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Abstract. Some results on the continuity with respect to a cone of multivalued
mappings are shown and applied to consider sufficient conditions for the existence of
weak equilibrium points concerning multivalued mappings. Some applications of these
results to the existence of efficient points of subsets in reflexive Banach space and of
solutions of vector optimization problems are also discussed.

1. Introduction

Let X, Y be topological locally convex Hausdorff spaces, D C X a closed convex
subset, C C Y a closed convex pointed cone. Given a multivalued mapping
F: DxD — 2¥ with F(z,y) # 0 for all z,y € D, we are interested in
considering the problem of finding

& € D such that F(Z,y) € —intC, for all y€eD, (1)

The point Z is called a weak equilibrium point (or, a solution) of the weak
equilibrium problem with respect to C, denoted by (WEP,C). The problem of
finding

Z € D such that F(z,y) Z —(C\ {0}), forall y € D, (2)

is called an equilibrium problem with respect to C' and denoted by (EP,C).
Such a point Z is said to be an equilibrium point (or, a solution) of the problem
(EP,C). It is clear that if int C = @, then every point x € D is an equilibrium
point of (WEP,C). In this case it is not interesting to consider (1). Therefore,
in this paper, we only study (1) with int C # 0. Further, if Z is an equilibrium
point of (EP,C), then it is also a weak equilibrium point of (WEP,C). And, if
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& is another closed convex point cone in Y with C' € C and 7 is an (a weak
equilibrium point of (EP,C) ((WEP,C)), then Z is also an (a weak) equilibriur
point of (EP,C) ((WEP,C), respectively). Further, if C satisfies condition:
there is a closed convex pointed cone C such that C \ {0} C intC and £ € D |
a solution of (WEP,C), then Z is a solution of (EP,C). Such a condition on (G
satisfied, for example, if it has a convex compact base (see the proof in [12]). I
this paper we consider (WEP,C) only. i

Before presenting the main results we generalize the well-known Banacl
Steinhaus theorem (3] for a family of convex functions. We prove necessary an
sufficient conditions for a multivalued mapping to become a lower C-continuot
multivalued mapping (Theorem 2.3). Then, using the new Banach-Steinhat
theorem for convex functions we show that if C has the polar C’, which is
polyhedral cone and F' : D — 2Y is C-convex and lower C-continuous wit
F(z) + C convex for all z € D, then it is weak lower C-continuous (Theores
3.4).

Further, we extend the result in [12] to the multivalued case. The problen
(1), (2) concerning singlevalued mappings are studied by Ky Fan [6], Blum an
Oettli [4, 5, Oettli [10] and others. Our results are extensions of their results. |
[10] Oettli proved some results on the existence of equilibrium points concernir
vector functions by using the method of scalarization. This method cannot 1
applied to our case with the mapping F" of the form G + H, where G and .
satisfy different conditions. We also weaken the coercive conditions (Conditic
A8/ in Theorem 3.1 below) by other conditions (see Theorem 3.3), using t!
weak topology in a reflexive Banach space X. The weak lower C-continuo
property of F in Theorem 2.4 is used to study (WEP,C) in the case where
has a cone C with C’ a polyhedral cone.

Finally, we apply the obtained results to show the existence of efficient poin
of subsets in reflexive Banach spaces and of solutions of vector optimization pro
lems. The results can be also applied to the existence of solutions of variation
inequalities, Nash equilibrium problem... concerning multivalued mappings.

2. Preliminaries

Let X be a topological locally convex space, D C X a convex set. By R
denote the space of real numbers with the usual topology, R = RU {£oo}. Fi
of all we recall the following definitions.

Definition 2.1. A function f : D — R is called a convez (concave) functs
if flaz+(1-a)y) < of (@)+(1-a)f(y) (flaz+(1-a)y) 2 af (z)+(1-a)f(
respectively), holds for all z,y € domf = {z € D | f(z) < +o0} and a € [0,

Definition 2.2. Let {fo|a € I} be a family of functions on D, where I
a nonempty parameter set. We say that this family is upper (lower) equiser
continuous at g € D if for every e > 0 there is a neighborhood U of zg in
such that fa(z) < fa(zo) +€ (fa(z) 2 fa(zo) — &, respectively), holds for
zeUNDandac€l.
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Further, let Y be another topological locally convex space with a cone C
and F be a multivalued mapping from D to Y (denoted by F: D — 2¥) which
means that F(z) is a set in Y for each z € D.

