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Abstract. In this paper we consider the problem of optimizing a linear function over
the efficient set of a multiobjective linear programming problem. Basing on Philip’s
approach and using normal cone method for finding efficient edges and vertices adjacent
to a given efficient vertex, we present an algorithm for solving this problem. Some
illustrative examples are given.

1. Introduction

Let M be a nonempty polyhedral convex set in R* determined by a system of
linear inequations _

<a':$)2bi)i=l’-")m: (1)
where @' € R" and b; € R,i=1,...,m. Let C be a (p x n)-real matrix with p
rows ¢’ € R". Consider the problem

(P) min(d, z), subject to z € Ey,,

where d € R" and E); is the efficient solution set of the multiobjective linear
programming problem

(VP)  MinCz, subject to z € M.

It is well-known that the efficient set E is a connected set and, in general,
it is a complicated nonconvex subset of the boundary of the polyhedron M.
Problem (P) is one of nonconvex programming problems in which any local
solution may not be a global one. Since Ej is the union of faces of M, Problem
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(P) attains its global optimal solution at a vertex of M.

Although not nearly as extensively studied as Problem (VP), Problem (P)
has received increasing attention in recent years. Many algorithmic ideas and
algorithms for solving this problem have been proposed; see, for example, Benson
[3- 5], Bolintineanu [6], Ecker and Song[8], Isermann’and Steuer (11}, Fiilép {10],
An, Muu and Tao [1}, Luc and Muu (14}, Muu [15], Philip [16], Steuer [19],
Thach [20], Yu [21] and references therein.

In [16], Philip first studied Problem (P) and schematically described a cutting
plane procedure for solving it. Later, Isermann and Steuer in [11] proposed a
similar procedure for solving (P) where the objective function {d, z) is one of the
multiple objectives (c',z) in (VP). In [8], Ecker and Song used Philip’s approach

. presented two implementable algorithms that involve a privoting technique on
the feasible set for (VP) or a reduced feasible set. Recently Philip’s method was
implemented by Bolintineanu [6] for the case where the objective function of (P)
is quasiconcave. Fiilop in [10] formulated Problem (P) as a linear program with
an additional reserve convex constraint and proposed a cutting plane method
using facet cuts for solving the latter problem.

Basing on the study of normal cones and their relationship with efficient so-
lution faces for (VP), Kim and Luc [12] have proposed a quite simple method for
generating the whole efficient set for this problem, which takes into account the
degenerate case. In this paper, we present an algorithm for solving the problem
(P). It enjoys advantages of both Philip’s approach [16] and the technique pro-
posed in [12] for finding efficient edges and vertices adjacent to a given efficient
vertex.

In Sec. 2 some descriptions for efficiency to Problem (VP) in terms of negative
normal cone are presented. Sec. 3 is concerned with the cutting plane method
and the reduced Problem (RVP). The results obtained in this section play the
basic role for the algorithm described in Sec. 4. Some computational examples
are given in the last section.

Throughout this paper, M C R" is the polyhedral set determined by the
system (1) and C is a fixed matrix of the objective functions ¢, i = 1,...,p.
Furthermore, without loss of generality, we always assume that there is no re-
dundant inequality in (1) and the interior of M is not empty. For two vectors
24,22 € RP, 2 = (4,... ,2}), we write

2! >22ifandonlyif 2} > 2% foralli=1,...,p;

2! > 22 if and only if 2! > 2% and 2! # 2%

2. Efficiency and Negative Normal Index Sets

In this section we consider Problem (VP) formulated as in the previous section.
Recall that the efficient set Ep for (VP) is the set of all points z° € M such
that there is no other z € M such that Cz® > Cz. The normal cone [17] to
a convex set X C R" at a point z° € X, denoted by Nx (z%), consists of the
outward normals to the supporting half-spaces to X at 20, i.e.

Nx(z°) = {ve R": (v,z — 2% < Ofor all z € X}.
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When M is determined by (1), the normal cone to M at a point z0 € M can
be represented as follows.

Proposition 2.1 (18, Theorem 6.46]. Let z° € M satisfy the following equations
and inequations

(a',z) = b;,i € I(z°)
(a'jaz) > bJ" bt {1"" ’m}\I(mo)>
where I(2%) is o nonempty indez subset of {1,... ym}. Then
Ny (z°) = cone{—a’,i € I(z%)}.

