Characterization of Singular Integral Equations

Nguyen Tan Hoa
Department of Mathematics, Gia Lai Teachers' Training College, Gia Lai, Vietnam

Received May 25, 1999
Revised March 6, 2000

1. Introduction

Consider singular integral equations of the form

$$
\begin{equation*}
K \varphi:=\left(K_{0}+T\right) \varphi=f \tag{*}
\end{equation*}
$$

where

$$
\left(K_{0} \varphi\right)(t):=a(t) \varphi(t)+\frac{b(t)}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)}{\tau-t} d \tau, \quad(T \varphi)(t):=\int_{\Gamma} T(t, \tau) \varphi(\tau) d \tau
$$

It is known that the characteristic equation and its associated characteristic equation admit effective solutions. In general, equations of the form (*) do not admit effective solutions. However, there are some sufficient conditions which are given by Samko and Mau (see [2]) such that the equation (*) can be solved effectively. In order to get other sufficient conditions for kernel $T(t, \tau)$, we consider a problem on characterization of singular integral equations, i.e. we find the operators T such that equations ($*$) can be reduced to either $K_{0} \varphi=g$ or the generalized characteristic equation $\left(K_{0}+T_{0}\right) \varphi=g$ where T_{0} is a compact operator with the kernel $T_{0}(t, \tau)$ satisfying sufficient conditions which are given by the authors mentioned above.

This report deals with characterization of the singular integral equations with a regular part that has degenerated kernel to the characteristic equation.

Let Γ be a simple regular closed arc and let X be the space $H^{\mu}(\Gamma)(0<\mu<$ 1), $L(X)$ be the space of all linear operators acting on X. Denote by D^{+}the domain bounded by Γ and D^{-}its complement including the point at infinity.

Consider complete singular integral equations of the form

$$
\begin{equation*}
(K \varphi)(t):=a(t)+b(t)(S \varphi)(t)+\lambda \int_{\Gamma} T_{n}(t, \tau) \varphi(\tau) d \tau=f(t), \tag{1}
\end{equation*}
$$

where

$$
(S \varphi)(t)=\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)}{\tau-t} d \tau
$$

$T_{n}(t, \tau)=\sum_{k=1}^{n} a_{k}(t) b_{k}(\tau) ; \varphi(t), f(t), a(t), b(t), a_{k}(t), b_{k}(t) \in X(k=1, \ldots, n)$, $a(t) \pm b(t) \neq 0$ for all $t \in \Gamma,\left\{a_{k}(t)\right\}_{k=1, \ldots, n}$ is a linearly independent system, $b_{k}(t) \neq 0(k=1, \ldots, n), 0 \neq \lambda \in \mathbb{C}$.

Denote

$$
\begin{aligned}
& \left(K_{0} \varphi\right)(t)=a(t) \varphi(t)+b(t)(S \varphi)(t) \\
& (R \varphi)(t)=\frac{1}{a^{2}(t)-b^{2}(t)}\left[a(t) \varphi(t)-\frac{b(t) Z(t)}{\pi i} \int_{\Gamma} \frac{\varphi(\tau)}{Z(\tau)} \frac{d \tau}{\tau-t}\right]
\end{aligned}
$$

where

$$
Z(t)=e^{\Gamma(t)} \sqrt{\frac{a^{2}(t)-b^{2}(t)}{t^{\kappa}}}, \Gamma(t)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\ln \left(\tau^{\left.-\kappa \frac{a(\tau)-b(\tau)}{a(\tau)+b(\tau)}\right)}\right.}{\tau-t} d \tau, \kappa=\operatorname{Ind} K_{0}
$$

Denote

$$
\kappa_{0}=\left\{\begin{array}{ll}
\kappa & \text { if } \kappa>0, \\
0 & \text { if } \kappa \leq 0,
\end{array} \quad F=I-R K_{0}\right.
$$