We denote by dom F' the set of all z € D such that F(z) # @ In this paper
without loss of generality we can assume dom F = D.

Definition 2.3. a) We say that F' is upper (lower) C-continuous at 29 € D if
for each neighborhood V' of the origin in Y, there is a neighborhood U of g in
X such that F(z) C F(zo)+V +C (F(zo C F(z)+ V — C, respectively) holds
forallz e UNndom F.

b) We say that F is C-continuous at xo if it is upper and lower C-continuous
at that point, and F is upper (respectively, lower,... ) C-continuous on D if it
is upper (respectively, lower,... ) C-continuous at every point of D.

c) We say that F is weakly upper (lower) C-continuous at g if the neighborhood
U of zo as above is in the weak topology of X.

Definition 2.4. F is said to be C-convez if F(az + (1 — a)y) C aF(z)+ (1 —
a)F(y) — C holds for all z,y € D and € [0, 1].

Let Y’ denote the topological dual space of Y and
C'={eY | ({€y)20, forally e C).

Here by (¢,y) we mean £(y).

This C' is called the polar cone of the cone C. For given F : D — 2¥ and
§ € C' we define the function G¢ : D — R by G¢(z) = supyep(,)(€,y), z € D.
Proposition 2.1. a) If F is C-convez, then G¢ is a convez function.
b) If F is lower C-continuous at zo € dom F, then G¢ is a lower semicontinuous
at xg.
Proof. a) Let z; € D, i = 1,2, and a € [0, 1]. Since

F(az, + (1 - a)zz) C aF(z1) + (1 — a)F(z2) - C,

it follows that

Gelazy + (1 - @)z3) = sup (& 9)
veF(azi+(1-a)z;)

sup € v

yeaF(azy)+(1-a)F(z)-C

IN

< sup € v)
veaF(az)+(1-a)F(z2)

<a sup (§,y) +(1—a) sup (£y)
YyeF(z1) yeF(z3)

= aGe(z1) + (1 - a)Ge(z2).

This shows that G is a convex function,
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b) Let ¢ > 0 be given. Since £ € C’, there is a neighborhood V of the origin
in Y such that {§(V) C (—¢,€). As F is lower C-continuous at zg € dom F, it
follows that there exists a neighborhood U of zp in X such that

F(zg) CF(z)+V —C, forallz e UNn D.
This implies

Ge(zg) = sup (§,7)
y€F(z0)

< sup (£,y)+sup(§,v) + sup (£,y)
yeF(z) vev ye-C

< GE(.’E) +e.

Hence
Ge(z) 2 Ge(zg) — €, forallz e UND.

Therefore, G¢ is lower semicontinuous at zg.
This completes the proof of the proposition. ™

Further, we recall that a barrel space is a topological locally convex space, in
which any nonempty closed, symmetric, convex and absorbing set is a neighbor-
hood of the origin (see, for example [11]). The following theorem is an extension
of the well-known Banach-Steinhaus theorem for a family of convex functions.

Theorem 2.2. Assume that X is a barrel space, I is an index set and f, :
X — R, a € I, is convez and lower semicontinuous on some neighborhood Uy
of zg € dom f, for all a € I. In addition, suppose that for any z € X there is a
constant v > 0 such that fo(z) < 7 for all a € I. Then the family {fo |a € I}
is upper equisemicontinuous at .

Proof. By setting fa(z) = fa(z+0) — fa(20), if necessary, we may assume that
z9 = 0 and f,(0) =0 for all o € I. For given € > 0 we put

Ao ={z€X|falz) <e}.
Since 0 € A,, we conclude that A, # 0.