For convenience, let us recall some relations between the normal cones to
M and the efficiency of Problem (VP) established in [12], which will be used
in the further comming sections. A vector v € R" is said to be C-positive if
there exist strictly positive numbers Ay, ..., ), such that v = At If —v
is C—posmve, then v is called C-negative. We say that the normal cone to M at
2% € M is negative if it contains a C-negative vector.

The following proposition provides another description for the efficient solu-
tions for (VP) in terms of negative normal cones.

Proposition 2.2 [12, Proposition 5.2). A point 20 e M is an efficient solution
for (VP) if and only if the normal cone to M at z° is negative, i.e. N (20)
contains a C-negative vector.

It may be more useful in computation if instead of normal cones we work with
the index set of the vectors generating them as in Proposition 2.1. Following
[12], an index set I C {1,...,m} is said to be a normal set if there is some point
= M such that the norma.l cone to M at 20 coincides with the cone generated
by {—a' : i € I}. It is obvious that not every subset of {1,...,m} is normal.
We say that an index set I C {1,...,m} is negative if the cone generated by
{—d' : i € I} contains a C-negative vector.

Proposition 2.3 (12, Proposition 3.5]. A nonempty convez subset F C M is a
face of M if and only if there is a normal subset I(F) C {1,...m} such that F
is defined by the system

(@', z) = by, i € I(F)
(a7, 2) 2 bj,5 € {L,...,p)\I(F),
in which case dim F = n — rank{a' : i € I(F)}.

(2)

Proposition 2.4 (12, Corollary 5.4]. Let I(F) be the indez set determining a
face F of M by (2). Then F is an efficient solution face if and only if the set
I(F) is negative normal.

Remark 1. In view of Propositions 2.3 and 2.4, to determine efficient solution
faces for (VP) one can search index subsets I of {1,2,...,m} and verify their
normality and negativity.
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The following proposition says that verifying negativity of an index subset
can be reduced to the existence problem of solutions of a linear inequality system
that may be solved by some standard methods.

Proposition 2.5 [12, Proposition 4.2]. A subset I C'{1,...,m} is negative if
and only if the following system is consistent (has a solution)

P
Z“ial=ZAij; ﬂi201i61; Aj>0: i=1l...,p (3)
iel j=1
For a point z € M we denote by I(z) the set of all active indices at z with
respect to the system (1), that is I(z) := {i € {1,2,... ,m}: (a',z) = b;}.
We. present here a condition to determine whether Ejs is a subset of a face F of
the polyhedron M in terms of negative normal index sets.

Proposition 2.6. Let I(F) be the indez set determining a face F of M by (2).
Assume that F contains at least one efficient solution vertex for (VP). Then
Ey C F if and only if for every efficient solution vertez z € F for (VP) the set
I(z) \ I(F) does not contain any negative normal index subset.

Proof. “Only if” . Suppose that Eyy C F. Let £ € F be an efficient solution
vertex. If I(z) \ I(F) contains a negative normal index set I by Proposition
2.4, Iy determines an efficient face Fy. Then, since Eyy C F, we have Fp C F.
This is impossible, since Iy C I(z) \ I(F') and I determines Fp.

“If”. Assume that for every efficient solution vertex z € F for (VP) the index
set I(z) \ I(F) does not contain any negative normal index subset. Assume on
the contrary that there is an efficient point 2* ¢ F. Since the efficient set Eps
is connected, there is a path ! composed of some efficient edges connecting =*
to an efficient vertex Z € F. It means that the path ! contains an efficient edge
e emanating from the efficient vertex Z such that e ¢ F. Let I, be the index
set determining the edge e. Clearly, I. C I(Z) \ I(F). By Proposition 2.4, I, is
negative normal. This contradicts the assumption. Thus, Ej C F. n

3. Cutting Plane and the Reduced Problem

Let z° be an efficient solution vertex for (VP). From now on, we denote by F(z°)
the intersection of M and the hyperplane (d,z) = (d,z°),

F(z%) :={z € M: (d,z) = (d,z")}.
To F(z°) we associate the polyhedron
M(z%) :={z e M: (d,z) < (d,z°)}
and the reduced problem
(RVP)  Min{Cz, z € M(z%)}.

