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Abstract. Some results on the continuity with respect to a cone of multivalued
mappings are shown and applied to consider sufrcient conditions for the existence of
weak equilibrium points concerning multivalued mappings. Some applications of these
results to the existence of efficient points of subsets in reflexive Banach space and of
solutions of vector optimization problems are also discussed.

1. Introduction

LeJ X' Y be topological locally convex Hausdorff spaces, D c X a closed convex
subset, C c Y a closed convex pointed cone. Given a multivalued mapping
F : D x D -+ 2v with F(*,il * a for all x,y € D, we are interested in
considering the problem of finding

I e D such that F(i,A) I -intC, for all y e D. ( 1 )
The point f is called a weak equilibrium point (or, a solution) of the weak
equilibrium problem with respect to c, denoted by (wEp,c). in. proulem offinding

fr e D such that F(n,il g -Q \ {0}), for all U € D, (2)
is called an equilibrium problem with respect to c and denoted by (Ep,c),
Such a point r is said to be an equilibrium point (or, a solutionj of tfr. problem
(EP'C)' It is clear that if int C:0, then every point r € D is an equilibrium
point of (WEP,C). In this case it is not interesting to consider (1). ifrur"foru,
in this paper, we only study (1) with int C I 0. Frrrther, if u is Ln equilibrium
point of (EP,c), then it is also a weak equilibrium point of (wEp,c). And, if
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d is another closed convex point cone in y with e c C and x is an (a weak

equilibrium point of (EP,C) ((WEP,O)), then n is also an (a weak) equilibriur

point of (EP,d) ((WEP,C), respectively). F\rther, if C satisfies condition: l

there is aclosed convex pointed cone C such that C\{0} C intf and r e D i

a solution of (WEP,C), then i is a solution of (EP,C). Such a condition on C i

satisfied, for example, if it has a convex compact base (see the proof in [12]). I

this paper we consider (WEP,C) only'

Before presenting the main results we generalize the well-known Banact

Steinhaus theorem [3] for a family of convex functions. We prove necessEry an

sufficient conditions for a multivalued mapping to become a lower C-continuor:

multivalued mapping (Theorem 2.3). Then, using the new Banach-Steinhat

theorem for convex functions we show that if C has the polar C', which is

polyhedral cone and F ; D + 2v is C-convex and lower C-continuous wit

f (;) * C convex for all x € D, then it is weak lower C-continuous (Theorer

3.4).
F\-r,rther, we extend the result in [12] to the multivalued case. The probleu

(1), (2) concerning singlevalued mappings are studied by Ky Fan [6], Blum an

O"ttii ia, S], Oettli [10] and others. Our results are extensions of their results. l

[fO] Oettti proved some results on the existence of equilibrium points concernir

vector functions by using the method of scalarization. This method cannot t

applied to our case with the mapping F of the form G + H, where G and '

,"[irfv different conditions. We also weaken the coercive conditions (Conditic

Ag/ in Theorem 3.1 below) by other conditions (see Thmrem 3.3), using tl

weak topology in a reflexive Banach space X. The weak lower C-continuor

property of F in Theorem 2.4 is used to study (wEP,c) in the case where

has a cone C with C' a polyhedral cone'

Finally, we apply the obtained results to show the existence of efHcient poin

of subsets in reflexive Banach spaces and of solutions of vector optimization pro

Iems. The results can be also applied to the existence of solutions of 'rariation

inequalities, Nash equilibrium problem... concerning multivalued mappings.

2. Preliminaries

Let x be atopological locally convex space, D c X aconvex set. By R'

denote the space ofieal numbers with the usual topology E: RU {+m}. Fir

of all we recall the following definitions'

Definition 2.L. A function f : D + E tf called o conaer (conu'ue) fuTcti
i f  f  (ar+( l -c)y)  S " f@)+(1-a) / (d 

$@'+(1-a)v)  2 o/ ( ' )+(1-c) / (1

,Lrpl"tilr.i;9, ii ia" for aIIr,A €dom/: {c e D I I@) < +oo} anda el0,

Definitiol 2.2. Let {fola € I} be a fomitg of lunctions on D, where I

a nonernpty parameter set. We say that this family is upper (lower) equiser

continuous atrs e D il for euery e > 0 there is aneighborhoodU olts in

such that f,(r) S f"(rs) +e (/"(") > h(to) -€' respectively), holds tor

r € U f r D  a n d a € 1 .
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F\rrther, let Y be another topological locally convex space with a cone C
and F be a multivalued mapping from D to Y (denoted by F : D -r 2Y ) which
means that F(r) is a set in Y for each s e D.