Lemma 1. The following equality holds

$$
(F \varphi)(t)=-\sum_{k=0}^{\kappa_{0}} u_{k}(\varphi) \varphi_{k}(t) \quad \text { on } X
$$

where $\varphi_{0}(t)=0, \varphi_{j}(t)=\left[a^{2}(t)-b^{2}(t)\right]^{-1} b(t) Z(t) t^{j-1}\left(j=1, \ldots, \kappa_{0}\right)$ and $u_{k}(\varphi)$ $\left(k=0, \ldots, \kappa_{0}\right)$ are linear functionals which are defined by

$$
u_{k}(\varphi)= \begin{cases}0 & \text { if } k=0 \\ \frac{1}{2 \pi i} \int_{\Gamma} \frac{\tau^{\kappa_{0}-k}}{e^{\Gamma-(\tau)}}\left[-\varphi(\tau)+\frac{1}{\pi i} \int_{\Gamma} \frac{\varphi\left(\tau_{1}\right)}{\tau_{1}-\tau} d \tau_{1}\right] d \tau & \text { if } k=1, \ldots, \kappa_{0}\end{cases}
$$

where $\Gamma^{-}(t)$ is a boundary value of the function $\Gamma(z)$ in D^{-}.
Let $\mathcal{A}=\left[K_{j k}\right]_{j, k=1}^{n+\kappa_{0}}$ be an $\left(n+\kappa_{0}\right) \times\left(n+\kappa_{0}\right)$ matrix that is defined by complex numbers $K_{j k}$, where

$$
K_{j k}=\left\{\begin{array}{ll}
1+K_{j k}^{\prime} & \text { if } j=k, \\
K_{j k}^{\prime} & \text { if } j \neq k,
\end{array} \quad\left(j, k=1, \ldots, n+\kappa_{0}\right)\right.
$$

and

$$
K_{j k}^{\prime}= \begin{cases}\lambda \int_{\Gamma} b_{j}(t)\left(R a_{k}\right)(t) d t & \text { if } j, k=1, \ldots, n, \tag{2}\\ \int_{\Gamma} b_{j}(t) \varphi_{k-n}(t) d t & \text { if } j=1, \ldots, n, k=n+1, \ldots, n+\kappa_{0}, \\ \lambda u_{j-n}\left(R a_{k}\right) & \text { if } j=n+1, \ldots, n+\kappa_{0}, k=1, \ldots, n, \\ u_{j-n}\left(\varphi_{k-n}\right) & \text { if } j, k=n+1, \ldots, n+\kappa_{0} .\end{cases}
$$

Let $\mathcal{A}^{k}(\varphi)$ be an $\left(n+\kappa_{0}\right) \times\left(n+\kappa_{0}\right)$ matrix, obtained from \mathcal{A} replacing the $k^{\text {th }}$-column by the $\gamma(\varphi)$ column, where

$$
\begin{align*}
\gamma(\varphi) & =\left[\left(\gamma_{1}(\varphi), \gamma_{2}(\varphi), \ldots, \gamma_{n+\kappa_{0}}(\varphi)\right]^{T},\right. \\
\gamma_{j}(\varphi) & = \begin{cases}\int_{\Gamma} b_{j}(t)(R \varphi)(t) d t & \text { if } j=1, \ldots, n, \\
u_{j-n}(R \varphi) & \text { if } j=n+1, \ldots, n+\kappa_{0}\end{cases} \tag{3}
\end{align*}
$$

Set $\Delta=\operatorname{det} \mathcal{A}$ and $\Delta_{k}(\varphi)=\operatorname{det} \mathcal{A}^{k}(\varphi)$.
Theorem 1. If $\Delta \neq 0$, then the equation $(\widetilde{K} K \varphi)(t)=(\widetilde{K} f)(t)$ is the characteristic equation, where

$$
\widetilde{K}=I-T_{1}, \quad\left(T_{1} \varphi\right)(t)=\lambda \sum_{k=1}^{n} \frac{\Delta_{k}(\varphi)}{\Delta} a_{k}(t)
$$

