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Abstract. In this paper we consider the problem of optimizing a linear function over
the efficient set of a multiobjective linear programming problem. Basing on Philip's
approach and using normal cone method for finding efficient edges and vertices adjacent
to a given efficient vertex, we present an algorithm for solving this problem. Some
illustrative exa.rrples are given.

1. Introduction

Let M be a nonempty polyhedral convex set in -R" determined by a system of
linear inequations

( a ' , x )  2  b i ,  i  :  I , . . . , T n , (1 )

where  a i  e f f  and  b ;  eR, i -  1 , . . , t f f i .  I r t tC  bea  (pxn) - rea l  mat r i xw i thp
rows ci e Rn. Consider the problem

(P) min(d, r), subject to x € E74,

where d e R and Eu is the efficient solution set of the multiobjective linear
programming problem

(VP) MinOc, subject to n € M.

It is well-known that the efficient set Ey,a is a connected set and, in general,
it is a complicated nonconvex subset of the boundary of the polyhedron M.
Problem (P) is one of nonconvex programming problems in which any local
solution may not be a global one. Since Eva is the union of faces of M, Problem

tThis work was supported in part by the National Basic Research Program in Natural Science,
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(P) attains its global optimal solution at a vertex of M.
Although not nearly as extensively studied as Problem (VP), Problem (P)

has received increasing attention in recent years. Many algorithmic ideas and
algorithms for solving this problem have been proposed; see, for example, Benson

[3- 5], Bolintineanu [6], Ecker and Song[8], Iserma,nn-and Steuer [1U, Fiilitp [10],
An, Muu a^nd Tao [1], Luc a^nd Muu [14], Muu [15], Philip [16J, Steuer [19],
Thach [20], Yu [21] and references therein.

In [16J, Philip first studied Problem (P) and schematically described a cutting
plane procedure for solving it. Later, Isermann a"nd Steuer in [11] proposed a
similar procedure for solving (P) where the objective function (d, c) is one of the
multiple objectives (ci,t) in (VP). h [8], Ecker and Song used Philip's approach
presented two implementable algorithms that involve a privoting technique on
the feasible set for (VP) or a reduced feasible set. Recently Philip's method was
implemented by Bolintineanu [6] for the case where the objective function of (P)
is quasiconcave. Fiilcip in [10] formulated Problem (P) as a linear program with
an additional reserve convex constraint and proposed a cutting plane method
using facet cuts for solving the latter problem.

Basing on the study of normal cones and their relationship with efficient so-
lution faces for (VP), Kim and Luc [12] have proposed a quite simple method for
generating the whole efficient set for this problem, which takes into account the
degenerate case. In this paper, we present an algorithm for solving the problem
(P). It enjoys advantages of both Philip's approach [16] and the technique pro
posed in [12] for finding efficient edges and vertices adjacent to a given efficient
vertex.

In Sec. 2 some descriptions for efficiency to Problem (VP) in terms of negative
normal cone are presented. Sec. 3 is concerned with the cutting plane method
and the reduced Problem (RVP). The results obtained in this section play the
basic role for the algorithm described in Sec. 4. Some computational examples
are given in the last section.

Throughout this paper, M C R" is the polyhedral set determined by the
system (1) and C is a fixed matrix of the objective functions ci, i : L,. . . ,P.
F\rrthermore, without loss of generality, we always assume that there is no re-
dundant inequality in (1) a^nd the interior of, M is not empty. For two vectors
z t ,  22  e  RP,  z i  :  ( t i , . . . , 21 ) ,we  wr i te

zr > z2 \f artd only if tl 2 ,? for all i : !,. . . tPi
zr > z2 if and only if zr )- z2 and zl * ,'.

2. Efficiency and Negative Normal Index Sets

In this section we consider Problem (VP) formulated as in the previous section.
Recall that the efficient set Ey for (VP) is the set of all points r0 € M such
that there is no other r € M such that Cxo > Cc. The normal cone [17] to
a convex set X C Rn at a point c0 € X, denoted by Nx (t0), consists of the
outward normals to the supporting half-spaces to X at r0, i.e.

Nx("0) - { ,  € R" z (u,x- c0) ( 0 for al l  c e X}.
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When M is determined by (1), the normal cone to M at a point r0 e M can
be represented as follows.

