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Abstract. The author makes a survey of some recent developments on the problem

of detecting cavities inside a solid body from measurements performed on its surface.
Three groups of problems are considered. The first group takes its origin from the
problem of detecting cracks inside a solid by the electric method and in its simplest
form, it is equivalent to the problem of identifying the domain of the Laplace equation.
The second group is related to the problem of detecting cracks in the interior of an elas-
tic body. The third group is related to the problem of detecting mass inhomogeneities
inside the Earth from gravity anomalies or gravity gradients measured on the surface.
AII of these problems are nonlinear. They are approximated by various methods: the
method of finite dimensional approximations and the method of linearization.

We consider the problem of identifying the location and shape of cavities in a
solid body from measurements performed on part of its surface. The problem is
equivalent to that of identifying the domain of an elliptic equation or an elliptic
system. The measured surface data are Cauchy data for elliptic equations and
Cauchy like data for elliptic systems. Specifically, we shall consider the following
three problems.

Problem 1. Doma'in identificati,on and construction of solut'ions for elliptic
eouat'ions.

* This work was supported by the Natural Sciences Council of Vietnam
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Let O be a domain (i.e., an open connected set) in IR', n : 2 or 3, with

finitely many interior holes or cavities. The outer boundary f of fl is known.

The cavities are simply connected domains u.i,'i : l, ... ,fl. Suppose the following

elliptic equation holds in 0:
Au :0  i n  f , )  ( * )

subject to Cauchy conditions on an open portion le of I and to the condition

that either u or the conormal derivative of u vanishes on the interior boundary
'Y : J7:t0w,'

The problem is to identify 7 and to construct the solution of (x).

Problem 2. caui,ty identi,fi,cati,on in an elast,ic body and constructi,on of solu-

t'ions.

The problem is to identify cavities in a solid body from displacements and

surface stresses given on part of the body' s surface assuming the surfaces of the

cavities to be stress free or clamped, and to construct solutions'

Problem 3. Caui,ty i,dentificati'on by grauimetric methods.

Let the Earth be represented by a half-space or half-plane. The problem is

to identify interior holes, assumed to be finite in number, from gravity anomalies

or gravity gradients measured on the surface.

Before considering each one of the foregoing problems individually, we note

that the problems were described in our talk at the Mathematical Conference in

Hanoi in 1997 [6]. Many significant new results have been proved since then, and

it is the purpose of this paper to present a survey of the subject with emphasis

on d.evelopments occuring after 1997. The survey is essentially restricted to the

reseach activities of our group. We should mention that cavities that degenerate

into lines or surfaces are called mathematical cracks or simply cracks. We note

that in our terminology, a crack may have a nonempty interior. For the detection

of cracks by the electric method, the pioneering papel of Fliedman and Vogelius

[28] should be mentioned and furthermore for the detection of cracks in elastic

foai"r by the mechanical method, Andrieux, Ben Abda and Bui [4] have intro-

duced the method of jump functionals. Since we are directly concerned with

regular cavities, .we can only refer the reader to these important papers.

The remainder of the paper consists of three sections, devoted respectively

to the three problems under consideration.

1. Identification of Domain and Regularization of Solution of Elliptic

Equations

We first consider the question of uniqueness. In the case of a plane domain f)

with one hole a.,, t,,' C O such that the outer boundary f of 0 is known and

represented by a Jordan curve and that 7 :0w is a smooth Jordan curve, it has

been shown in 18] that under cauchy conditions on an open smooth portion fs
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of I and the condition z : 0 on 7, thele exist at most one plane domain f,) and

one harmonic function u on C) satisfying these boundary conditions.

The foregoing uniqueness results was recently extended to the case of semi-

linear elliptic equations in plane domains with finitely many holes (see [32]).
Now we consider a variant of the problem. As above, Iet Q be a plane domain

with outer boundary f . We assume that 0 contains interior holes. Let the holes

be represented by simply connected domains u)i,...to)n with pairwise disjoint

closures.
q o q : A , i f i .  ( 1  1 )

Let
n

I  l ^

1 :  l )au'  (1.2)

We assume that each Oara is piecewise Cl. Consider a differential operator of the

form 
2

A(x,  u)u :  t  D i@i i (x ,  u)Diu)  -  c(x)r (u)
i , j : L

with F € Cl(R), aa, e Cl(lR2 x )R) and (air) satisfying the ellipticity condition

D ooi(*, o)€r.ti 2 CoG? + t?)

for a Cs ) 0, for all {: ((r,€z) e lRz and for all (x,o) e lR2 x IR..