Denote by Ejs(z0) the set of all efficient points for (RVP). Note that, in general,
neither Ey € Ejpf(q0) nor Ep(z0) C Epy. However, on M(z°) \ F(z?) these two
sets coincide. Namely we have the following.
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Proposition 3.1. Let 20 be an efficient solution vertex for (VP). Then
() Bn N (M(2%)\ F(z°)) = Eygao) N (M(2%) \ F(z%)),
(ii) If z* € (M(2°%) \ F(z°)) N Ey, then there is a path of efficient edges for
(RVP) connecting z* to z°.

Proof. (i) Observe that for every point z* € (M(z°) \ F(z%)) the normal cones
N (z*) and Npg(z0)(2*) coincide. The conclusion is immediate from Proposition
2.2.

(ii) Since 2° € Ey and M(2%) C M, one has 20 € Ejps(;0). On the other
hand, by (i) we also have z* € Ejs(;0). The conclusion is now obtained from the
well-known fact [11] that the efficient set of a multiobjective linear programming
problem is pathwise connected. n

The following theorem, which is an immediate consequence of the above
proposition, gives a fundamental relationship between solutions for (P) and the
efficient set for the reduced problem (RVP).

Theorem 3.2. Let 20 be an efficient solution vertez for (VP). Suppose that z°
is a local optimal solution to (P). Then
(i) z° is a global optimal solution for (P) if and only if Ep(zey C F(2°),
(ii) If z° is not a global optimal solution for (P) , then there is a point x! €
Ep N F(2%) such that 2! is not a local optimal solution for (P) and there is
a path of efficient edges for (RVP) lying in F(z°) and connecting z° to z*.

Proof. (i) If 2° is a global optimal solution for (P), then (M(z%)\ F(z°))NEy =
(. Therefore, by Proposition 3.1(i), (M(z°) \ F(z°))n Ep(z0) = 0. This means
that EM(zo) @ F(zo)

Now, assume that EM(_.,;o& C F(z°). Then (M(z°)\ F(2°)) N Ep(z0) = 0.
By Proposition 3.1(i), (M(z°) \ F(z%)) N Ep = 0. It means that there is no
an efficient solution z* for (VP) such that (d,z*) < (d,z%). Therefore, 20 is a
global optimal solution for (P).

(i) Since 20 is not an optimal solution for (P), there is a point z* € (M(z%)\
F(z°))NEy . Therefore, by Proposition 3.1(ii) there is a path L C Ejy(;0), which
is composed of edges [z°, 3], [}, %%}, .-, [v*, 2*]. Because 20 is a local solution
for (P), [°,4'] € F(z°). Let i be the first index such that y+! € M(z%)\ F(z?).
By Proposition 3.1 (i) and the closedness of the efficient set for (VP) it follows
that [yf,3*+1] C Ep. Set z! := y'. Then z! is the desired point. n

The following corollary is immediate from Theorem 3.2.

Corollary 3.3. If there is no efficient edge for (RVP) lying on F(z°) and
emanating from z° (i.e. Ep(z0) = {z°} ), then 2¥ is a global optimal solution

for (P).

From now on, for a fixed local solution vertex z° of (P) we will denote
al := —d and by := —(d, z%). Then M(z°) is the solution set of the system

(a*,z) > b;,i=0,1,... ,m. (4)
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In general, there may be some redundant inequalities in this system. In this case
we can move out all of them. Namely, let

a; :=min{(d,z) :z € M, (a',z)=b},i=1,2,...,m

and ’
Iy :={i € {l,... ,m}: o; < (d,2°} U {0}.

Proposition 3.4. For a given local optimal solution verter z° for (P) the poly-
hedron M(z°) is the solution set of the system

(@',z) > bi,i € Ipgao). (5)

In this system there is no redundant inequality, except the trivial case when z°
is an extremal point of the function d over M.

Proof. Since there are no redundant equalities in the system (1) which determine
the polyhedron M, every set {z € M, (a*,z) = b;}, i =1,2,...,m is a facet of
M. Then the conclusion is immediate from the definition of M(z?). n

In view of Proposition 3.4, in the sequel we may always assume that M(z9)
is determined by (5). For a point z € M (z°) we denote by II(x) the set of all
active indices at z with respect to the system (5), i.e.,

II(z) := {i € Ing(a0y : (@', z) = b'}.