Proposition 2.1 [18, Theorem 6.46]. Let x0 e M satisfg the following quations
and inquations

( a i , x ) : b i , i e l ( x o )

( o i , x )  )  b j ,  j  €  { 1 , . . .  , m } \ / ( " 0 ) ,
where /("0) is a nonemptg indec subset of {1,.. . ,m}. Then

lru ("0) - cone{- ai , i e I("0)}.

Flor convenience, let us recall some relations between the normal cones to
M and the efficiency of Problem (VP) established in [12], which will be used
in the further comming sections. A vector u G Rn is said to be C-positiue if
there exist strictly positive numbers 1r,... ,Ao such that r: Df=, \ci. If -u
is C-positive, then u is called C-ne4atiue. We say that the normai cbn" b M at
ao e M is negatiue if it contains a C-negative vector.

The following proposition provides another description for the efficient solu-
tions for (VP) in terms of negative normal cones.

Proposition 2.2 IL2, Proposition 5.2]. A point r0 e M is an fficient solution
/or (vP) it and only if the nonnal une to M at a,0 is negatiue, i.e, N.,rr ("0)
contains o C-negatiue aector.

It may be more useful in computation if instead of normal cones we work with

We say that an index set .I g {1, ...,rn} is negatiue if the cone generated by
{-ot : i e I} contains a C-negative vector.

Proposition 2.3 [I2, Proposition 3.5]. A nonernptg conuex subset F e M is a
lace of M iI and onlg il there is a normal subset /(F) g {1, ...m} such that F
is defind by the sgstem

( a ' , t ) : b i , i e I ( F )

( o i  , r )  )  b i , j  €  { 1 , . . .  , p } \ / ( F ) ,  
( 2 )

in which cose dim F : n- rank{ai : i  €/(F)}.

Proposition 2.4 lI2, Corollary 5.4]. Let I(F) be the index set determining a
face F ol M by (2). Then F is an efficient solution foce i! and, only if the set
I(F) is ne4atiue normal.

Remark 1. In view of Propositions 2.3 and 2.4, to determine efficient solution
faces for (VP) one can search index subsets / of {1, 2,... ,rn} and verify their
normality and negativity.
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The following proposition says that verifying negativity of an index subset
can be reduced to the existence problem of solutions of a linear inequality system
that may be solved by some standard methods.

Proposition 2,5 lI2, Proposition 4.21. A subset I g '{1, 
. . . ,rnl is negatiue if

and onlg il the following sgstern is consistent (has a solution)
P

D p . o '  : I  A i C ;  p i 2 0 ,  i  e  I ; ) j  >  0 ,  J  :  \ , . . . , , p .
j = l

For a point r e M we denote by /(r) the set of all active indices at r with
respect to the system (1), that is /(r) ' :  { i  € {1,2,.. .  ,m} |  (oi,r) -  b;}.
We. present here a condition to determine whether Ey is a subset of a face F of
the polyhedron M in terms of negative normal index sets.

Proposition 2.6. Let /(F) be the indec set detertruining a tace F of M by (2).
Assume that F contains at lu,st one fficient solution uertex /or (VP) . Then
Eu 9 F il and onlg it for euery efi.cient solution uertex r € F /or (VP) the set
/(") \ /(.F) does not contain any nqatiae norynal index subset.

Prcof. "Only if" Suppose that Eya g F. Let r € F be an efficient solution
vertex. If /(r) \ /(F) contains a negative normal index set .Is by Proposition
2.4, Is determines an efficient face Fs. Then, since Eu e F, we have Fg g f'.
This is impossible, since Io C /(c) \ /(F) and .Is determines F'0.

'f". Assume that for every efficient solution vertex r € F for (VP) the index
set /(c) \ /(F) does not contain any negative normal index subset. Assume on
the contrary that there is an efficient point f # F. Since the efficient set .E14
is connected, there is a path I composed of some efficient edges connecting r*
to an efficient vertex i e F. It means that the path I contains an efficient edge
e emanating from the efficient vertex f such that e (. F. Let I" be the index
set determining the edge e. Clearly I" g l(fr) \/(.F'). By Proposition 2.4, I" is
negative normal. This contradicts the assumption. Thus, Eu E F'. r

3. Cutting Plane and the Reduced Problem

Let c0 be an efficient solution vertex for (VP). FYom now on, we denote by F(co)
the intersection of M a.nd the hyperpla.ne (d,rl - (d, 

"0),
f ( "0 ) , :  { ,  e  M :  (d , r )  :  (d , "0 ) } .