Consider the equation
A ( x , u ) u : O  ( 1  3 )

subject to the boundary conditions

u l ro :  f  ,  ( 1 .4 )

2

)-  ooi (* ,  u(x))n i (x)Daz(x)  :9(x) ,  x  € ls ,  (1.5)
Z-r

i ,  j : L

where ls is a smooth open subset of f, n(x) : (rr1(x),n2(x) being the unit

outer normal to f U7 at x and

2

f  oor ( * ,2 (x ) )n i (x )Dru(x )  :0 ,  x  € 'y .  : ' y \ {9 r ,  - . . ,Un} ,  (1 .6 )
i ' i - t

where {gr1, ... ,an} is a finite subset of 7 such that 7. is of Cl type. The functions

f, g, c and f' are to satisfy the conditions

c  €  C (1R .2 ) ,  
" ( x )  

>  0  a .e . ,  o r  c :0  i n  O ,  
l , )

/, g e C(E), r '(o) : o, F'(u) > o, Yu I o.

It will be assumed further that

l, \ui are piecewise C1 Jordan curves (1.8)



Dang Di,nh Ang

(1 e)

Then, we have

Theorem I 133]. Let (1.3)-(7.9) hold,. If we haae ei,ther f f const or g f 0,
then there eri,sts at rnost one pair (Q,u), u € C(O) n Cz(Ou f o l-) n H1(CI)

for which (1.3) - (r.6) hold,.

It should be remarked that the foregoing analysis does not apply to the 3-
dimensional case. In the latter case, we would need the surfaces to be piecewise
analytic. This will be discussed in a future work. Note that if on 7, the condition
0u I 0n : 0 is replaced by the condition LL : 0, then uniqueness holds for domains
in IR' for all n ) 2. It is of interest to note that if, in particular, (1.3) is the
Laplace equation, then u denotes the electric potential in the problem of cavity
detection by the electric method cf 117], and the condition 0ul0n:0 on 7 and
z : 0 on 7 correspond to a nonconducting surface 7 and an infinitely conducting
surface 7 respectively.

1.1. Regularization by quasi-reversibility

After the problem of detection of the cavity (or cavities), there remains the
question of determining the solution.

Consider a linear form of Eq. (1.3)

2

A u =  |  D i @ i i D i u ) * h D r u * b z D z u - h : 0 ,  ( r , g )  e Q ,  ( 1 . 1 0 )
i , i : r

where O is a bounded plane domain. Let f be a bounded smooth subsei of
0Ct. The problem now is that of finding a function u: u(r,y) satisfying (1.10)
subject to the conditions

( 1 . 1 1 )

where n : (nr,n2) is the unit outer normal vector to 0f,). As is well-known, this
is an ill-posed problem. In Lattbs-Lions'monograph 131, Chapter 4] , a special
form of (1.10)-(1.11) is regularized by the method of quasi-reversibility. The
solutions of (1.10)- (1.11) are approximated by a family (u,), u J 0, of solutions
of well-posed problems. In [31] (loc. cit.), it is proved that if a solution u exists,
then the family (zu) converges to z as e | 0, but the case of nonexistence of a
solution is not considered. It is noted, however, that solutions usually do not
exist. In fact, the set of boundary data (f,g) for which the problem (1.10)-
(1.11)  has no solut ion is  dense in 12( f )  x  L2( l ) . Indeed,  i f  (1 .10)- (1.11)  has a
solution u in H2(A),say, then / is in H3/2(l). Thus if f , g arcstep fundtions,
then (1.10)- (1.11) has no solution in fl2(O) (which is a natural solution space).
Now, in practice f , g are results of experimental measurements and thus are
given as finite sets ofpoints. It is realistic, therefore, not to assume existence ofa

z l
u l r : f ^ \ , (Dp) ro l  : n ,

i ' j : r  l r
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solution, and this is the approach of Klibanov and Santosa [30] (1991). However,
in the latter work, the given Cauchy data are assumed to be highly smooth (in
fact, as traces of Sobolev functions of higher order) whereas as pointed out
above, in practice, they are just finite sets of points that are patched up into -L2-
functions. In the more recent work l9], the authors take the given Cauchy data
as .L2-functions, and for approximate solutions, they used the quasireversibility
method (QR method, for short), and regularized the given data into smooth
functions. Thus, their QR approach departs from the usual ones in that not only
the equation is perturbed but the given data are also regularized. The problem
is regularized as it is given, without any existence assumption. Estimates of
error between the regularized solution and an exact solution corresponding to
an exact right hand side are derived. The analysis is based on an estimate of
Carleman type derived in the course of the proof.