We denote by dom F the set of all s € D such that F(c) * 0. In this paper
without loss of generality we can assume dom F - D.

Definition 2.3. a) We say that F is upper (lower) C-untinuous at rs e D if
for each neighborhood V of the origin in Y , therc, is a neighborhood U of rs in
x suchthat F(r) c F(cs) +v +C (F@s c r(c) +v - C, respectively) holds
f o r a l l r € U f l d o m F .
b) We soy that F is C-continuous of os if it is upper and lower C-continuous
at that point, and F is upper (respectiuely, lower,... ) C-continuous on D if it
is upper (respectiuely, lower,.,. ) C-*ntinuou.s at euery point ol D.
c) We say that F is ueokly upper (lower) C-wntinuow at os if the neighborhood
U of Es as aboue is in the wuk topology of X.

Deftnitiort 2.4. F is said to be C-conuer il F(aa + (1 - a)y) c aF(r) + (1 -
a)F(y) - C holds for all r,A € D ando € [0, 1].

Let Yt denote the topological dual space of Y and

C' : {{ e Y' | (€,y) ) 0, for all y e C}.

Here by (€, y) we mean €(y).
This C' is called the polar cone of the cone C. For given F : D -r 2Y and

€ e C' we define the function Gg : D +E UV Ge(") : supyeF(")(€, Al, n e D.

Proposition 2.L. a) If F is C-conuea, then Gg is a cdnuex function.
b) If F is lowerC-continuous atag € domF, thenGq is alower semicontinuolls
at  rg.

Proof. a) Let r; € D, i: L,2, and a e [0,1]. Since

F(aq  + (1  -  a ) rz )CaF( r1 )+ ( t  -o )F (x2 ) -C ,

it follows that

Gq(aq + (1 -  a) rz) :  
r . r (o , i l?r_.1, r , (€ ,v)

s  
vr , , t r1o" , l i t l " l t  Gz)-c(€ '  

Y)

3 yeo F 1o,,ilf, -',tr", I 
(€' u)

1a sup (€,y)  + (1 -  o)  sup (€,y)
yeP(z r l  veF(c2 )

aGs(x1)+(1 -a)Ge@z).

This shows that G6 is a convex function,
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b) Let e > 0 be given. Since € € C', there is a neighborhood V of, the origin
in Y such that {(V) c (-e, e). As F is lower C-continuous at to € dom F, it
follows that there exists a neighborhooil U of rs in X such that

This implies

F(ro) c F'(r) +V - C, forall c € U n D.

G6 (cs ) : sup ({, y)
YeF(cs)

veF ( r l  veV  ve -C

S G e ( r ) + e .

Hence
Gc@)2 Ge("0)  -e,  for  a l l  s  € U n D.

Therefore, Gg is lower semicontinuous at rs.
This completes the proof of the proposition. I

F\rrther, we recall that a barrel space is a topological locally convex space, in
which any nonempty closed, symmetric, convex and absorbing set is a neighbor-
hood of the origin (see, for example [1U). The following theorem is an extension
of the well-known Banach-Steinhaus theorem for a family of convex functions.

Theorem 2.2. Assurne that X is o banel spaen,, I is an indn set and to :
X + E, a € I, is conuer: and louer semicontinuorn on sotne neighborhood Uo
of so € domfo lor ollo € I. In add,ition, supposethatfor any r C X thereis a
constant7 > 0 suchthat f"(*) <'f |or alla€ L Thenthefomilg {f"la € I}
is upper quisernienntinuous at ns.

Prcof . By setting /" (c) : lo(c + cs ) - /" ("0 ), if necessary, we may assume that
ro:0 and /"(0) :0 for all a € ^I. For given e > 0 we put

A o : { r e X  l / " ( " )  S e } .

Since 0 € /., we conclude that A" * 0.
Without loss of generality, we may assume that Us is a closed convex neigh-

borhood of the origin. Flom the convexity and the lower semicontinuity of f"
on Us, it follows that Uq n A" is a nonempty closed convex set for all c e .t.
F\rrther, putting U : fr.,el(Uo n Aan(-A')), *" conclude that U is nonempty
closed, symmetric and convex. Now, we claim that U is absorbing. Indeed, let
r € X. By the hypotheses of the theorem there is a constant 7 > 0 such that

f"(x) ( 7 and f"(-*) ( 7, for all o e /. Without loss of generalitS we can
assume "y > e. Hence

f"ef): f,{i, * (1 - 
;)0) =:,f"(") + (r - 1)f"(0) 

: 9rf"{d s r.