To F(co) we associate the polyhedron

U( "0 )  ' :  { "  e  M:  (d , r )  <  (d ,co ) }

and the reduced problem

(RVP) Min{Cr, r e M(ro)}.

Denote by Ega6oy the set of all efficient points for (RVP). Note that, in general,
neither Eu I Eu@o) nor E74po1 I Eu. However, on M(ro) \f("0) these two
sets coincide. Namely we have the following.

(3)
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Proposition 8.L. Let x0 be an fficient solution uertexlor (VP). Then
( i )  Eu n (M(n0) \  r ' ( "0))  :  EM@o7 n (M(n0) \  F( '0)) ,

(i i) // n* e (M(r0) \F("0)) AEu, then there is a path of ff icient edges for
(RVP) connecting f to ro.

Proof. (i) Observe that for every point n. e (M("0) \ F(*o)) the normal cones
N u (r') t^rrd N u @ol (z- ) coincide. The conclusion is immediate from Proposition
2 .2 .

(ii) Since r0 e Ey and M(r0) e M, one has r0 €, Eu@o\. On the other
hand, bV (i) we also have r* e E111ro;. The conclusion is now obtained from the
well-known fact [11] that the efficient set of a multiobjective linear programming
problem is pathwise connected. I

The following theorem, which is an immediate consequence of the above
proposition, gives a fundamental relationship between solutions for (P) and the
efficient set for the reduced problem (RVP).

Theorem 3.2. Let r0 be an fficient solution uertexlor (VP). Suppose that r0
is a loul optirnal solution to (P). Then

(i) 
"0 

is a global optirnal solution for (P) if and only if Eu@o) c F(ro),
(ii) // r0 is not a global optimal solution for (P) , then there is a point rr €

Eu fiF("0) such that { is not a local optimal solution for (P) and there is
a path of fficient edges /or (RVP) lying in F(r0) and connecting r0 to rr .

Proof. (i) If r0 is aglobal optimal solution for (P), then (M("0)\F("0)) (\Eu -

0. Therefore, by Proposition 3.1(i), (M(ro) \ F("0)) n EuAo) : 0. This means
that E1a1,o) e F("0).

Now, assume that E7a1"o) e f("1). Then (M(ro) \ f("0))i Eypy - 0.
By Proposition 3.1(i), (M(*0) \F'("0)) f iEu - 0. It means that there is no
an efficient solution r* for (VP) such that (d,f) < (d,"0). Therefore, r0 is a
global optimal solution for (P).

(ii) Since c0 is not an optimal solution for (P), there is a point r' e (M(ro)\
F("0)) flEu. Therefore, by Proposition 3.1(ii) there is a path L C Ega6o;, which

is composed of edges I*0,y'1, lar ,a21,... ,[y*, z*]. Because r0 is a local solution
for (P), ["0, gt] c F(c0). Let i be the first index such that y;+t e M(#)\^F'("0).
By Proposition 3.1 (i) and the closedness of the efficient set for (VP) it follows
that [yt,Ai*' lc Er. Set rL i: yd. Then 11 is the desired point. r

The following corollary is immediate from Theorem 3.2.

Corollary 3.3. If there is no fficient ed,ge for (RV P) tying on F(ro) and
emanating from r0 1i.e. Eu@o) : {r0l,. ), then r0 is a global optimal solution

for (P).

FYom now on, for a fixed local solution vertex r0 of (P) we will denote
ao i :  -dandbs: :  - (d , *o l .  Then M("o)  i s theso lu t ionseto f  thesys tem

(4)( a ' , r )  2  b i , i  :  0 ,  L , . . . , f f i .
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In general, there may be some redundant inequalities in this system. In this case
we can move out all of them. Namely, let

d ;  i :  m i n { ( d ,  t l  :  a  Q  M ,  ( a i , x ) :  b r } ,  i  : 1 , 2 , . .  .  , f f i

and
I u k o )  ' :  { i  €  { 1 , . . . , T z r , ] r : o i  (  ( a , " 0 ) } U { 0 } .