1.2. Formulation as a moment problem: Tikhonov regularization

We shall, instead of a general elliptic equation, consider the Laplace equation

A u : 0 (1 .12)

and a special plane domain O bounded by two Cl-Jordan curves L and /, such
that !. is interior to ,L. We assume that L contains a segment ,Ls parallel to the
r-axis (this assumption does not affect the generality since by an appropriate
conformal mapping, we can have a domain with this property). Let z be a
harmonic function on f,) such that u € Cl (QUIo). We propose to determine
0ul0n on the interior atrve (. from the values of.0ul0n on.L and values of u
on an appropriate discrete subset of Z. This problem will be formulated as a
moment problem that will be regularized by the Tikhonov method. We have

Theorem 2 l7]. Let N(r,y;€,q) be the Neumann function for the Laplace
equat'ion 'in the doma'in {l described aboue. Let u be a harmonic function on (l
such that u e C(O) and,,is p'iecew,ise CL on 0Q. Let u:0ul0n. Then u ad,mits
the representati,on

u(r, a) : o * 
f 
""N 

(r, a; €, rt)r(€, rt)ds(€, n)

* 
| 
"r""N 

(*, a; t, n)u (€, n) ds (€, n)

+ 
lnN {*, y; 4, n)u(€, n)dr(€, n), (1 .13)

where a 'is a constant to be determ'ined and ds 'is the arc length di,fferential along
ac,.

Let u be g'iuen on L and u g'iuen on an 'infi,n'ite bounded sequence of po,ints
(nn,Un) € Ls such that gn : k Yn, and 14 I ri for i, + j. Then the moment
problem for a and u
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f

J o 
*  @ ",  k;  €.  n)u(€,  q)ds(€'  n)  :

t

u(r - ,k)  -  a  -  |  N(*n,k ; t , r ia( t ,n)ds( t , r t )
J L o

-  I  N ( rn , k ;€ ,n ) r (€ ,n )ds ( t , \ ) ,  n :  ! , 2 , ' . .
J r\r.o

(1 .14)

adm'its at most one solution.

The theorem is proved in [7] (loc. cit.) using the reflection principle and the

identity theorem for analytic functions'
The moment problem (1.14) for o, and ,u is regularized by the Tikhonov

method with error estimates given, a result in [7]. It is noted that J. cheng

et al. [25] recently formulated cauchy' s problem for Laplace' s equation as a

moment problem and developed a numerical algorithm for its solution.

1.3. Cavity identification: finite dimensional approximation

We consid.er a star-shaped cavity in a plane domain fl. The surface of the cavity

is assumed to be insulating (corresponding, e.g., to the case of a cavity filled

with air) and to be made up of two Cl-arcs meeting each other at two points c.1 ,
a2, the edges of the cavity. The quantities to be determined are therefore two

Cl functions, the graphs of which intersect each other at a1, a2 and two vectors

emanating from the origin of lR2 vrith ar, a2 as the respective end points. A

regularized construction ofthe cavity surface satisfying the foreging conditions is

given in [17] using finite dimensional approximations and minimization methods.

2. Elastic continuation and crack Identification in an Elastic Body

We are concerned in this section with the problem of elastic continuation and the

problem ofidentification ofcracks in a plane elastic body. Elastic continuation is

an important ingredient in the identification of cracks and moreover, by itself, it

is ofindependent interest. This section is divided into three subsections: the first

subsection deals with the problem of elastic continuation, the second subsection

treats of the regularization of the problem of identification of the stress field in

an elastic body from displacements and surface stresses given on an open portion

of the boundary. We shall refer to the iatter problem as a Cauchy Iike problem

in Elasticity. The final subsection is devoted to a regularization problem for

crack identification.

2.1. Problem of elastic continuation

Let 0 be a bounded domain in 1R', n: 2,3, that is occupied by an isotropic

elastic solid. Let u : u(x) be the displacement field in f,). Then u(x) satisfies

the following Lam6 system of equations

Iu(x) :0,  x in f , ) , (2.r)
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where ru(x) : p(x).Au(x) + l,r(x) a p(x)lv(v u(*))

+ (V'u(x))V.\(x) + [Vu(x) + u(x)]"Vp(x).