Without loss of generality, we may assume that Uj is a closed convex neigh-
borhood of the origin. From the convexity and the lower semicontinuity of f,
on Up, it follows that Uy N A, is a nonempty closed convex set for all a € I.
Further, putting U = (), ¢;(Uo N Aa N(—~Aq)), we conclude that U is nonempty
closed, symmetric and convex. Now, we claim that U is absorbing. Indeed, let
z € X. By the hypotheses of the theorém there is a constant v > 0 such that
fa(z) € v and fo(—2z) < 9, for all @ € I. Without loss of generality, we can
assume v > €. Hence

fa(%x) = fa(§x+ = 5)0) < gfa(m) +(1- %)fa(O) ~ §fa(z) <e.

Since Uj is absorbing, there is a constant p > 0 such that ez/p, —ez/p € Up. For
7 = max{~, p}, we conclude that (¢/y)z € As NUp. By a similar argument,
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we obtain (—/70)z € Aa N Uy, for all a € I, and then (¢/7)z € U. It means
that U is absorbing. Since X is a barrel space, U is a neighborhood of the origin
in X. For z € U we have

fa(z) <e=fa(0) +¢, foralla e I.
This means that the family {f. | @ € I} is upper equisemicontinuous at the
origin in X.
This completes the proof of the theorem. -

The following theorems extend Theorem 5.5 in [8].

Theorem 2.3. Suppose that Y is a Banach space and F : D — 2Y is a
multivalued mapping with F(z) — C convez for all z € D. Then F is lower
C-continuous at o if and only if the family {G¢|€ € C', ||| = 1} is lower
equisemicontinuous at To.

Proof. We first assume that F is lower C-continuous at zo. Let € > 0 be given.
By Banach-Steinhaus theorem, the family {§ € C'|[[€|| = 1} is equicontinuous.
Therefore there is a neighborhood V of the origin in Y such that £(y) € (—¢,¢)
holds for all y € V and £ € C', ||| = 1. From the lower C-continuity of F at
zo there exists a neighborhood U of zg in X such that

F(zo) C F(z)+V =C, forallz € UND.

It follows that
Ge(zo) = sup (&)

yeF(z0)

< sup (& y) +sup(,y) + sup (§,v)
yeF(z) yev ye-C

< sup (§,y)+e=Ge(r)+e
yeF (z)

holds for all z € UND and £ € C', ||l = 1. This means that the family
{G¢ | € € C', €]l =1} is lower equisemicontinuous at zo.

Now, assume that this family is lower equisemicontinuous at zo, but F' is not
lower C-continuous at zo. This implies that there exists a convex neighborhood
V of the origin in Y such that one can find a net {z,} from X with lim z, = zo

e F(z0) € F(za)+V = C, for all a.
Then, we can take y, € F(zo) with
Yo € F(za)+V - C.

Since the set cl (F(zq)+V/2—C) is closed and convex, applying a separation
theorem one can find some £, from the topological dual space of Y with unit

norm such that &a(ta) 2 &)

for all y € F(za) + V/2— C. Assume that there is ap such that &, ¢ C’'. Thus,
we can find yp € C with &, (%) < 0. Since vy € C for all v > 0, we have

€ao (Y0) 2 &ao (%ay) + Eao (Vag) = YEao (%0)
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for some z,, € F(zq,) and vp € V/2. Letting v — +o0, the right-hand side
tends to +00 and we have a contradiction. Therefore, we deduce that &, € C'
for all a. )

For an arbitrary § > 0 there exist §, € F(z,), 7o € V/2 and &, € C such

that e
<€a,ﬂu)> sup (Eﬂuy)_g
yeF(za)
)
(€asTa) > s0p(€ar0) = 3
ve-;'-
6
<Eaaca) > Sup (€asc) — 3
ce-C

Hence, for 2z, = §a + Ta + Ca € F(za) + V/2 - C, we have

a (ya) > &a (Za)

> sup (£a, )+sur>(£a, v) + sup (§a,c) — 6
veF(z,) vey ce-C

=Gfa (:ca)+ sup (fa, )—6
veV/2

Since the family {&, |&. € C', ||€]l = 1} is equicontinuous at the origin, we can

s sup sup (£a,v) =6 > 0.
a veV/2

Consequently,
Ge, (z0) > Ge(za) + 60 — 6, forallé, € C, [l = 1.
Taking € = (8o — 6)/2 for é < 8, we obtain
Ge, (z0) > G, (2a) +¢,

or Gt (Ta) < Ge, (m0) — ¢, forall & € C', |l&al = 1.
It contradicts the lower equisemicontinuity of the family {G, | € ', ||¢]| = 1}.
This completes the proof of the theorem. -

Next, we recall that a cone C C Y is said to be a polyhedral cone if C =
cone (conv {y1,... ,yn}), i.e. acone spanned by the convex hull of n independent

vectors {y1,... ,Un}

Theorem 2.4. Let D, X, Y be as above and let C C Y be a convez cone with C'
a polyhedral cone. AssumethatF: D — 2Y is C-convez and lower C-continuous
with F(x) + C convez for all z € D. Then F is weakly lower C-continuous.