Proposition 3.4, For a giuen local optimal solution uertex f for (P) the poly-
hedron M(ro) is the solution set of the system

( o ' , * l ) b ; , i € I 1 a p o , 1 . (5)

In this system there is no redundant inequalitg, except the triuial u,se uhen ro
is an ertremal point of the function d ouer M.

Prcof. Since there are no redundant equalities in the system (1) which determine
the polyhedron M, every set {c € M,(ai,r l  :  bi},  i  :  L,2,. . . ,rn is a facet of
M, Then the conclusion is immediate frorn the definition of M(*0). I

In view of Proposition 3.4, in the sequel we may always assume that M(co)
is determined by (5). For a point r e M(ro) *" denote by //(c) the set of all
active indices at r with rmpect to the system (5), i.e.,

I I (x) , :  { i  €  1746o)  :  (a ' ,s)  :  b ' } .

4. The Algorithm for Solving (P)

4.1. Algorithm

The algorithm for solving problem (P) can be outlined as follows. Its implemen-
tation will be described in detail in the next part.

Initialization Step. Check whether Eu - 0.
(a) If Yes, the problem (P) ha^s no feasible solution. The algorithm is termi-

nated.
(b) Else, find an optimal solution x' of the problem

m i n { ( d , r ) : x e M I .

(b1) If x' e Mp then r' is a global solution of (P), the algorirthm is termi-
nated.
(b2) Otherwise, find an initial efficient vertex c0 for (VP). Go to Step 1.

Step 1, (Finding a Local Optimal Solution of (P))

Starting with r0, determine an adjacent efficient edge for (VP) yielding a strict
decrea.se in (d,r).
(a) If there is no such efficient edge, c0 is a local optimal solution of (P). Go

to Step 2.
(b) Else,
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(b1) If the efficient edge is a ray the linear function (d, .) tends to -oo on this
edge (Problem (P) has no finite optimal value.) The algorithm is terminated.
(b2) Otherwise, say c* is the other end of this efficient edge, set r0 F fi*
and return to Step 1.

Sttep 2. (Finding a better efficient vertex or show that the current efficient vertex
r0 is a global optimal solution of (P))

(b) Else,
(b1) If the efficient edge .L is a ray the linear function (d,.) tends to -oo
on this edge (Problem (P) has no finite optimal value.) Tire algorithm is
terminated.
(b2) Otherwise, say c* is the other end of this efficient edge .L, set tro * r,
and return Step 1.

4.2. Implementation of the Algorithm

In initialization Step, to check whether Eu * 0 one can carry out the procedure
proposed in [2, 12]. In the case when the efficient set is not empty, several
methods can be used in order to find the first efficient vertex u0 (see, ftr example,
in [2,7,121).

4.2,L. Step 1. Let r0 be a given efficient vertex for (VP). The following propo-
sition shows that the determining a local optimal solution of (P) can be carried
out by considering index subsets of II(*).

This step is implemented by the following procedure ̂L.g(co).
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Prccedure LS(ro );
Input - an efficient vertex { of. E4a.
Output - Either conclude min{(d,o) : r e E1a}.: -* or give a local optimal
solution vertex of (P).

L e t 0 e J .

I te ra t ion  j  ( J  -  0 ,  I ,2 . . . ) .

Check whether the index set ̂ t.I(r0) \ {0} is negative .
(a) If not, then r0 is a local solution for (P) (Proposition 4.2). The procedure

is terminated. Go to Step 2 of the algorithm.
(b) Else, find asubset Is e II@o)\{0} with l/sl: n-t and {or,i e /o} linearly

independent such that.Is is negative normal with respect to (RVp).
(b1) If such index sets do not exist, c0 is a local solution for (P) (Proposition
4.2). The procedure is terminated. Go to Step 2 of the algorithm.
(b2) Otherwise, determine the edge L :- {r e M(xo) , (ot, c) : b;, i € Is}.

. If .L is a ray, the linear function (d,.) tends to -oo on this edge (Problem
(P) ha^s no finite optimal value). Terminate the algorithm.