The following theorem is proved in [16] (see also [11])

Theorem 3. Let ls be a Cz-porti'on of 0Q. Let p, € Ct(O), ) e C2(O)

sati,sfyi.ng

p(x) > 0, )(x) + 2p,(x) ) 0, Vx in Q.

o(u)t , i :  )drrV ' :u+ t"(VdTi,

where \ii : ! for i I j and0 otherw'ise, and Mii denol'es the (i, j)-component

of an n x n matrir M. Let n(x) : (trt(*), ".,n-(*))r be the outer unit normal

uector to 0Q at x. If (H2(A))- sati'sfies

( .Lu)(x) :0 Vx € Q,

u(x )  :0 ,  o (u(x ) )n ( * )  :0 ,  x  €  fe ,
(2.3)

then u(x) :  0  Vz € Q.

The uniqueness of elastic continuation was proved by Dehman and Robbiano

[26] under the condition of C--smoothness on the coefficients and by lengthy

pseudo-differental caculus. The method used in 116] (loc. cit.) is more compact,

thanks to a physically natural transformation and under rather mild regularity

conditions on the coefficients. It should be noted that a theorem on uniqueness

of elastic continuation had been proved by E. Almansi [3] in 19071 . Theorem

3 was recently extended to semilinear elasticity [3a]. In the latter paper, the

authors consider an elastic body represented by a bounded domain 0 in IR3. It

is assumed that the elastic moduli depend also on the displacement

) : tr(x, u). (2.4)

Le t  x :  ( * r , r r , z3 )  be  i n  f , ) .  Fo r  ( i ' ,  j , k )  -  ( I , 2 ,3 ) ,  ( 2 ,3 ,  1 ) ,  ( 3 ' 1 ,2 ) ,  l e t  o i )  r j k

denote the components of the normal stress and of the shear stress corresponding

to the rr-direction. Consider the following system

)oi )ri, , }rix _ ,.
a a *  a r t  -  a " k :  

- ^  '

X, being the body force in the i-th direction,

ul1 :  uo,

ngt I njTU * nkTik : Xa on f '

(2 .5 )

(2 6)

where I is an open portion of the boundary Ef), Xi is the surface stress in the

i-th direction. It is assumed that

lThe author would like to thank Prof. E Obolashvili for calling his attention to Almansi's

paper, and Prof. H. Begher for his interest in the problem.

( ,  t \
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IRt), G € c2(R3).

Then the following has been proved
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(2.7)

Theorem 41341. Letl be Cr-smooth, let A, G sati,sfy (2.7). Then the systern
(2.5)-(2.7) has at most one solut ' ion u in (C3(Qu f))3.

2.2. Identification of cracks in elastic bodies

We consider the problem of determining the location and shape of an interior
cavity in a plane nonhomogeneous elastic body. The problem admits of an
electrical method as shown in Sec. 1. In this section, the method used is purely
mechanical. It is shown that displacements and surface stresses given on an open
portion of the boundary uniquely determine the location and shape of a crack.

Only the case of one crack is considered here, the case of finitely many cracks
being considered in a forthcoming paper 113]. This uniqueness result is the point

of departure of computational attempts.
Let f,) be a plane elastic body assumed to be nonhomogeneous and limited

by a known outer boundary f and an unknown inner boundary 7 represented

by a Jordan curve. Let o be the interior of 7

' Y : 0 w '

Plane stress 136] is assumed. Let the displacements and the surface stresses

be specified on an open portion fs of the outer boundary. Before specifying
conditions on the surface stresses on 7, we note that it is in general not smooth.
In fact, it can have corners or sharp edges at which points the stresses can become
infi.nite. In the case of rectilinear cracks, Williams found that for an isotropic
medium, the stresses go to infinity as Il1/F for r --+ 0, where r is the distance

from the crack edge. The same sort of singularity prevails is the orthotropic case

cf Ang & Williams 15]. Accordingly we shall assume the surface of the crack to
be smooth except at a finite number points {"t,.-. ' zp} corresponding to the

edges. Thus setting
- l * : . Y \ { 2 t , . . . , 2 * } ,

we have that the surface stresses vanish on ?*. Near the edges, the following
conditions are assumed to hold

10 rA 10
I  o,?.0)rd.0, I  ooe,i lrd'T. |  , 'o?.0)rd0 '  0 as r---+ 0, (2.8)