4. The Algorithm for Solving (P)

4.1. Algorithm

The algorithm for solving problem (P) can be outlined as follows. Its implemen-
tation will be described in detail in the next part.

Initialization Step. Check whether Ep = 0.

(a) If Yes, the problem (P) has no feasible solution. The algorithm is termi-
nated.

(b) Else, find an optimal solution z’ of the problem

min{{d,z) : z € M}.

(bl) If ' € Mg then z’ is a global solution of (P), the algorirthm is termi-
nated.
(b2) Otherwise, find an initial efficient vertex z° for (VP). Go to Step 1.

Step 1. (Finding a Local Optimal Solution of (P))

Starting with 20, determine an adjacent efficient edge for (VP) yielding a strict

decrease in (d, z).

(a) If there is no such efficient edge, z° is a local optimal solution of (P). Go
to Step 2.

(b) Else,
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(b1) If the efficient edge is a ray, the linear function (d, .) tends to —oo on this
edge (Problem (P) has no finite optimal value.) The algorithm is terminated.
(b2) Otherwise, say z* is the other end of this efficient edge, set 20 « z*
and return to Step 1.

Step 2. (Finding a better efficient vertex or show that the current efficient vertex
20 is a global optimal solution of (P))
Search on F(z%) to find an efficient solution vertex # for (RV P) which has an
adjacent efficient edge L yielding a strict decrease in (d, ).
(a) If no such point Z exists, the vertex z° is a global optimal solution for (P)
(Theorem 3.2). The algorithm is terminated.
(b) Else,
(b1) If the efficient edge L is a ray, the linear function (d,.) tends to —oo
on this edge (Problem (P) has no finite optimal value.) The algorithm is
terminated.
(b2) Otherwise, say z* is the other end of this efficient edge L, set z° — z*
and return Step 1. '

4.2. Implementation of the Algorithm

In initialization Step, to check whether Ej; # @ one can carry out the procedure
proposed in [2,12]. In the case when the efficient set is not empty, several
methods can be used in order to find the first efficient vertex z° (see, for example,
in [2,7,12)).

4.2.1. Step 1. Let z° be a given efficient vertex for (VP). The following propo-
sition shows that the determining a local optimal solution of (P) can be carried
out by considering index subsets of II(z9).

Proposition 4.2. Let z° be an efficient solution vertez for (VP). Then 20 is
not a local optimal solution for (P) if and only if there erists an inder subset
Io € 1I(2°) \ {0} with |Io| = n — 1 such that the vectors {a’ : i € Iy} are linear
independent and Iy is negative normal set with respect to (RVP). For such an
indez set I the set {z € M(z°) : (a',z) = b;, i € Iy} is an efficient edge for
(VP), emanating from 2° and yielding a strict decrease in (d,z). In particular,
if II(z°) \ {0} is not negative, z° must be a local optimal solution for (P).

Proof. Observe that z° is not a local optimal solution for (P) if and only if there
exists an efficient edge L C E) emanating from z° and vielding a decrease in
(d,z). By Proposition 3.1(i) such an edge L must be an edge of Ep(z0). In
view of Proposition 2.4 and definitions, this is equivalent to that there exists an
index subset Iy C II(z°) with |Iy| = n— 1 such that the vectors {a':i € Iy} are
linear independent, Iy is negative normal with respect to (RVP) and L = {z €
M(z°) : (a',z) = bi,i € I}. Since L yields a decrease in (d,z), L ¢ F(2%), and
hence, 0 ¢ I. g ®

This step is implemented by the following Procedure LS(z).
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Procedure LS(z°);
Input - an efficient vertex 20 of Ej.

Output - Either conclude min{(d,z) : z € Ey} = —oo or give a local optimal
solution vertex of (P).

Let 0 « j.
Iteration j (7=0,1,2...).
Check whether the index set I71(z%) \ {0} is negative .
(a) If not, then z¥ is a local solution for (P) (Proposition 4.2). The procedure
is terminated. Go to Step 2 of the algorithm.
(b) Else, find asubset I C I1(z%)\{0} with |Io| = n—1 and {a‘,i € Iy} linearly
independent such that Iy is negative normal with respect to (RV P).
(b1) If such index sets do not exist, z° is a local solution for (P) (Proposition
4.2). The procedure is terminated. Go to Step 2 of the algorithm.
(b2) Otherwise, determine the edge L := {x € M(z°) : (a’,z) = b;,% € Iy}
e If L is a ray, the linear function (d,.) tends to —oo on this edge (Problem
(P) has no finite optimal value). Terminate the algorithm.
o Otherwise, L = [z0,z*]. Let 2° « z*. Set j « j + 1 and go to iteration j.