. Otherwise, L: [c0,2*]. Let r0 + r'. Set j * j * 1 and go to iteration j.

4.2.2. Step 2. This is the most complicated step of the algorithm. In this step,
starting from a current local optimal solution r0 for (P) we have to find a better
efficient vertex or show that the current efficient vertex c0 is a global optimal
solution of (P). To do it we will search along paths emanating from r0 and lying
in E14poy n F(co) to find an efficient vertex f for (RVP) that has an adjaceni
efficient edge yielding a decrease in (d, r). In view of Theorem 3,2 the local
optimal solution u0 is not a global optimal solution for (P) if such point i exists.

Let cl be an efficient vertex for (RVP) that lies in a considered path and is
alocal minimal point of the function (d,*l over E7a1"01. Wewill searchon the
face F(co) an efficient vertex i for (RVP) incident to cI and check whether f is
a local minimal point of the function (d,rl over Ey1"o;. Note from definitions
that i is not a local minimal point of the function (d,r) over Ey1ro1 if and
only _if there exists an efficient edge L for (RVP) emanating from f and-lying in
M(ro) \F("0). Then, by an argument analogous to that used in the prooiof
Proposition 4.2, we have

Proposition 4,3. Let x0 be a local optimal solution for (P) and, i e F(r}) an
efi,cicent ueriex /or (RVP). Then i is not a local minhnal point ol the function
(d,*) oaer Eypo,1 if and only if there eri,sts an index subset /o c II(i) \ {0}
uith llol : n - L such that the uectors {ai : i e /o} are linu,r independent and,
Io is negatiue and normal with respect to (RVP). For such an index set Is the
set L ': {" e M(r0), (od, rl :b;,i € 16} is an efficient linear path lor (VP)
ernanating I** I and, yielding a strict decrease in (d,,a),

This step is implemented by the following Procedure CP(ro).

Prccedure C P(ro);
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Input- a local optimal solution vertex r0 for (P);

Output- Either conclude min{ (d,*) : r € Eu} - -€, conclude c0 is a glolal

optimal solution for (P) or give a better efficient vertex for (vP) lying in M(ro)\

F("0).

Set Vo z:0, V1 :: {ro} and J - 0'

I terot ion i  ( i  :0, 1,2,..  .  ) .
o lf, Vr - 0, then c0 is a global optimal solution of (P) and the algorithm is

terminated.
o Otherwise, take a point nr e V. Set k3' <- 0'

Sub=Iteration ki (ki :0, 1,2 ' ' ' )'
Find an efficient vertex i incident to zr such that f e F(ro) and i 4VouVt.

(a) If such vertices do not exist, let V1 :: Vr \ {"t }, Vo :: Vo U t"t } and

terminate Sub-Iteration k'. Let i z- i * 1 and go to Iteration j'

(b) Otherwise,
(b1) If, II(i)\ {0} is not negative, f is a local minimal point solution of

the function'(d,riover.Ey,1"o;. Add t to Vr. Let ki * ki *L and go to

Sublteration ki.

(b2) otherwise, search a subset Is g /I(t) \ {0} with l/ol : n - 1 and

\ai',i e Io) linearly independent such that /s is negative normal with respect

to (^RVP).
(b2.1) If such index sets do not exist, r is a local minimal point solution

of the function (d,r) over E741ro;. Add itovr. Let ki * ki *l and go

to Sublteration ki.

(b2.2) Otherwise, the point f is not a local minimal point solution of the

function (d,rl over Ey1"oy. Then, determine the efficient edge

L  : :  f u  e  M ( n o ) ,  ( o t , n )  : b ; , i  e  / s ) .

* lf. L is a ray, the linear function (d, .) tends to -oo on this edge (Problem

(P) has no finite optimal value). Terminate the algorithm.

* Otherwise, L- ["0,ct]. Let fro .- r*. Terminate the procedure and go to

Step 1 of the algorithm.