Since Uo is absorbing, there is a constant p ) 0 such thar exf p, -erlP € [/q. For
jo - *oh,p), we conclude that (e/1)r e A, fl Uo. By a similar argument,
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we obtain (-eln)" e Ao f lUo, for al l  ae I,  and then (r/ lo)r eU.It  means
that U is absorbing. Since X is a barrel space, U is a neighborhood of the origin
in X. For r € [/ we have

f"(r) S e :/"(0) * e, for al l  o e -I .

This means that the family {1" I o e /} is upper equisemicontinuous at the
origin in X.
This completes the proof of the theorem. r

The following theorems extend Theorem 5.5 in [8].

Theorem 2.3. Suppose that Y is a Banach space and F : D 2Y is a
multiualued rnapping with F'(") - C conuea for all a e D. Then F is lower

C-continuous at ns if and onlg if the familg {Ge lt e C', ll€ll - U is lower
equis emicontinuous at tg.

Proof. We first assume that F is lower C-continuous at ro. Let e > 0 be given.

By Banach-Steinhaus theorem, the family {€ e C'lll€ll : 1} is equicontinuous.

Therefore there is a neighborhood V of, the origin in Y such that {(y) € (-e, e)
holds for all y e v and { € c" ll€ll : 1. Flom the lower c-continuity of F at

rs there exists a neighborhood U of' xs in X such that

F(ro) c F(r) +V - C, for al l  r  e U n D.

It follows that

Ge ("0) : suP (€, Y)
veF(zs )

v e F ( s )  Y e V  v e - C

< 
ri l t ,(€'Y) 

* e :G6(c) + e

h o l d s f o r a l l  x  € U  F t  D a n d  € e C "  l l € l l  =  1 '  T h i s m e a n s t h a t t h e f a m i l y

{Ge | € e C', ll€ll - U is lower equisemicontinuous at xs.

Now, assume that this family is lower equisemicontinuous at rs, but F is not

lower C-continuous at os. This implies that there exists a convex neighborhood

V of the origin in Y such that one can find a net {t"} from X with lim ro - rs

and F@il I  F(*,) +v - C, for al l  o.

Then, we can take go e F(rs) with

ao /  F(r " )  +V -  C.

Since the set cl (F(ro ) +V 1Z- C) is closed and convex, applying a separation

theorem one can find some {o from the topological dual space of Y with unit

norm such that 
€o(y,) z €" (v)

for all g e F(ro) +VIZ- C. Assume that there is os such that eoo / C'. Thus,
we can find ys € Cwith €"r(yo) < 0. Since'lyoeC for all 7 > 0, we have

€oo (yo )  2  { " ,  ( r oo )  *€oo (u "o )  - t € "0 (yo )
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for some zoo € F(r.,o) 
"ttd 

us e V/2. Letting ? -r *oo, the right-hand side
tends to *m and we have a contradiction. Therefore, we deduce that €o € C'
for all a.

For an arbitrary 6 > 0 there exist 9o € F(r"), Eo eV/2 and eo € C such
that

(4o,9o) > suP (€",  Y) -  *
y e F ( t .  )  J

(€o, oo) > ,.rp (€., r) - 9
, e + ' 3

(€o,Eo) r 
"ru%(€",4 

- 
f .

Hence, for zo - Ao + ta + eo e F(r") + VIZ - C, we have

€o(vo)  2 €"(" . )

y e F ( x , )  u e t  c e - C

: Ge.("") + suP (€" ,ol - 6.
u e V  / 2

Since the family {€" l€" e C', ll€ll - 1} is equicontinuous at the origin, we can
assume 

suP suP (€o, u) : 60 > o'
v12

Consequently,

Ge" ("0) > Gs("") + 6o - 6, for all {o € CP, ll€" ll : 1'

Taking e: (60 - 6)12 for 6 ( 60, we obtain

Ge" ("0) ) Ge,,(ro) + e,

or Ge,(ro) < Ge" ("0) - e, for dl {o e C , l l€. l l  :  1.

It contradicts the lower equisemicontinuity of the family {Ge | € e C', ll(ll - 1}.
This completes the proof of the theorem. r

Next, we recall that a cone C c Y is said to be a polyhedral cone if. C -
cone (conv {yt , . . . ,An}), i.". a cone spa^nned by the @n\rex hull of n independent
vec to rs  {Ar r . . .  ,An l .