Proof. Assume that C’ = cone(conv {£1,...,&}). It is clear that, for i =
182N, GE is a convex and lower semicontinuous function from D to R.
Therefore, it is weakly lower semicontinuous from D to R. Suppose that 2 €
dom F. We show that F is weakly lower C-continuous at zg. Indeed, for any
given e > 0and i = 1,2,... ,n, we can find a neighborhood U; of 7y in the weak
topology of X such that
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G, (z) 2 G, (mo) — Boe, for all z € U; N D,

where fy = min[[ 357, MBill, ;A = 1. Since {&,4 = 1,...,n} is an
independent system and 37, A; = 1, we have By > 0. Putting U = N}, U;,
we obtain G, (z) > Gg; (z0) — boe, forallz e UNDandi=1,...,n.

This shows that the family {G¢, |1 = 1,... ,n} is weakly lower equisemicontin-
uous at zg. Now, we claim that

Ge(z) > Ge(zo) —¢, forallze Uand € € O, ||€]| =1.

Indeed, for £ € C' [|€]| = 1, we can write £ = 87| A& for some 8 > 0. We
have 1= ||¢|| = B Y7, Mi&ill. Therefore,

ﬁ=—,,1—s§-, or BB < 1.

I Ml
1=1

Since

G, (z) = sup (&,y) = sup (&,y)—foe, i=1,...,n, z€UND,
yeF(z) yEF(zq)

multiplying both sides of these inequalities by SA; and taking the sum of them
we get

n
Ge(z) = sup (D Bhi&,y)
yEF(z) ;o
n
> sup (
yEF(z0)

B,y ) — Bhoc
1

> Ge(zo) — €, forallz e UND.

=

This shows that the family {G, |€ € C', |||l = 1} is weakly lower equisemiconti-
nuous at zg. Applying Theorem 2.3, we conclude that F is weakly lower C-
continuous at xp.

This completes the proof of the theorem. .

Proposition 2.5. If F : D — 2Y is lower C-continuous on D, then the
set A={zx € D | F(z)N intC =0} is closed.

Proof. Without loss of generality, we assume that intC # 0. Let zo € 4,
the closure of A. We claim that zo € A. Indeed, let z,, € A and z, — z,.
We assume on the contrary zo ¢ A. This means that F(z9) NintC # 0 and
therefore we can find a point yo € F(zo) and a neighborhood V of the origin in
Y such that yo + V C int C. Since F is lower C-continuous at zg, one can find
a neighborhood U of 4 in X such that

F(zg) CF(z)+V —-C, forallz e UND.

Therefore, Yo € F(z)+V —C, forallz e UN D,
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or,
0€F(z)—y+V-CCF(z)- intC~C
C F(z)— intC, forallz e UND.

This shows that F(z)N int C # @ for all z € UN D. It contradicts the fact that
z, € A and z, — zo. So zg € A and A is closed.
This completes the proof of the proposition. ) -

Next, we introduce the following definitions:

Definition 2.5. We say that G : D x D — oY is a monotone mapping if
G(z,y) + G(y,z) € —C holds for all z,y € D.

Definition 2.6. Let K and D be nomempty convez subsets in X with K C D.
Then corep K, the core of K relative to D, is defined through a € corep K if and
only if a € K and K N(a,y] # 0 for ally € D\ K, where (a,y] = {z € X |z =
aa+(1—a)y for alla € [0,1)}.

Finally, we recall the following definition:

Definition 2.7. Assume that B is a norempty set in Y.

1. A point x € B is called an efficient or, Pareto-minimal point of B with
respect to C if t —y € C, for somey € B, theny -z € C.
The set of all the efficient points of B is denoted by Min (B |C).

