = 1,2,...,n, are all distinct and, by omitting the redundant
summands, that the representation is minimal. Then the set of prime ideals

{p1,p2,...,pn} does not depend on the representation, and it is called the set
of attached prime ideals and is denoted by Coass*(M) (in [18] it is denoted by
Att(M)).

In [18] Macdonald showed that every Artinian R-module is representable.
But the set of representable R-modules strictly contains the set of Artinian
R-modules. For example, the injective modules over Noetherian ring are repre-
sentable (cf. [32]). This result was extended by Ansari and Sharp.

Theorem 6.1. [2, Theorem 2.1] Let R be a Noetherian ring, M a finitely
generated R-module and E an injective R-module. Then Hompg (M, E) is a rep-
resentable R-module.

In [22] Melkersson and Schenzel succeeded to drop the Noetherian condition
for R:

Theorem 6.2. (22| Let R be a ring, M a Noetherian R-module, and E an
injective R-module. Then Hompg(M, E) is a representable R-module.

In addition there are other attempts to find more representable modules. For
example, we have the following theorems.

Theorem 6.3. [26] If R is a Noetherian ring, M an Artinian, and F a flat
R-modules, then the module Hom(F, M) is representable.

Question 6.4. Let R be a Noetherian ring, M a representable R-module, and
F a flat R-module. Is the module Hom(F, M) representable?
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The attached primes is particularly well-behaved when M has a secondary
representation. However, in general this theory is not completely satisfactory.

7. Coassociated Primes

The second attempt to dualizing the theory of associated primes was made by
Chambless in [6] by defining the set of coassociated prime ideals of an R-module
M to be the set of prime ideals p such that there exists a sum-irreducible homo-
morphic image L of M with p equal to the set {a € RlaL # L}. (Here N is said
to be sum-irreducible if, for any submodules X and ¥ with N = X + Y, either
X=NorY =N.)

The next attempt was made by Zdshinger in [40,41]. He defined coassociated
primes of the R-module M to be the set of prime ideals such that there exists
an Artinian homomorphic image L of M with p = Ann(L). He noted that
this definition is equivalent to Chambless’ definition, and gave some related
fundamental results about this concept.

Finally, in [35] the present author introduced the concept of cocyclic modules
which is a dual to eyclic modules, and we used it to define coassociated prime
ideals of modules over Noetherian rings. Then in [36] we extended this notion
for modules over commutative (not necessarily Noetherian) rings.

Definition 7.1. An R-module L is said to be cocyclic if L is isomorphic to a
submodule of E(R/m) for some m € Max(R).

Remark 1. If (R,m) is a complete local Noetherian ring then M is cocyclic if
and only if there exists an ideal a of R such that M & Hompg(R/a, E(R/m)) (cf.
[35, Remark after (1.2)]).

It is well known that every finitely generated module is a homomorphic image
of a finite direct sum of cyclic submodules of itself. An R-module M is said to be
finitely cogenerated (the dual notion of finitely generated) if E(M) is isomorphic
to a direct sum of finitely many injective envelope of simple modules. Now we
bring a dual of this result.

Theorem 7.2. [38] Every finitely cogenerated module can be embedded in a
finite direct sum of cocyclic homomorphic images of itself.

Theorem 7.3. [38] Every cocyclic R-module is Artinian (resp. Noetherian) if
and only if R is Noetherian (resp. Artinian) for every m € Max(R).

There is a characterization of von Neumann regular rings with using cocyclic
modules.

Theorem 7.4. [38] The ring R is von Neumann regular if and only if each
cocyclic R-module is simple.
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Definition 7.5. Let M be an R-module. A prime ideal p of R is called a
coassociated (resp. weakly coassociated) prime of M if there exists a cocyclic
homomorphic image L of M such that p = Ann(L) (resp. p € Min(Ann(L)),
the minimal prime ideals contain Ann(L). The set of coassociated (resp. weakly
coassociated) prime ideals of M 1is denoted by Coass(M) (resp. Coass(M)).

Definition 7.6. Let M be an R-module. The cosupport of M, written as
Cosupp(M), is the set of prime ideals p such that there exists a cocyclic ho-
momorphic image L of M with p 2O Ann(L).

The following theorem is an important tool in the study of coassociated
prime ideals.

Theorem 7.7. [36] Let M be an R-module. The following are equivalent:
(i) p € Coass(M);
(i) There existsm € Max(R) containingp such thatp € Ass(Hompg (M, E(R/m))).