Theorem 2.4, Let D, X,Y be os obwe ondletC Cy be aeonuff i  conewithCt
a polyhedrul cone. Assume that F : D - 2Y is C -conva ond, lowq C -continuous

with F(x)+C convffi for ollr € D. Then F is wdlg louuC-oontinuous.

Prcof. Assume that Ct - cone(convt€t,...'€"))- [t is clear that, for i :
1r2,. . . ,fl, GE, is a convex and lower semicontinuous function from D to E.
Therefore, it i; weakly lower semicontinuous from D tnE- Suppose that rs €
domF. We show that F is weakly locrer C-continuous at c6. Indeed, for any
given e > 0 and i : L,2,. .. ,fl, we Gan find a neighborhood U; of cs in the weak
topology of X such that
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F(ro) c F(r) +V - C, for all r € U n D,

Ao e F(r)  +V -  C, for al l  x €U frD,

301

Ge,@), Gt,("0) - pse, for al l  r  € U; i  D,

where Bs : min l l  DL, \Pj l l ,  Dl=, ^r _ 1. Since {€i,  i  :  1,. . .  ,n} is an
independent system 1nd. Dl=, lr 

: 1, we have ps > 0. Putting U : )l=rUr,
weob ta in  Ge,@)  2  Ge, ( "0 ) -  pse ,  fo r  a l l r  €  UnD and i -  1 , .  . . , ,T1 , .
This shows that the family {Ge, I i : I,. . . ,n} is weakly lower equisemicontin-
uous at rg. Now, we claim that

G e @ ) > G 6 ( " 0 ) - e , f o r a l l  r e  U a n d € e C ' ,  l l { l l  : 1 .

I n d e e d ,  f o r {  e C ' l l € - l l  : 1 ,  w e c a n w r i t e  € : g D l = r ) i f i  f o r s o m e  p > 0 .  W e
have t: ll€ll : gllDf=, Ai{,11. Therefore,

't 1
0 - # 3 ; ,  o r  P s P < L .

llf l '6'l l 
to

Since

G g , ( c )  :  s u p  ( € i , y )  >  s u p  ( € i , g ) - 0 0 e ,  i = 1 , . . . , n , r € U t D ,
yeF(z )  yeF(cs )

multiplying both sides of these inequalities by gAr and taking the sum of them
we get

Gs(x):  rgp.( igx,€, ,a)
s e F ( x )  

=

YeF(oe)  = ;

2Ge(ro) -e, for al l  c € U n D.

This shows that the family tce | € € C',ll€ll = 1) is weakly lower equisemiconti-
nuous at rs. Applying Theorem 2.3, we conclude that F is weakly lower C-
continuous at os.
This completes the proof of the theorem. r

Proposition 2.5. If F : D 2Y is lower C-continuous on D, then the
set A- {c e D I F(c) n intC : 0l is closed.

Proof. Without loss of generality, we assume that int C # 0. Let rs e A,
the closure of .4. We claim that cs e A. Indeed, let xn € A and rn + ro.
We assume on the contrar/ oe ( A, This means that F(ro) n int C t' 0 and
therefore we can find a point yo e F(ro) *d a neighborhood V of the origin in
Y such that ys +V CintC. Since F is lower C-continuous at rs, one can find
a neighborhood U of. cs in X such that

Therefore,
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ort

0 e F ( r ) - a o * V - C  c F ( z )  -  i n t C - C

C F ( n ) -  i n t C ,  f o r a l l  r e  U n D .

This showsthat.F(r)n intC +0 foral l  x €U nD. I t  contradicts the fact that
rn €.4 and tn 4 rs. So rs e. A a"nd A is closed.
This completes the proof of the proposition. I

Next, we introduce the following definitions:

Deffnition 2.5. We say that G : D x D -, 2Y is o rnonotone rnapping if
G(*,y) + G(g,n) I -C holds for oll r,y € D.

Deffnition 2.6. Let K and D be nomempty conues subsets in X ufith K C D.
Then coreD K, the eore of K rcIotiae to D, is defineil through @ € coreD K if and
o n l y  i f  a € . K  a n d  K  f l ( o , U l + 0  f o r  a l l y e  D \ K ,  w h e r e ( a , y l :  { r  €  X l c  -
aa * (1 - o)s for all a € [0, 1)].

Finally, we recall the following definition:

Deftnition 2.7. Assume thot B is o nonemptV set inY.