2. In the case where int C is nonempty, T € B is called a weakly efficient point
of B with respect to C if z € Min (B | {0} Uint C).

The set of all efficient points of B is denoted by WMin (B|C).

3. The Main Results

Let X,Y be topological locally convex Hausdorff spaces, D C X a nonempty
closed convex set, C C Y a closed convex pointed cone in Y. We generalize
Theorem 3.1 in [12] to the case concerning multivalued mappings by the following
theorem:

Theorem 3.1. Let X,Y, D and C be as above. Let G: D x D — 2¥ and
H: D x D —Y be mappings satisfying the following conditions:

Al. 0€G(z,z) forallz € D,

A2. G is a monotone mapping with G(z,y) compact for all z,y € D,

A3. For any fized z,y € D the mapping g : [0,1] — 2¥ defined by

g9(t) = G(ty + (1 - t)z,y)

is upper (—C)-continuous att =0,
A4. For any fized z € D, the mapping G(z,): D — 2Y is C-convez and lower
C-continuous on D,



Sufficient Conditions for the Eristence of Equilibrium Points 303

A5. H(z,z)=0 forallz € D,

A6. For any fized y € D, the mapping H(-,y): D — Y is (—C)-continuous on
D,

A7. For any fized z € D, the mapping H(z,-): D — Y is C-convez,

A8. There ezists a conver compact subset K C D such that for any z € D\
corep K one can find a point a € corep K such that

G(z,a) + H(z,a) C —C.
Then there exists a point T € D such that
GEZ,y)+ H(Z,y) € —intC
for ally € D, i.e. % is a solution of the (WEP,C).

Remark. If the set D is compact, then Assumption A8 is satisfied vacuously
with K = D, since then D\ corep K = 0. As in the proof of Theorem 1 in [4],
we prove this theorem over three lemmata.

Lemma 3.2. Let D, K,G and H satisfy the assumptions of Theorem 3.1. Then
there ezists a point T € K such that (G(y,Z) ~ H(Z,y)) N intC = @ for all
yEK.

Proof. Indeed, for any y € K we set
S(y) = {zx € D|(G(y,z) — H(z,y)) N int C = 0}.

Since y € S(y), it follows that S(y) # 0 for all y € D. By Proposition 2.5, S(y)
is a closed set in D.

Now, let {y;|i € N} be a finite subset of K and I C N be an arbitrary
nonempty finite subset I = {1,2,...,n}, where N denotes the set of natural
numbers. Take z € conv {y; |7 € I}, we have

n n
z= Z/\iyi with A; 20, i €1, Z)\,— =1.
i=1 i=1
We show that z € U?=1 S(y;). We assume on the contrary that z ¢ U?=1 S(y:).
This implies ‘
(G(yiyz) — H(2,1:)) N intC # P forall i =1,2,... ,n.
Hence
Z’\i(G(yi,z)—H(Zyyi))n intC # 0. (3)
i=1

By Assumptions A2 and A4, we have

S XNGi,2) € Y MNGwiy) - C= Y MN(Glyi,us) + Glyj,w)) - C.
i=1 ij=1 hy=l

Hence
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Y MG 2) € Y MGy, 95) + Glys, w)) € —C. 4)

i=1 =1
Further, it follows from Assumptions A5 and A7 that

0=H(z,2) €Y NH(zy)-C

=1
and then n
~-Y AH(z,u) € —C. (5)

i=1

A combination of (4) and (5) yields

> M(G(yi,2) — H(z,3)) C —C.

i=1

Together with (3), this implies

Y Xi(G(yi 2) - H(z,%:)) N intC € —=CN intC =,

i=1

and we have a contradiction. So z € |J;_, S(#:) and then
n

conv{y;|i=1,...,n} C U S(yi).
i=1

Applying the standard version of KKM’s lemma (see, for example [1, Theo-
rem 24, Ch.6]), we deduce (\_,; S(3:) # 0. In other words, any finite subset
S(y:), ¥i € K, has a nonempty intersection. These subsets are nonempty closed
subsets of the compact set K, so the entire family has nonempty intersection.
This means that

N 5@) #0.

yeK
Taking Z € ¢ g S(y), we can easily verify that
(G(y,z) - H(Z,y)) N intC =0

holds for all y € K.
This completes the proof of the lemma. -

Lemma 3.3. Let D, K,G and H satisfy the assumptions of Theorem 3.1. Then
(i) ¢mplies (ii), where

(i) € K, (G(y,z) — H(Z,y))NintC =0 holds for ally € K.

