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1. Let X be a quasi-normed linear space and W, M c X. For approximation
of elements from W by M , the quantity

E(w, M, x) ,: 
,tu,? *?t ll/ 

- ell
gives the worst case error of approximation. When M is a linear manifold we
have the linear approximation problem. Non-linear approximation is that when
the set of the approximation M is a non-linear manifold.

Given a family M of subsets in X, we are interested in the best approxima-
tion by M from M in terms of the quantity

d(W,M,X) , :  i tLE(W, M,X). (1)
In linear approximation, if M is the family of all linear manifolds of dimen-

sion ( n, then d(W,M,X) in (1) defines the well-known Kolmogorov n-width
d."(w, x).

We are interested in non-linear approximation in terms of the entropy number
er(W,X) and the non-linear n-width p"(W,X).

The non-linear n-width pn(W,X) introduced recently by Ratsaby and Maio
rov [7,8] is defined only for a space X of. real-valued functions on a set ft. It is
d(W,M,X),If M in (1) is the family of all subsets of X of pseudo-dimension
1 n .

The notion of pseudo-dimension is defined as follows. For a real number t
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let sgn(t) be l for t > 0 and -1 otherwise. For c € lR" let sgn(r): {sgn(21)'
sgn("2), ..., sgn(r")). Let M be a set of real-valued functions defined on O. The
pseudo-dimension of M is defined as the largest integer n such that there exist

points ar ,a2,...,en in O and b € R" such that the cardinality of the set {sgn(y) :

V:  { f  (a t )+br  ,  f  (o ' ) *b2, . . . , f  (o")+b"} ,  f  e  M} is  2. I f  n  is  arb i t rar i ly  large

it.nitt. pseudo-dimension of. M is infinite. We denote the pseudo-dimension of

M by dimo W).
The definition of pseudo-dimension of a real-'ralued functions set is intro-

duced by Pollard't6l and later by Haussler [a] as an extension of the Vapnik-

Chervonekis dimension [12] of an indicator function set. The pseudo-dimension

defined above and the Vapnik-Chervonekis dimension are measures of capacity

of function set. They play an important role in theory of pattern recognition

and regression estimation, empirical processes and computational learning the-

ory (see also [7,8] for details).
Lt U is a linear manifold of dimension n\n X, then dimo (M) : n (see [4'6])'

Ftom the definition we can see that dimo (M) S loglMl, and consequently,

pn(W,X) S e, (W,X) (2)

for any subset W in the quasi-normed linear space X of real valued functions on

CI.
We establish in our paper asymptotic orders of the non-linear n-width p"

and entropy number €n in the space Io(Td) of the unit SWI of Sobolev space

and the unit ball of SBi,e of the Besov space of functions on d with common

mixed smoothness r.

2. For a nonnegative integer r, the univariate symmetric difference operator

A;, h € 1f, is defined inductively by Al, :- Al,A;-r, starting from the operator

A|,/ :: /(.+ hlz) - /( '  - hlz).
For a natural number s and e C E,: {1 ,2,, .,.,d}, we let the multivariable mixed

s-th difference operator Ai, h € F, be defined by
d,

ai (')/ ': fl ^i, f ,
l e e

where the univariate operator Ai,- is applied to the variable ri (in particular,

Ai(0) /  = f ) .
For r ) 0 and 1 Sp < €, 0 < 0 < oo, let B!,p denote the Besov space of all

functions on ']fd, for which the quasi-norm

ll/ll";,, ,: D lfla;',1,
e C E

is finite, where ll . llo is the usual pintegral norm in Lo '- trp(Td) and

r  1/o

l f ln : . .^ , :  (  [  I I  t r , t - r -a" l lAf i , ( " ) / l lgdh) ' ,  0(  oo' -p,o 
\ Jf, i j  /

(the integral is changed to the supremum for 0 - m) for some s > r' The

definition of Bf,a can be extended for any r € IR' (see, e.g. [3])'
The SobolSn spac. W; is defined in the same way as Bi,e bf replacing
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ll/lln;,, ana l/lsll., by ll/ll*; and l/ly;,c i_ ll(lli." 0'/2nj)/llp, respectively,
where 0' /1xj is the fr.actional partial differential oper,ator of order r in the serure
of Weil.

3. We give the main result of our paper. Let

SBi,e ': {/ € w; ' ll/l lw; S 1}

sw; '= {/ eBip: l l / l ls;,, S 1}

be the unit balls in Bf,a and Wi, respectively.
We usethe notat ion F x F ' i f  F < F 'and F '< F,  and F < Ft  i f .

F < CF'with C an absolute constant. Denote by h either en or p,, and put
ap i: ma>c{a, 0}.

Theorem L. Let L I p, g ( oo, 0 < 0 < oo. Then we haae for either, > Ilp
or r )  ( t /p - I ld+ and 0 > min{q,2}

" t , (SBi,a ,Lo) = n-"( log n)G-r)(r+r/2-r /0),
a n d f o r r >  ( L l p - I l d *

7" (SW;,Lq)  =  (n l losd- '  n ) - ' .

In addition, u)e can etplicitly constract a subset M in Lq of cardinolitg lMl S 2"
and a mapping S : M + M so that

E(W, M, Lq) S -sup ll/ - S(/) llo < E(n),

where W denotes SBf,a o/ swi and E(n) the right side of (3) or (4), respec-
tiuely.