1. A point o € B is called an efficient or, Pareto-minimal point of B with
respect to C if , - A € C, for some A € B, then y - t € C.
The set of all the fficient points of B is denotel, bg Min (BIC)

2. In the case where int C is nonempty, r € B is elled o weokly efficient point
of B uith respett to C if r € Min (B I {0} U int C).

The set of all efficient points of B is denoted by WMin (BlC).

3. The Main Results

Let X,Y be topological locally convex Hausdorff spaces, D C X a nonempty
closed convex set, C C Y a closed convex pointed cone in Y. We generalize
Theorem 3.1 in [12] to the case concerning multivalued mappings by the following
theorem:

T h e o r e m  3 . 1 .  L e t X , Y , D  o n d C  b e o s a b o u . e .  L e t G :  D x D  - 2 Y  a n d
H : D x D +Y be rnappings sotisfying the folloaing unditions:
A1. 0 e G(r, r) lor all n € D,
A2. G is a rnonotone mapping uith G(r,y) rcmpoct for oll r,y e D,
A3. For ang fi&en r,U € D the mopping I : [0, Ll'2Y defind by

s( t ) :  G( tY + (1 -  t ) t ' ,Y)

is upper (-C)-continuous ott:0,
A4. For- ang fo"d r € D, the mapping G(t,.), D - 2Y is C -unaer and lower

C-continuous on D,
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A5.  H(r , r )  :0  lor  a l l  r  €  D,
A6. For any fiied A e D, the mapping H(.,V) : D -> Y is (-C)-continuous on

D,
A7. For ang fieenr € D, the mapping H(r,.), D +Y is C-conuea,
A8.  There edsts aconuercompactsubsetK C D suchthat for  anyn € D\

cor€p K one can find a point a € corzpK such that

G ( r , a ) + H ( n , a ) c - C .

Then there exists a point E e D such that

G(n ,s )+n@,a )g  - i n tC

for all A € D, i.e. fr, is a solution of the (WEP,C).

Rernark. If the set D is compact, then Assumption A8 is satisfied vacuously
with K - D, since then D \ corep K :0. As in the proof of Theorem 1 in [4],
we prove this theorem over three lemmata.

Lemma 8.2. Let D,K,G and H satisfy the assumptions ol TheoremS.t. Then
there exists a pointi e K such that (C(y,t) - H(n,g)) n int0 :0 for all
a e K.

Proof. Indeed, for any y e K we set

S(y ) :  { r  e  D  l (G(y ,  t )  -  H(a ,y ) )  n  in tC :0 } .

Since A e S(il, it follows that S(y) #0for all y € D.By Proposition 2.5, ̂ 9(g)
is a closed set in D.

Now, let {y; li e N} be a finite subset of, K and .I C N be an arbitrary
nonempty f ini te subset / :  {1,2,.. . ,n}, where N denotes the set of natural
numbers. Take z € conv {ytll € /}, we have

+ ' . . r r \ n . - t n, :E^,n, with A; > 0, i  .  t ,  
I  

Ai  :  1.

We show that z € Ul=, S(y,). Wu assume on the contrary that z /Ui=rS(gr).
This implies

( G ( y r , z )  -  H ( r , y r ) ) n  i n t C  * 0 f o r  a l l  i :  L , 2 , . . .  , r ' t .

Hence

;^ , (G(v , , z ) -H( r , y i ) )n  in tC#0 .  (B )
d = 1

By Assumptions A2 and A4, we have

n n n

I rrc(or, z) g | .rr.lrc(y;,y) - C : D r,r, (G(y,,y) * G(ai,,yi)) - C.
i= 1 i,j=t t,/:r-t

Hence
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n n

I rrC(yr ,z) C I rr.l, (G(y,,s) * G(yi,y)) c -C. (4)
d =  t  i , j = L

F\rrther, it follows from Assumptions Ab and A7 that

o - H(z,4 ri\;H(z,vi) - c
i = 1

and then tl
- I \;H(z,yr) e -C. (b)t,

A combination of ( ) and (5) yields

5 ^, G(ar, z) - H(r,yi)) c -C.
i = 1

Together with (3), this implies
n

I  f r (C(y i ,z)  -  H(r ,yd))  n  in tC c -C o in t  C :0,
Z-r
d = 1

and we have a contradiction. So z € UL, S(yr) and then

conv {vr l t -  1 , .  . .  ,n }g  U ,S(y i ) .
d = 1

Applying the standard version of KKM's lemma (see, for example [], Theo
rem 24, Ch.6J), we deduc" fiLr S(ar) * 0. In other words, any finite subset
S(yr), Ai € K, has a nonempty intersection. These subsets are nonempty closed
subsets of the compact set K, so the entire family has nonempty intersection.
This means that

) s(il +s.
v e K

Taking E € |'ex,S(y), we can easily verify that

(C(v , i ) -  H(n4y) )  n  in tC :0

holds for all A e K.
This completes the proof of the lemma. I

Lemma 3.3, Let D,K,G anil H satisfy the ossumptions of Theorern 3.1. Then
(i) implies (ii), where

(i) t  € K, (G(y,fr) -  H(n,y)) nint0 -0 holds for oIIy e K.
( i i )  t  € K, G(r,y) + H(t,v) g - intC holds for oIIy e K.