Theorem 7.8. [35] Consider the following statements:
(i) b € AS(M);
(ii) There exists m € Max(R) containing p such that p € Coass(Hompg (M,
E(R/m))). For any R-module M, (i) implies (ii) and if M is Noetherian,
then (ii) implies (1).

Denote by W(M) the set of the elements 7 € R such that the homothety
M 5 M is not surjective; Conil(M) the set of all elements r € R such that, for
each cocyclic homomorphic image L of M, there exists n € N with »"L = 0.

Theorem 7.9. [36] Let M be an R-module. The following hold
(a) Coass(M) C Coass(M) C Cosupp(M);

(b) If M is representable, then Coass(M) = Coass* (M);

(c) If R is a Noetherian ring, then Coass(M) = Coass(M);

(d) If M is an Artinian R-module, then Coass(M) = Coass(M);
(e)

If0 - K — M — L is a short exact sequence, then

Céonss(L) C Coass(M) C Coass(K)Coass(L);

(f) W(M) = UpECo:;s(M)p;

(g) Conil(M) = Npe Gamss(a) P>

(h) If M is representable, then Coass(M) has finitely many elements. In par-
ticular, if M is an Artinian R-module, then Coass(M) is a finite set;

(i) If M is representable, then ASS(R/Ann(M)) C Coass(M) and the sets
V(Ann(M)), Ass(R/Ann(M)), and Coass(M) have the same minimal
elements.
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8. Coassociated Primes with Hom and Tensor Functors
First we bring the dual of Theorem 3.1.

Theorem 8.1. [35] Suppose R is a Noetherian ring. If M is a finitely generated
R-module, then for any R-module N, we have

Coass(M ® N) = {p € Coassg(N)|q C p for some q € Assgp(M)}.
In the following theorems we will specify the set of attached primes for some
representable modules.

Theorem 8.2. [2] Let R be Noetherian and let M be a finitely generated R-
module. If E is an injective R-module, then

Att(Hom(M, E)) = {p € Ass(M)|p C q for some q € Ass(E)}.

Theorem 8.3. [22] Let R be a ring and let M be a Noetherian R-module. If E
is an injective R-module then

Att(Hom(M, E)) = {p € Ass(M)|p C q for some q € Ass(E)}.
Remark 2. Let M be an R-module and let E be an injective R module. Then

Céass(Hom(M, E)) 2 {p € Ass(M)|p C q for some q € ASS(E)},
and the equality does not hold in general (cf. {35, Example after (1.8)]).

Lemma 8.4. [10] Let Q be a projective R-module, M a Noetherian and N an
Artinian R-modules. Then

Att(Hom(Q, N)) = {p € Att(N)|p 2 q for some q € Ass(Q)}.

Theorem 8.5. [1] Let R be a complete local ring. Let F be a flat and N an
Artinian R-modules. Then

Att(Hom(F, N)) = {p € Att(N)|p C q for some q € Coass(F)}.

The above theorem is still valid if we replace the condition “complete local
ring” by “Noetherian ring” (see [11, 3.3]).

Question 8.6. Is the above theorem valid for arbitrary commutative ring R?
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9. Coassociated Primes Under Change of Rings

Let ¢ : R — S be a homomorphism of rings. Let M be a S-module. There is no
general result which determines whether weakly associated primes of S-module
M necessarily contract to weakly coassociated primes of M as an R-module.
However there are some results in special cases.

Proposition 9.1. [25] Let the S-module M have secondary representation.
Then

Coassp(M) = {¢7'(p) |p € Coasss(M)}.

In general we do not have the equality in the above proposition, as the next
example shows.

Ezample 5. [12] Let R be a Noetherian integral domain and let p be a prime
ideal such that p ¢ Max(R) UMin(R). Let ¢ : R — R, be the natural map.
Then CGassg(Ry) # {¢~1(p) |p € Coassr, (Rp)}-

Theorem 9.2. [37] Let M be an R-module and let p be a prime ideal of R.
Then

Céassg, My = {dRy |9 € Assp(Homp(M, E(R/p))}

10. Asymptotic Attached Primes

Sharp in [33] has shown that, for an Artinian module M, the sequence of the sets
Att(0 :pr a™) and Att(0 :p a*t1/0 :pr a") are ultimately constant for large n € N
and if At#(a, M) and Bt# (a, M) denote, respectively, their ultimate constant
values, then At#(a, M) — Bt¥ (a, M) € Att(M). There are several attempts to
extend this result. We list some of them.