4.2.2. Step 2. This is the most complicated step of the algorithm. In this step,
starting from a current local optimal solution z° for (P) we have to find a better
efficient vertex or show that the current efficient vertex z° is a global optimal
solution of (P). To do it we will search along paths emanating from z° and lying
in Ep(z0) N F(2°) to find an efficient vertex Z for (RVP) that has an adjacent
efficient edge yielding a decrease in (d,z). In view of Theorem 3.2 the local
optimal solution z° is not a global optimal solution for (P) if such point Z exists.

Let z! be an efficient vertex for (RVP) that lies in a considered path and is
a local minimal point of the function (d,z) over EM("’)' We will search on the
face F(z°) an efficient vertex z for (RVP) incident to z! and check whether Z is
a local minimal point of the function (d,z) over Ejs(,0). Note from definitions
that Z is not a local minimal point of the function (d,z) over Ejp(,0) if and
only if there exists an efficient edge L for (RVP) emanating from Z and lying in
M(z°) \ F(z°). Then, by an argument analogous to that used in the proof of
Proposition 4.2, we have

Proposition 4.3. Let z° be a local optimal solution for (P) and z € F(z°) an
efficicent vertez for (RVP). Then Z is not a local minimal point of the function
(d,z) over Ey(z0) if and only if there exists an index subset Iy C II(z) \ {0}
with |Io] = n — 1 such that the vectors {a' : i € Iy} are linear independent and
Iy is negative and normal with respect to (RVP). For such an indez set I the
set L= {z € M(z°) : (¢,z) = b;,i € Iy} is an efficient linear path for (VP)
emanating from T and yielding a strict decrease in (d, z).

This step is implemented by the following Procedure CP(z?).
Procedure CP(z%);
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Input - & local optimal solution vertex z° for (P);

Output - Either conclude min{(d,z): z € Ey} = —o0, conclude z¢ is a global
optimal solution for (P) or give a better efficient vertex for (VP) lying in M =)\
F(z°).

Set Vp :=0, V4 := {2°} and j < 0.
Iteration j (j =0,1,2,...).
e If V; = 0, then 2° is a global optimal solution of (P) and the algorithm is
terminated.
e Otherwise, take a point z! € Vi. Set k; — 0.
Sub-Iteration k; (k; =0,1,2...).
Find an efficient vertex Z incident to z! such that Z € F(z°) and Z ¢ Vo U V1.
(a) If such vertices do not exist, let V1 = V4 \ {z!}, Vo := Vo U {z'} and
terminate Sub-Iteration k;. Let j := j + 1 and go to Iteration ik
(b) Otherwise,
(b1) If II(z) \ {0} is not negative, Z is a local minimal point solution of
the function (d,z) over Ep (). Add Z to V1. Let k; « k; + 1 and go to
Sub-Iteration k;.
(b2) Otherwise, search a subset Iy € II (z) \ {0} with |Ip| = n—1 and
{d*,i € Ip} linearly independent such that Ij is negative normal with respect
to (RVP).
(b2.1) If such index sets do not exist, Z is a local minimal point solution
of the function (d,z) over Epr(;0). Add Z to V1. Let kj — k; +1 and go
to Sub-Iteration k;.
(b2.2) Otherwise, the point Z is not a local minimal point solution of the
function (d,z) over Ep(z0). Then, determine the efficient edge

L:={z € M(z"): (d',2) = b;,i € Io}.
# If L is a ray, the linear function (d,.) tends to —oo on this edge (Problem
(P) has 1o finite optimal value). Terminate the algorithm.

# Otherwise, L = [z°,2*]. Let 20 « z*. Terminate the procedure and go to
Step 1 of the algorithm.

4.3. Some Remarks on the Algorithm

We conclude this section with the following comments.

Proposition 4.4. This algorithm solves problem (P) in a finite number of steps.