P r c o f .  L e t E  €  K b e s u c h t h a t  ( G ( y , i ) - H ( E , y ) ) n  i n t C - 0 f o r " a l l y e  K .
For f ixed a € K, we set nt: ty+(l-t) fr ,  t  € [0, lJ. I t  is clear that rt  € K
fora l l t€  [0 ,1]  andtherefore (G(rr , t ) -  H( i , " r ) )n in tC:0.  S ince

0 e G(x2,rt) c (1 - t)G(xt,fr) * tG(x1,U) - C,
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it follows that

0 e (1 - t ) (G(r t  t )  -  H(n," r ) )  + (1 -  t ) f l ( i , r i )  * tG(r1,y)  -  C

c (1 -  t ) (G(r1, t )  -  H(n, r t ) )  + (L - t ) t f l ( r ,y)  * tG(n1,a. )  -  C.

I f  t 1
s - t) t f f(n,y) *tG(r1,y) E - intC, for some t € [0, U

then trlt- =\ rrr; ^ \\ ^ ;-+ r'r J a c,
r,.'(rt, t) - H(n,rr)) n int C * 0, for some t € [0, lJ,

a,nd we have a contradiction. It implies

Hence

We claim that
f  r [ 0 ,  l l - 2 Y

(L - t) tU(a,i l  * tG(r1, i l  g - int C.

(1 - t)H(E,y) + G(*r,y) g - int0, for t  I  0. (6)

(6) is also true for t - 0. Indeed, we define the mapping
by setting

F( t )  -  (1  -  t )H(z,y)  *  G(* t ,a) ,  t  €  [0 ,  1 ] .

Bt Asumption A3, F is upper (-C)-continuous at t - 0. Suppose that
t{O) c -intC. Since tr'(O) : H(i,y)+G(fr,y) is a compact set, there is a
-igbborhood V of the origin in Y such that tr'(O) + V C -int C. The upper
(-C)ontinuity of F at t : 0 implies that there exists 6 > 0 such that

It iepties

F(t) c F(0) +V - C, for al l  t  e (-6,6) n [0, 1].

.F(t) c - int0 - C -- intC, for al l  t  € [0,6),

ttcn 11
1r - t) I /( i ,y) +G(*r,y) c - intC, for al l  t  € [0,6),

1gd re have a contradiction. Thus we obtain F(0) E -int C. Therefore

H ( n , i l + G ( n , y ) Q - i n t C .

y e K is arbitrary, then we conclude that (ii) holds.
Thb completes the proof of the lemma. I

[ ma 3.4. Let D and K satisfy the assumptions of Theorem 3.1. Let Q :
D - 2Y be a multiualued C-conuer mapping. Let rs € corep K be such that
+t"o) g -C, O(s) I  - intC lor al ly € K. ThenO(a) I  - intC for alta e D.

pr1;61[. Assume on contrary that there exists g € D\K such that O(y) C -int C.
lA z € ("0 ,A), z:' o,r1 + (1 - o)y for some a e [0, 1). We have

',', 
;'_,;";,1'|1;|,t'=T,ll?* " 

- a)o (s) - c

Tberefore O(") e -intC, for all z € (rs,yl.
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Since no € corcpK there exists zo e (xo,y] nK. Hencu iD(a) e -intC. This
contradicts the fact that O(y) I -int C for all A € K, and the lemma is proved.

I

P'rvof of Theorern 3.1. By Lemma3.2 there exists i e K with

(C(z,s)  -  H( i ,y) )  n intC:0,  for  a l l  y  e K.

Applying Lemma 3.3, we get

G(n,il + n@,y) g -int C, for all A e K. (Z)

F\rrther, we define the multivalued mapping Q : D - 2v by

a(y) - G(n,i l  + H(i,a), U e D.