Theorem 2. Let 0 1 p,Q,0 ( oo, L I r ( m and r > a. Assurne that either
r - a > L/p or r -  a > (7/p-I ld* and 0 ) r.  Then we haue

e" (SBi,a .Bf,,r) K. Es,, (n),
where 

Ee, r (n)  :  n- r *a( logn; (a- l ) ( r -o+1/  r - t /0  .

In addition, u)e can erplicitly constract a finite subset Y* in Y, a subset M in
M"(V*) of cardinality lMl S2n, and, o mapping S : Bi,a - M so that

E(SBi,a ,, M,Bf,,,) S ,_sl:-p- ll/ - s(/)lln;,, q Ee,,(n).
yesBi ,o

Theorem 3 .  Le t01prer | ,T  (  oo  andr  )  a .  Then we haae

o" (SBi ,e ,83 , ' )  >  t ' - " *o  ( log  n)@-  1) ( r -a+ l / r - r /0 )  .

The asymptotic order of e,, (sw;,.L0) was proved by smolyrk tg] for p : q :
2, by Dinh Dung for 1 1p: q < oo [2] and by Temlyakov for 1 < p + g < oo
[10] and r ) 1, and Belinsky [1] for 1 < p sq ( oo and r/p - rlq( r ( 1. The
asymptotic order of e,, (sB;,- ,.Lo) was proved by Temlyakov [10] for | 1 p,q <
o o a n d r  )  1 ,  a n d B e l i n s k y  [ 1 ]  f o r  L < p < q <  o o a n d  L / p - r / q < r (  1 .  W e a r e

(3)

(4)
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restricted to consider the case 1 1p,e ( oo of er,(S.W;,.Ln) and e"(SBf,e,Lo).
See [1, 11] for details of recent results on the cases prQ :1, oo and d : m. The
asymptotic order of pn of the unit ball of the multivaridte classical Sobolev space
was obtained by Ratsaby and Maiorov [8].

4. Theorem 1 is easily proved from Theorems 2 and 3 using the inequality (2),
the well-known Littlewood-Paley theorem and the following

Lemma L. Let the linear space L be equipped with two quasi-nonns ll . llx and
ll . l lr , andW be a subset ol L. II e^(W,X) ) 0, we have

€n+m(W,Y) S e" (.SX ,Y)e^(W, X).

In order to prove Theorems 2 and 3, we used non-linear n-term approxima-
tions with regard to the family formed from the integer translates of the mixed
dyadic scales of the tensor product multivariate de la Vallee Poussin kernel,
discretization methods, a lemma of Haussler on upper bound for the e-packing
number (see [8, Lemma 1]) and the following estimates of e,, for sets in finite-
dimensional spacm.

For 0 < p < oo denote by lf, the space of all sequences * : {rx}Lr of

(complex) numbers, equipped with the quasi-norm lltllrf :: (DL ,l*rlo)t/'
with the change to the max norm when P : m.

Let 0 1p,0 ( oo, N - {Nr}t.O be a-sequence of natural numbers with Q a
finite set of indices. Denote by bil, the space of all such sequences

* : {rr}rea : {{rf}fjr}r.c, for which the mixed quasi-norm

l l"l lux,, ,: (E 
",-il?^)' ' '  

, ,( €,
is finite (the sum is changed to supremum for g - m), where Xk :- I{r. Let

Sfle Ue the unit batl in bilr.

Lemma 2. Let 0 < p S L. Then for any positiae integer n we can etplicitly
construct a subset M C I3 of cardinality lMl12n, and, a mapping S : Ii -+ M
so that

where

Lemma 3. Let 0 1 p,0,r 1 a and p < 0. Then for any positiue integer
n < m,: Dree N1s, wa can etplicitly ennstract a subset M C bI," of cardinalitg

lMl 32 (T), and a mapping S : bf;a + M so that

e" (sf;a, bI, ,  )  S tgP l lr  -  ^9(o)l log,, I  Cn-t ln1gf l t+t lp-L/0 '
resf;,a

Remark, [.,emma 2 was proved by Maiorov for the case P: L (see, e.g., [t0]) by
a method which is not suitable for the case p ( 1.

t"(Bf ,,3) < 
"'.8 

llc - s(r)llrs < C(p)Ar(m,n),

(  m - t / p 2 - n / m ,  I o r  n )  m
Ar(*,n) : 

t "- 
t ln lorr/n(*b), for n 1m,
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Corrigendum

The author would like to make a correction to the paper: Dinh Dung, On
asymptotic orders of n-term approximations and nonlinear n-widths, Vietnam
J. Math. 27 (4) (1999) 363-367. The assumption r ) r/p in the main re-
s u l t s ( T h e o r e m ) s h o u l d b e c h a n g e d t o t h e a . s s u m p t i o n : e i t h e r r >
, > (r/p - L/q)* and 0 ) min{g,2}. Therefore, the power of log in the asymp-
totic order n -" (log n)@-r)(r+r/2-r/0) 

.of o,. (SBi,e ,Y , Lo) and 7,, (SBi,e, tc )
should be positive and the corresponding comm'ents should be corrected. He
apologizes to the reader for this error.