(i) £ € K, G(&,y) + H(z,y) € —int C holds for ally € K.

Proof. Let Z € K be such that (G(y,Z) — H(Z,y))N intC =0 for-all y € K.

For fixed y € K, we set z; =ty + (1 —t)Z, t € [0,1]. It is clear that ; € K
for all t € [0,1] and therefore (G(z¢,Z) — H(Z,x;)) N int C = 0. Since

0e G(xt,a:t) C (1 - t)G(l‘t,f) o tG(zt,y) - C,
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it follows that

0€ (1-t)(G(zs,Z) — H(Z,x¢)) + (1 = )H(Z,z1) + tG(ze,y) = C
c (1 -t)(G(zs, %) — H(Z,z¢)) + (1 - t)tH(Z,y) + tG(zs,y) — C.

If
(1 - t)tH(Z,y) + tG(x,y) S —intC, for some t € [0,1]

M (GlaE) - H(z,2))N intC 0, for some t € [0,1)

and we have a contradiction. It implies
(1 —t)tH(%,y) + tG(zs,y) € —int C.

s (1 - )H(Z,1) + Glar,4) € —intC, for t £0. )

We claim that (6) is also true for ¢ = 0. Indeed, we define the mapping
F: [0,1) — 2Y by setting

F(t) = (1-t)H(%,y) + G(zt,y), t € [0,1].

By Assumption A3, F is upper (—C)-continuous at t = 0. Suppose that
F(0) ¢ —intC. Since F(0) = H(%,y) + G(Z,y) is a compact set, there is a
meighborhood V' of the origin in Y such that F(0) + V C —intC. The upper
(—C)-continuity of F' at t = 0 implies that there exists § > 0 such that

F(t) C F(0)+V —C, for all t € (=5,8) N[0, 1]
Bimplies o) _intC - C=—intC, for all t € [0,5),

A= (1 -t)H(Z,y) + G(zt,y) C ~int C, for all t € [0, 6),

and we have a contradiction. Thus we obtain F(0) € —int C. Therefore
H(z,y) + G(Z,y) € —int C.

Since y € K is arbitrary, then we conclude that (ii) holds.
This completes the proof of the lemma. -

Lemma 3.4. Let D and K satisfy the assumptions of Theorem 3.1. Let ® :
D — 2Y be a multivalued C-conver mapping. Let o € corep K be such that
&(zo) C —C, ®(y) £ —int C for ally € K. Then ®(y) € —int C for ally € D.

Proof. Assume on contrary that there exists y € D\ K such that &(y) C —intC.
Let z € (z9,y), z= azo + (1 — a)y for some a € [0,1). We have
®(z) = ®(azo + (1 — a)y) C a®(zo) + (1 - ) ®(y) - C
C -C+(~intC) - C = —int C.

Therefore &(z) C —int C, for all z € (z0,y).
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Since g € corep K there exists z € (zo,y] N K. Hence ®(2) C —int C. This
contradicts the fact that ®(y) € —int C for all y € K, and the lemma, is proved.

]
Proof of Theorem 8.1. By Lemma 3.2 there exists £ € K with
(G(z,y) - H(Z,y)) NintC =9, for all y € K.
Applying Lemma 3.3, we get
G(z,y) + H(z,y) € —int C, for all y € K. (7)

Further, we define the multivalued mapping ® : D — 2Y by
o(y) =G(z,y) + H(Z,y), y€ D.
Assumptions A4 and A7 show that @ is C-convex and it follows from (7) that
®(y) € —int C, for all y € K.

If £ € corepK, we set o = Z, otherwise, we set 3 = a, where a is from
Assumption A8. Then, we always have ®(zg) C —C. Using Lemma 3.4, we

SR ®(y) € —intC, for all y € D.

It follows that
otows Bl a(z,y) + H(Z,y) € —int C, for all y € D.