4.3. Some Remarks on the Algorithm

we conclude this section with the following comments.

proposition 4.4. This algorithrn solues problem (P) in a finite number of steps.

prcof. Indeed, the number of improving steps on efficient edges is finite, since

in the calculation process the objective function decreases' any efficient edge of

M canoccur at most only once. As the polyhedron M has a finite number of

edges, the algorithm proposed for solving (P) is finite. I

Remark p. In the above algorithm, we often solve the problem of finding a"n

efficient edge and vertex adjacent to a given efficient vertex c0. This can be
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done by searching and finding index subsets .Is of the active index set of c0 such
that.Is is negative normal, l/ol : n-L and {ai,i e.Is} are linearly independent
(Proposition 2.4). Each of such index subsets Is will determine an efficient edge
incident to r0, and gives a,n adjacent vertex if this edge is bounded, This problem
can be solved by a quite simple procedure presented in [12].

Rernark 3. In the case of finding a^n efficient vertex i e F(r0) that emanates
from a given efficient vertex ar e F("0), we need only to search and find index
subsets h C II(nl) containing the zero indexsuch that l[ l :n- 1, {ot,i e 11}
are linearly independent and .I1 is negative normal.

Remark l. The above algorithm is a process of finite steps. In each of steps
we work with an efficient vertex r0 and the a,s.sociated polyhedron M(co) d+
termined by the system (5). It is worth to note that the number lly6y l of
inequalities in the system (5), which depends on c0 as in Proposition e.A, ae-
crea^ses afber each steps.

5. Examples

The following examples have been computed by a program written in DELPHI
2.0.

Eromple 1. Consider the problem min(d,o), s.t. n € Ey. Here,4: (1,0)
and Ey is the efficient set of the following linear multiobjective programming
problem

M -  { r  e  Rz |  - " r  -2r2 2 -8,  -2q -  rz  )  -7 , -nr  *2r2 )  -1 ,  r r , tz  > 0} .
In this example the calculation process is descibed as follows.

Initialization. By the procedure proposed in [12], we obtain an initial efficient
extreme solution tro : (g,l) for (VP).

Itemtion I. Starting from rl : (3, 1), using the procedure given in [12], we
obtain the efficient extreme solution 12 : (1,0) which is a local optimal solution
for (P). Then, searching on l7(r2) :: {r e M : (d,x) - 1}, we obtain the
efficient vertex 13 : (1,3.5) e F(r2) for (RVP) rtrd the efficient vertex t4 :
(0,4) e (M(f ) \ F("0)) incident to 13.

Iteration 2. Start from 14 : (0,4). There is no efficient edge emanating from
ra yielding a decrease in the objective function. Considering F(*o) ': {r € M :
(d,r) - 0). There is no efficient point in F (ca) that has an adjacent efficient
edge yieding a decrease in (d, c). So, ra is a global optimal solution for (P).

For convenience, we will illustrate the calculation process by the directed
graph:

nr : (3, 1) -, a2 : (1, 0) * 13 : (1, 3.5) - lx| : (0, 4).

" , , [ _ : i : i : : ] ,  
s t  r € M ,
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Here, rl is the starting point and the notation lc indicates a global optimal

solution for (P).

Eaample 9. Consider the linear multiobjective progra,mming problem

rurir, f-^"t +orz +or3l . s.t. x e MrYr ' r r '  
L  Ocr  -  r2*0ng I t

M  -  
{ n  e  f f  l Z q * 1 2  I  1 6 , 8 r r  * 5 r . 2  S  6 6 , 2 q + } x z  < - 2 7 , q  >  0 ' 0  <

t z 3 ? , 0 ( r g S 2 ) .

The problem (P) that we want to solve is min(c1 * nz), s.t. c € Eu,

We obtain the following graph

r r  :  ( 4 . 5 , 6 , 2 ) ' o 2  :  ( 3 , 7 ,  ? ) '
-  x3 :  (b .BB3,  4 .667,0)  *  n4  :  (7 ,2 ,0 )  *  s5  :  (8 ,0 ,0 ) .

Enample g. Consider the linear multiobjective programming problem

f r 1 r . , .  , c s  2  0 '

For the problem min -r3, s.t. r € Eu, we obtain the graph

trr  :  (5.2,0,  0,2.573,5.533) - '  12 :  (5 '2,0,5,0 '573,5'533) -

-+  n3  :  (4 .826,0 ,5 .935,0 ,5 .783)  -  ln {  :  (0 '2 ,0 ,  17 '5 ,0 ,0 ) '
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