Assumptions 44 and A7 show that O is C-convex and it follows from (7) that

Afu) I -intC, for all y e K.

we set TO : u, otherwise, we set ug : @, where a is from
Then, we always have A("0) g -C. Using Lemma 3.4, we

O(y) I -int C, for all y e D.

It follows that 
G(r,a) + n@,y) g-intc, for au y e D.

This proves the theorem. I

In the sequel, we weaken the coercivity requirement A8 for the case of
reflexive Banach space. We assume that X is a reflexive Banach space with
the norm denoted UV ll ' ll.

Theorem 3.5. Let X be arufl,exiae Banach space, D.C,Y be as aboue. LetG
and H satisfy Assumptions A1 - AT in TheoremS.L with the lower C-continuity
and (-C)-continuitg of G(*,.) and H(.,y) in Assumptions A4 and A6 replaced
by the weak lower C-continuity and the weak (-C)-continuity, respectively,

In addition, assurne that there is a point a e D such that, for euery sequence
{*"} uithlim,.++m ll""ll : *F, one of the follouing conditions holds:

(H1) There is no ) 0 such that G(r"o,a) * H(rno,a) g -C.

(H2) There areno ) 0 andy e D withlly-all < 11"", -all suchthatG(xno,A)*
H(*no,y)  E -C.

(H3) There are no and g € D such that G(y,xr) - H(*n,V) g C, for aII n 2
n0.

Then there is E € D such that G(n,y)+ H(r,il g -intC.

Proo f .  Le t  Dn  - { r  €  D  I  l l t -o l l  Sn} ,  fo rn :1 ,2 , . . .  S inceX i sa re f lex ive
Banach space, Drr, n : 7r2r. . . , are convex weakly compact subsets in X.
Applying Theorem 3.1 with D - D,, and using the weak topology in X, we
conclude that there exist fin € Dn, fr: Lr2r. . . , such that
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G(r",y) + H(r",g) g - intC for al l  A € Dn.

If llr" -all < n for some n, then tn € coreDr,. We define the mapping
F z  D - 2 Y  b y s e t t i n g

F(r) -- G(rn,s) + H(rn,t),  r  e D. (8)

It is clear that F is a C-convex multivalued mapping and

F( r " ) :  G( r " , c , , )  *  H( * " ,an )  c  -C

F'(") ( -int0, for all x € Dn.

Applying Lemma 3.4, we deduce

F'(") f -int C, for all r e D.

This means that c' is a solution of the problem (WEP,C). Therefore, it remains
to investigate the ca.se llc,' - oll : n for all n ) 1.

First, we a^ssume that Condition (H1) holds. We show that c,,o is a solution
to the problem (WEP,C). Indeed, for any o € D\D,. there is a positive number
t € [0, 1] such that ta + (1 - t)x e D. Hence

G(r,o , ta * (1 - t)r) * H (xno ,ta * (1 - t)c)

e {G@"0,o)  *  H(rno,a))  + (1 -  tXG(" , , . ,  x)  + H(xno,r ) )  -  C.

Since G(rno,a) + H(nno,a) C -C, i t  fol lows that G(rns.ta + (1 - t)c) +
H(rno, ta *  (1 -  t )c)  c  (1 -  txc(*no, t )  + H(rno,s))  -  C i f  G(rno,x)  *
H(rno,r) e - intC. Then

G(rno, ta*  (1 -  t ) r )  *  H(rno, ta*  (1 -  t ) r )  e  - in tC,

a contradiction with the fact that c,,o is a solution of the problem (WEP,C)
on D,,. Consequently, G(*no,n)+ H(*no'n) g -intC for all x € D, hence r,,o
is a solution to the problem (WEP,C) on D.

Under Condition (H2), we observe that

G(rn* y) + H(rno,i l  C -C

and fly - oll < llr,,o - all : no. We define the function F as in (8). Then
y € coreDDno and F(y) C -C, F(r) E -int C for all c E Dno. Applying
Lemma 3'4 we have 

F(") / -intc, for all a e D.

It follows that
G(rno,c) * H(*no,r) g -intC, for all n, e D

or, on, is a solution to the problem (WEP,C).

Finally, if Condition (H3) is satisfied, we show that Condition (H2) also
holds. Indeed, since

G ( * " , y ) + G ( u , r n ) c - C ,

we conclude that

G(r^ ,a)  + H(*n,y)  C H(r" ,Y)  -  G(U,rn)  -  C c -C.
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For n sufficiently large, we have lly - "ll 
< llt" - oll. Thus Condition (H2) is

also satisfied. This completes the proof of the theorem. r

The above conditions (H1) - (H3) are similar to Conditions (H1) - (H3) in
[9, Corollary 4.5].