This proves the theorem. =

In the sequel, we weaken the coercivity requirement A8 for the case of
reflexive Banach space. We assume that X is a reflexive Banach space with
the norm denoted by || - |}.

Theorem 3.5. Let X be a reflexive Banach space, D,C,Y be as above. Let G
and H satisfy Assumptions Al- A7 in Theorem 3.1 with the lower C-continuity
and (—C)-continuity of G(z,-) and H(-,y) in Assumptions A4 and A6 replaced
by the weak lower C-continuity and the weak (—C)-continuity, respectively.

In addition, assume that there is a point a € D such that, for every sequence
{zn} with lim,_, 4o [|Zn]| = 400, one of the following conditions holds:
(H1) There is ng > 0 such that G(zn,,a) + H(zn,,a) C —C.
(H2) There areng > 0 andy € D with |ly—al| < ||zn, —al such that G(zn,,y)+

H(zno)y) - A0
(H3) There are ng and y € D such that G(y,zn) — H(zn,y) C C, for alln >
ng.

Then there is T € D such that G(Z,y) + H(Z,y) € —int C.

Proof. Let D, ={zx € D |||z —a| £n}, forn=1,2,... Since X is a reflexive
Banach space, Dp, n = 1,2,..., are convex weakly compact subsets in X.
Applying Theorem 3.1 with D = D, and using the weak topology in X, we
conclude that there exist z, € D, n=1,2,..., such that
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G(xn)y) 2 H(zn)y) g —iﬂtC fOl‘ &ll Y € Dn.
If |zn — a|| < n for some n, then z, € core D,,. We define the mapping
F: D — 2Y by setting
F(z) = G(zn,z) + H(zn,z), z € D. ’ (8)

It is clear that F is a C-convex multivalued mapping and

F(z,) = G(zn,zn) + H(zn,z,) C -C
F(z) € —int C, for all z € D,,.

Applying Lemma 3.4, we deduce
' F(z) € —intC, forallz € D.

This means that z,, is a solution of the problem (WEP,C). Therefore, it remains
to investigate the case ||z, —a|| =n foralln > 1.

First, we assume that Condition (H1) holds. We show that z,, is a solution
to the problem (WEP,C). Indeed, for any z € D\ D, there is a positive number
t € [0,1] such that ta + (1 —t)z € D. Hence

G(ZTpy,ta + (1 - t)z) + H(Tny, ta + (1 - t)z)
g t(G(Iﬂo )a') o H(xﬂma’)) ity (1 - t)(G(xﬂo 73) Bty H(zno ,12)) i C

Since G(zn,,a) + H(zn,,0) C —C, it follows that G(zn,,ta + (1 - t)z) +
H(Zp,,ta + (1 — t)z) C (1 = t)(G(Tny, ) + H(Zny,2z)) = C if G(Tn,,7) +
H(z,,,z) € —int C. Then

G(Zn,,ta+ (1 — t)z) + H(zn,,ta+ (1 - t)z) C —int C,

a contradiction with the fact that z,, is a solution of the problem (WEP,C)
on D,. Consequently, G(Zn,,z)+ H(Zn,,z) € —int C for all z € D, hence z,,
is a solution to the problem (WEP,C) on D.

Under Condition (H2), we observe that

G(mno’y) x H(znoty) c-C
and ||y — a|| < ||z, — al| = no. We define the function F as in (8). Then
y € corepD,, and F(y) C —C, F(z) € —intC for all z € D,,. Applying
Lo S R e, e e el we D

It follows that
G(zn,,z) + H(zTpy,z) € ~int C, for all z € D

or, Ty, is a solution to the problem (WEP,C).