J o  J o  
-  

J a

where r is the distance from the crack edge and B - a > 0 is the notch angle.
Note that if B-a :2r,Lhen we have a crack degenerating into a line. Physically,

the condition (2.8) means that there is no net force exerted on the edge. It is

satisfied, in particular, if there exists an a € (0,1) such that

or, ou, Tru - r-a for r --+ 0
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Before stating our uniqueness theorem, we list below our standing assumptions.
For each z in 1 : 0u, there exists a 6" ) 0 such that for any d € (0,d,), the
following holds

B ( 2 , 6 ) \ o ,  B ( z , d ) l o ,  B ( 2 , 6 ) o 0 w  a r e  c o n n e c t e d

and

B(2,5)  )0a c O[B(z,d)  \  c , l ]  . 'y  :  0 lB(2,  d)  n cul  n 7.

We can now state our unioueness theorem.

(2.9)"

(2 .9 )u

Theorem 5 112] .  Let the assumpt ' ion(2.8)- (2.9)  hold,  le t ls  be a smooth open
subset of the outer boundary I and let the elastic modul'i be ln C3 (Fi2). If

e'ither

or 

tn"r"'is no body force and the surface stresses onlo do not'ident'ically uanish

the bod,y forces do not ident'ically uan'ish,

then there eri,sts at most one pair (ft, yu,u)) wi,th u,u ' in C3(OUf0 U1.) nC(f,l-)n
11t(f)), u,u be'ing the d'ispacements'in the r and E directi,ons, that satisfies the
equati,on of elast'ic equili,brium (2.5), the Cauchy condit'ions onls and the stress
free condit'ions on ,y4.

c Remark. Let tkre conditions be the same as those of preceeding theorem except
that the surface of the cavity, instead of being stress free, is clamped. Then
uniqueness still holds (in fact, we can have a stronger statement, namely, that
thcre may be finitely many cavities, see [14] for details).

2.3. Regularization by quasi-reversibility

A Cauchy Iike problem for Lam6 system consists in determining the stress field
irr an elastic body O from displacements and surface stresses given on an open
portion of its boundary is an ill-posed problem. Uniqueness of the problem is
proved in [16] (see theorem 3 above). The problem has been regularized by
various methods: the quasi-reversibility method 110] in the n-D, n : 2,3, and
irr the 2-D case the method of moments [15] .

3. Cavity Detection by Gravimetric Methods

We are concerned in this section with the problem of detecting cavities in the
interior of the Earth using gravimetric methods. Inhomogeneities of mass den-
sity in the Earth generate gravity anomalies that can be measured on its surface.
Under certain conditions on the geometry of the inhomogeneity, measured grav-
ity anomalies uniquely determine its location and shape. On the other hand,
the method of gravity gradient presents certain advantages (see [37]).

A cavity inside the Earth can be seen as a hole filled with air or water, in any
case, with a material so light that its density is practically zero. Accordingly,
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the problem is reduced to that of finding the geometry of inhomogeneity and a
cavity is thus a set of zeros of the density.

We shall adopt a flat Earth model. Thus we deal with a half-space or a
half-plane. We shall consider successively the 3-D case and the 2-D case.

3.1. Uniqueness and finite dimensional approximation: the 3-D case

Let  B be ahole ins idethe hal f -spacenl :  { ( " ,y ,2)  e lR3:  z  < 0} .  Let  Cl  be
a bounded domain in IR2 and H > 0 and let o(t,d be an unknown continuous
function on O satisfiiing the conditions

0 < o(€, q) < H for ({,?) € CI,

o(t ,d:  o for ({ ,  ry) e do.
(3 .1 )

Let B be a body immersed in the half-space IR3 . Suppose B has a known density

h > 0 and is described by the formula

B :  { ( r ,a ,z)  l_R1 :  - f I  <,  < o( t ,q)  -  H,  Y(* ,y)  € f )  and o sat is f ies (3.1)} .