Corollary 3.6. Let X be a refl,esiae Banach space, D C X be a closed conuex
set. Let Y be a Banach space and C C X be a closed conuer pointed cone with
C' a polghedral cone. Let G and H satisfy Assurnptions A1 -> AT in Theorem
3.L with the (-C)-continuitU of H(.,y) in Assumption A6 replaced bg the weak
(-C)-continuity ol H(.,A). In addition, assurne that G(r,y) + C is conuex for
a l l ( r ,y)  e  DxD andthere is  apointa€ D suchthat tor  euery sequence { r " l
withlimn-* ll",,ll : +m, one of Conditions (H1)-(H3) holds. Then there is
n e D such that G(n,y) + H(i,y) g -int C.

Proof. Theorem 2.4 ensures that, for any fixed r € D, G(*,.) is C-convex
and weakly lower C-continuous. Therefore, the proof of this corollary follows
immediately from Theorem 3.5.

Next, as in [12], the above results can be applied to different problems.
Here we only show some applications to vector optimization problems.

Corollary 3.7. Let D be a conuex closed subset of a refl,edue Banach space
X with a closed conuer pointed. cone C. Each of the tollowing conditions is
sufficient /or WMin(D I C) * 0: There is a point a € D such that for euery
sequenee {""} C D with lim,,-*- llt"ll : +m,
(Gl) there is ns ) 0 such that rro € a * C,

(G2) there aren0 ) 0 andU e D suchthat lly-oll < ll",,o -all andtrn, € A*C,
( G 3 )  t h e r e  a r a T L s ) 0  a n d y e D  w i t h t r e  A * C ,  f o r a l l n ) n s .

Prcof. The corollary follows immediately from Corollary 3.6 with X : Y,
G ( r , A ) : A - n ,  H = 0 .

Corollary 3.8. Let X be a topological locallg conuer Hausdorff space, D c X
& nonen'Lpty closed conuex set, Let Y be a Banach space and C C Y be a
closed conaer pointed cone with C' polyhedral cone. Let f : D + Y be a
singleaalued C-conuex, C-continuous mapping. In addition, assrrrne that there
exists a nonernpty conuex weakly compact subset K C D such that for any
x € D \ corelr K one can find a point o € corep K with f (r) e f (a) + C.
Then there erists a point n €. D such that /(t) € WMin(/( D)lC).

Proof. We define the mapping G : DxD -t Y by G(*,il : I@)-/("), r,A e
D. Using Theorem 2.4,we conclude that for any fixed r e D, G(r,') : D -'

Y is C-convex and weakly C-continuous. Therefore, considering the weak
topology in X, we apply Theorem 3.1 with G and H:0.
This completes the proof of the corollary. I

Corollary 3.9. Let X, D,Y, C be as in Corollary 3.6, Let f : D -> Y be a
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singleaalued C-conuer and C-continuous mapping. Then each of the following
unditions is sufficient for WMin (f (D)lC) # 0, There is a point a € D such
that for euery sequence {*"} C D utith lim,,y6 ll""ll - *oo,
(IL) there is ns ) 0 such that f (r", ) e /(o) * C,
( I2)  there areno)0 andAeD sachthat  l ly - " l l  <  l l " , ,o  -a l l 'and, . f ( " "0)  e

f (y )+c,
(I3) there ara rls ) 0 and y e D such that f(r") e f(il * C, for atl n ) no.

Proof. We define the mapping G : DxD + Y by G(r,il - f fu)-f (*), r,A €
D, and apply Corollary 3.6 with G as above and I/ : 0 to conclude that there
exists a point i e D such that G(n,y) / -intC for all y € D. This implies

f (y) - f (fr) / -intO, for all u € D,

or 
f  @) €wMin (/(D) lc).

This completes the proof of the corollary. I

To conclude the paper we make the following remark.

Remark, Instead of the lower C-continuity of G(r,.) for any fixed r € G and
the (-C)-contlnuity of H(.,il for any fixed v e D in A4 and AO we assume
that for any given U e D, the set

S(y)  -  { r  e  D |  (c(y ,  x)  -  H(qy))  n(C\  {0})  :0}

is closed. Then, the conclusions of Theorems 3.1, 3.5, Corollary 8.6 remain
true for (EP,C). The proofs are exactly as the above one with intC replaced
by C \ t0) everywhere. Therefore the conclusions of Corollaries 3.7-3.9 also
remain true for Min (D I C) and Min (/(D) lC).
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