Finally, if Condition (H3) is satisfied, we show that Condition (H2) also
holds. Indeed, since

G(Imy) o+ G(ya zﬂ) € "C;

we conclude that

G(Zn,y) + H(®n,y) C H(Za,y) = G(y,z.) = C C -C.
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For n sufficiently large, we have ||y — a|| < ||z, — a|. Thus Condition (H2) is
also satisfied. This completes the proof of the theorem. =

The above conditions (H1)-(H3) are similar to Conditions (H1)- (H3) in
[9, Corollary 4.5]. '

Corollary 3.6. Let X be a reflexive Banach space, D C X be a closed convex
set. Let Y be a Banach space and C C X be a closed convex pointed cone with
C' a polyhedral cone. Let G and H satisfy Assumptions A1 — A7 in Theorem
3.1 with the (—C)-continuity of H(-,y) in Assumption A6 replaced by the weak
(—C)-continuity of H(:,y). In addition, assume that G(z,y) + C is convez for
all (z,y) € D x D and there is a point a € D such that for every sequence {z,}
with lim,, , o ||Z0 || = +00, one of Conditions (H1)- (H3) holds. Then there is
Z € D such that G(Z,y) + H(Z,y) € —int C.

Proof. Theorem 2.4 ensures that, for any fixed x € D, G(z,-) is C-convex
and weakly lower C-continuous. Therefore, the proof of this corollary follows
immediately from Theorem 3.5.

Next, as in [12], the above results can be applied to different problems.
Here we only show some applications to vector optimization problems.

Corollary 3.7. Let D be a convez closed subset of o reflerive Banach space
X with a closed conver pointed cone C. FEach of the following conditions is
sufficient for WMin(D |C) # 0: There is a point a € D such that for every
sequence {x,} C D with limp 400 [|Zn || = 400,

(G1) there is ng > 0 such that z,, € a+ C,

(G2) there areng > 0 andy € D such that |y—al| < ||zn, —a|| and z,, € y+C,
(G3) there are ng > 0 and y € D with z, € y+ C, for all n > ny.

Proof. The corollary follows immediately from Corollary 3.6 with X = Y,
G(z,y)=y-z, H=0.

Corollary 3.8. Let X be a topological locally convez Hausdorff space, D C X
a nonempty closed convez set. Let Y be a Banach space and C C Y be a
closed convez pointed cone with C' polyhedral cone. Let f : D — Y be a
singlevalued C-convez, C-continuous mapping. In addition, assume that there
exists a nonempty conver weakly compact subset K C D such that for any
z € D\ corep K one can find a point a € corep K with f(z) € f(a) + C.

Then there erists a point T € D such that f(Z) € WMin(f(D)|C).

Proof. We define the mapping G: DxD — Y by G(z,y) = f(y)- f(z), z,y €
D. Using Theorem 2.4, we conclude that for any fixed z € D, G(z,-): D —
Y is C-convex and weakly C-continuous. Therefore, considering the weak
topology in X, we apply Theorem 3.1 with G and H =0.

This completes the proof of the corollary. -

Corollary 3.9. Let X, D, Y, C be as in Corollary 3.6. Let f: D - Y bea
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singlevalued C-convez and C-continuous mapping. Then each of the following

conditions is sufficient for WMin (f(D) |C) # @: There is a point a € D such

that for every sequence {z,} C D with lim,s o ||z, || = +o0,

(I1) there is ng > 0 such that f(zn,) € f(a) + C, 3

(12) there are ng >0 and y € D such that |ly — al| < |24, — a|| and f(zn,) €
fw)+C,

(I3) there are ng >0 and y € D such that f(x,) € f(y) + C, for alln > ny.

Proof. We define the mapping G: DxD — Y by G(z,y) = f(y)-f(z), z,y €
D, and apply Corollary 3.6 with G as above and H = 0 to conclude that there
exists a point Z € D such that G(Z,y) € —int C for all y € D. This implies

fly) — f(z) & —=int C, forall y€ D,

or

f(Z) € WMin (f(D)|C).

This completes the proof of the corollary. -
To conclude the paper we make the following remark.

Remark. Instead of the lower C-continuity of G(z,-) for any fixed z € G and
the (—C)-continuity of H(-,y) for any fixed y € D in A4 and A6 we assume
that for any given y € D, the set

S(y) = {z € D|(G(y,z) - H(z,y)) N (C\ {0}) = 0}

is closed. Then, the conclusions of Theorems 3.1, 3.5, Corollary 3.6 remain
true for (EP,C). The proofs are exactly as the above one with int C replaced
by C \ {0} everywhere. Therefore the conclusions of Corollaries 3.7-3.9 also
remain true for Min (D | C) and Min (f(D)|C).
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