Proof. Indeed, the number of improving steps on efficient edges is finite, since
in the calculation process the objective function decreases, any efficient edge of
M can occur at most only once. As the polyhedron M has a finite number of
edges, the algorithm proposed for solving (P) is finite. =

Remark 2. In the above algorithm, we often solve the problem of finding an
efficient edge and vertex adjacent to a given efficient vertex z%. This can be
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done by searching and finding index subsets I of the active index set of 20 such
that Iy is negative normal, [Ip| = n— 1 and {a*,i € Iy} are linearly independent
(Proposition 2.4). Each of such index subsets Iy will determine an efficient edge
incident to z°, and gives an adjacent vertex if this edge is bounded. This problem
can be solved by a quite simple procedure presented in [12].

Remark 3. In the case of finding an efficient vertex Z € F(z°) that emanates
from a given efficient vertex z! € F(z°), we need only to search and find index
subsets I; C II(z') containing the zero index such that [I| =n—1, {a*,i € I}
are linearly independent and I; is negative normal.

Remark 4. The above algorithm is a process of finite steps. In each of steps
we work with an efficient vertex z° and the associated polyhedron M (z?) de-
termined by the system (5). It is worth to note that the number |Zpz(z0)| of
inequalities in the system (5), which depends on z° as in Proposition 3.4, de-
creases after each steps.

5. Examples

The following examples have been computed by a program written in DELPHI
2.0.

Ezample 1. Consider the problem min(d,z), s.t. z € Ey. Here, d = (1,0)
and Ey is the efficient set of the following linear multiobjective programming
problem
. | —zy + 3zy
Min [_xl s 3:”2} , st. €M,
M={zeR®| -z — 223 > -8,-2z; — 33 > ~7,—z1 + 225 > —1,11,25 > O}.
In this example the calculation process is descibed as follows.

Initialization. By the procedure proposed in [12], we obtain an initial efficient
extreme solution 20 = (3,1) for (VP).

Iteration 1. Starting from ' = (3,1), using the procedure given in [12], we
obtain the efficient extreme solution 2 = (1,0) which is a local optimal solution
for (P). Then, searching on F(2?) := {z € M : (d,z) = 1}, we obtain the
efficient vertex z3 = (1,3.5) € F(z?) for (RVP) and the efficient vertex z¢ =
(0,4) € (M(z°) \ F(z?)) incident to z3.

Iteration 2. Start from z* = (0,4). There is no efficient edge emanating from
z* yielding a decrease in the objective function. Considering F(z!) := {z € M :
(d,z) = 0}. There is no efficient point in F(z*) that has an adjacent efficient
edge yieding a decrease in (d,z). So, z* is a global optimal solution for (P).

For convenience, we will illustrate the calculation process by the directed
graph:
z! = (3,1) = z? = (1,0) = 2° = (1,3.5) — |z* = (0,4).
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Here, z! is the starting point and the notation |z indicates a global optimal
solution for (P).

Ezample 2. Consider the linear multiobjective programming problem

Min [—21 + 0z + Oz3

Oxl—x2+0m3]’ e s€M

M = {z € R} | 2z, + 22 < 16, 8z + 522 < 66, 271 + 323 < 27,21 20,0 <
2o <T7,0< 23 <2}
The problem (P) that we want to solve is min(z; + z3), s.t. £ € Ey.
We obtain the following graph
z! = (4.5,6,2) - z? = (3,7,2) =
— 2% = (5.333,4.667,0) — z* = (7,2,0) — z° = (8,0,0).

Ezample 3. Consider the linear multiobjective programming problem

x
-1 -3 2 0 -1 .
Min|-3 1 0 =3 -1|/|.],
-1 0 -2 0 -3
Ts
=2 =ABanls =37 Fxs =27
0 0 -2 -5 -4 : -35
sit. | =5 0L en@i =00 =1 -26,
0 0 0 -2 0 ; —24
-5 =5 =2 0 0 s —36

L1y yIT5 20

For the problem min —z3, s.t. £ € Ep, we obtain the graph
2! = (5.2,0,0,2.573,5.533) — «? = (5.2,0,5,0.573,5.533) —
— 7% = (4.826,0,5.935,0,5.783) — |z* = (0.2,0,17.5,0,0).

Acknowledgement. The author is greatly indebted to her advisers, Professors Dinh The
Luc and Le Dung Muu, for their excellent advice and encouragement.
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