Let the (known) density of R1 \ B be pz ) p1. Denote by V the potential of the
masses of density p: p2 - p1 filling the domain B. Such a system generates a
gravity anomaly on the surface z : 0 of IR3 given by the formula

(3.2)

We thus have

t  ^ -  - r  / t

I  { f ,  -  €) '  + @ - r)2 + ("G,d -  H) ' ) -" 'd€d'r t
J n  ' '

I tA - €)' + @ - \)2 + n')-'/'aea\ : c6e, (s.3)
Jcl 

t

where c is an appropriate constant. After some rearrangements we have

I  t A - € ) ' + @ - n ) 2  + @ G , n )  -  H ) 2 ] - L / 2 d € d n :  f  ( r , a ) ,  ( r , v )  e  m 2  1 s . a )
J A

for some (known) continuous function /, and o(r,y) is the unknown function.
It is shown in 118] that Eq. (3.4) admits at most one solution o(t,d satisfying
( 3 . 1 ) .

Theorem 6 l1S]. There erists atmost one solut'iono(t,ri of Eq. Q.q rnC(A)
sati.sfsins (3.1).

It is noted that in the foregoing theorem, the boundary of the hole is only
required to be continuous. For more complex cavity geometries, we refer to the
monograph of Isakov [29] which contains a wealth of information and results on
the subject.

-  av l
0o :  -  - -= - l
"  d '  l . :o
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Eq. (3.4) is an ill-posed nonlinear integral equation. The equation is approx-
imated by stable finite dimensional equations. Convergence of the approximate
solutions when the data f is exact is proved. In the case of noise, it is shown
that an approximate solution can be chosen arbitrarily close to the solution of
the original equation if the right hand side / is sufficiently close to the exact
data. Details are given in 119].

3.2. The 2-D case: uniqueness and linearization

In subsection 3.1 above, we have considered the problem of detecting mass inho-
mogeneities as a 3-D body. We have used the method of gravity anomalies, and
furthermore the problem is regularized by finite dimensional approximation. In
this subsection, we use, instead, the method of gravity gradient.

For our problem, we consider the Earth represented by the half-plane (2, z),
-oo < zl H where H >0 and let the body be presented by 0 S z < o(r).

Let p be relative density of B,i.e., the difference between the density of B
and that of the surrounding medium. We take p to be equal to 1. Denote by
U : U(r,z) the gravity potential created by p,

(J(r, z) :2n I h [(" - €)' + (" - e)' ld' '
J B

Then the gravity anomaly created by p is

-Y : rn  I  d ,u
dz Jn

and the gravity gradient on the surface z: H is

: -2n l"&

(3 5)

)  rrur

H - C
n 0 C @ - € ) ' +

H -  
" (€) d€

( * - € ) ' + ( H - o ( € ) ) 2 ( r - { ) 2 + H z

H - 0 2

-H l,

du

I de

which we rewrite, after some rearrangements, as

H - o(t) :  f ( r ) . (3 .7 )
( " - € ) 2 + ( H - " ( 0 ) 2

Uniqueness for this equation in o({) is proved in 120] (see [21] for a more general
uniqueness theorem). We shall assume

l,'

Setting

we see that the function

0 < o ( { ) < d < H , 0 1 r 1 I .

d @ ) : H - o ( r ) , 2 € ( 0 , 1 ) ,

(3.8)

(3.e)

(3.10)n@: l:
0@d,e

( " - € ) 2 + 6 2 ( t )
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can, in view of (3.S), be extended to complex analytic function on a strip of
width < I/ - o around the real axis of the complex plane. Hence h is completely
defined by its values on an interval (-*, -M) for any M ) 0, i.e., Eq. (3.7) is
equivalent to the following equation

( 3 . 1 1 )

where @ is a contimuous function on 10, 1], d(0) : O0 : H and H - a I 6@) <
1 1  f o r 0 < - r . - - I .

Now for large M and r ) 0, we have the expansion

l,' 6SfPr: r(') 'r:< -M

:oo)w +r-r€)-2[ ' .  {o#5r', 
'

d(€)
( M + r - 0 2 + O 2 G )

d(€)
( M + r + O 2

(3 .12)

(3 .13)

And we consider the following linear integral equation in @:

f 7  , h (  f \
I  

v \ \ )  d F : f ( - M  - . r ' ) .  z > 0 .
J n  ( M + ( , * r ) z * >  / \

By taking r: L,2,..., we arrive at the following moment problem

^ i

I  t t  r t  ^ ,
t  d e :  f  ? M  -  n )  =  F n ,  n  : 1 , 2 , . . .  ( 3 . 1 4 )

.Jo

It is shown that Eq. (S.ta) aamits at most one continuous solution d@), 0 <
z < 1 (Theorem 2 of [20]). The moment problem (3.1a) is known as an ill-posed
problem. It is regularized by the Tikhonov method (see 121]).
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