Theorem 10.1. [16] Let I, Iz,.... 1s be ideals of the ring R, let M be an Ar-
tinian R-module and let N' be a submodule of M. If (tm (1), tm(2), .- stm (8))men
is a sequence of s-tuples of non-negative integers which is non-decreasing in the
sense that t;(j) < tis1(j) forall j=1,2,...,s and all i € N, then Attg(N 1y

If"(l) __,]_f,"(s)) is independent of n for all large n.

Theorem 10.2. [31] If M is Artinian and N' C N are submodules of M,
then the sequence Att(N :p o™ /N' :pr a™) is constant for large n. In addition,
Att(N @y a™) is constant for large n.

Theorem 10.3. [23] Let R be Noetherian and let M be an Artinian R-module.
For a given © > 0 the sequences of finite sets of attached prime ideals
Att(Exti(R/a™, M)) and Att(Ext’(a” /a"*t1 M)), n € N, become for large n in-
dependent of n.



206 Siamak Yassemi

Theorem 10.4. [10] Let @ be a projective R-module. Let M be an Artinian
R-module and let N' C N be submodules of M. Then the sequences

(1) Att(HOl’Il(Q,N) ‘Hom(Q,M) an), ne Na

(ii) Att(Hom(Q, N) :Hom(@,m) 0" /(Hom(Q, N') ‘Hom(q,m) 0")), n €N,

become eventually constant.  In particular the sets of attached primes
Att(0 ‘Hom(Q,a) o) and Att(0 :Hom(q,m) €1 /0 Hom(q,m) "), 7 € N, become
eventually constant and if At#(a,Hom(Q,M)) and Bt#(a,Hom(Q, M))

denote, respectively, their ultimate constant values, then At#*(a, Hom(Q, M))
—Bt# (a, Hom(Q, M)) C Att(M) N Supp(Q).

Theorem 10.5. [10] Let R be Noetherian, @ a projective and M an Artinian
R-modules. Then the sequences of sets

(i) Att(Ext'(R/a",Hom(Q, M)), n € N,
(i) Att(Exti(a™/a"*! Hom(Q, M)), n € N,
become eventually constant.

There is a functorial generalization of Theorems 10.4 and 10.5 (see [13]).

Theorem 10.6. [1] Let N, M, and F be respectively a finitely generated, an
Artinian and an injective R-module. Then for a given i > 0, the sequences of
the sets

(i) Att(Ext!(N/a™N,M)), n € N,

(") Att(Exti(a®N/a"*IN, M)), n € N,

(ii) Coass(Ext'(R/a™,Hom(N, E))), n € N,
(ii") Coass(Exti(a™/a"*!, Hom(N, E))), n € N,
are ultimately constant.

Corollary 10.7. [1] Let R be a Noetherian ring, M an Artinian and F o flat
R-modules. Let N' C N be submodules of M. Then the sequences of the sets of
attached primes

(l) Att(Hom(F, N) ‘Hom (F, M) a"), n € N,

(ii) Att(Hom(F,N) :Hom(r,um) 6")/(Hom(F, N') Hom(F,am) "), n €N,

are ultimately constant.

11. Colocalization

It is well known that the prime ideal p belongs to Supp(M) if and only if the
localization M, is non-zero. It is natural to believe that the dual of this result is:
“The prime ideal p belongs to Cosupp(M) if and only if Homg(Rp, M) is non-
zero.” In fact “if” does hold (see [35, 2.16]), while “only if” holds for Artinian
modules (see [24, 7.3]) and for injective modules (see (35, 2.18]) but it does not
hold in general (see [24, p. 9]).

Question 11.1. Let M have a secondary representation. Is it true that the



Associated and Coassociated Primes 207

prime ideal p belongs to Cosupp(M) if and only if Homg (R, M) is non-zero?

On the other hand, Smith in [22, p. 23] noted that, for a local ring (R, m),

the functors Hom(Hom(—,E(R/m)), E(R/p)) for p € Spec(R) have properties
dual to localization. The next theorem is another kind of colocalization.

Theorem 11.2. (35| Let M be an R-module. Then p € Cosupp(M) if and only
if Hom ([ ne max(r) Hom(M, E(R/m)), E(R/p)) # 0.

Acknowledgement. The author would like to thank the referee for his comments.
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