Proof. It is easy to check that $\widetilde{K} \in L(X)$ and $\operatorname{dom} \widetilde{K}=\operatorname{dom} R \supset \operatorname{Im} K$. We have

$$
\begin{aligned}
(\widetilde{K} K \varphi)(t)= & \left(I-T_{1}\right)(K \varphi)(t) \\
= & a(t) \varphi(t)+b(t)(S \varphi)(t) \\
& +\lambda \sum_{k=1}^{n} \alpha_{k} a_{k}(t)-\lambda \sum_{k=1}^{n} \frac{\Delta_{k}(K \varphi)}{\Delta} a_{k}(t)
\end{aligned}
$$

where

$$
\alpha_{k}=\int_{\Gamma} b_{k}(t) \varphi(t) d t, \quad k=1, \ldots, n
$$

Using (2), (3) and Lemma 1, we obtain

$$
\begin{aligned}
\gamma_{j}(K \varphi) & = \begin{cases}\int_{\Gamma} b_{j}(t)\left[\varphi(t)+\sum_{k=1}^{n+\kappa_{0}} \beta_{k} \psi(t)\right] d t & \text { if } j=1, \ldots, n, \\
u_{j-n}\left[\varphi(t)+\sum_{k=1}^{n+\kappa_{0}} \beta_{k} \psi(t)\right] \quad \text { if } j=n+1, \ldots, n+\kappa_{0}\end{cases} \\
& =\beta_{j}+\sum_{k=1}^{n+\kappa_{0}} \beta_{k} K_{j k}^{\prime}=\sum_{k=1}^{n+\kappa_{0}} \beta_{k} K_{j k}, \quad j=1, \ldots, n+\kappa_{0},
\end{aligned}
$$

where

$$
\begin{aligned}
\beta_{k} & = \begin{cases}a_{k} & \text { if } k=1, \ldots, n, \\
u_{k-n} & \text { if } k=n+1, \ldots, n+\kappa_{0},\end{cases} \\
\psi_{k}(t) & = \begin{cases}\lambda\left(R a_{k}\right)(t) & \text { if } k=1, \ldots, n, \\
\varphi_{k-n}(t) & \text { if } k=n+1, \ldots, n+\kappa_{0}\end{cases}
\end{aligned}
$$

Thus

$$
\Delta_{k}(K \varphi)=\beta_{k} \Delta, \quad k=1, \ldots, n+\kappa_{0}
$$

and

$$
\sum_{k=1}^{n} \frac{\Delta_{k}(K \varphi)}{\Delta} a_{k}(t)=\sum_{k=1}^{n} \beta_{k} a_{k}(t)=\sum_{k=1}^{n} \alpha_{k} a_{k}(t)
$$

This implies

$$
(\widetilde{K} K \varphi)(t)=a(t) \varphi(t)+b(t)(S \varphi)(t)=(\widetilde{K} f)(t)
$$

The theorem is proved.
Consider now the case $\Delta=0$.
Suppose that r is the rank of matrix \mathcal{A} and $\overline{\mathcal{A}}=\left[K_{\nu_{j} \mu_{k}}\right]_{j, k=1}^{r}$ is a submatrix of \mathcal{A} such that

$$
\Delta^{\prime}=\operatorname{det} \overline{\mathcal{A}} \neq 0
$$

where

$$
\begin{aligned}
& \nu_{k}<\nu_{j}, \mu_{k}<\mu_{j} \text { if } k<j(j, k=1, \ldots, r) \\
& \nu_{1}, \nu_{2}, \ldots, \nu_{e}, \mu_{1}, \mu_{2}, \ldots, \mu_{m} \in\{1,2, \ldots, n\} \\
& \nu_{e+1}, \nu_{e+2}, \ldots, \nu_{r}, \mu_{m+1}, \mu_{m+2}, \ldots, \mu_{r} \in\left\{n+1, n+2, \ldots, n+\kappa_{0}\right\} .
\end{aligned}
$$

Let $\overline{\mathcal{A}}^{\mu_{k}}(\varphi)$ be an $r \times r$ matrix, obtained from $\overline{\mathcal{A}}$ replacing the $k^{\text {th }}$-column by the $\left[\gamma_{\nu_{1}}(\varphi), \gamma_{\nu_{2}}(\varphi), \ldots, \gamma_{\nu_{r}}(\varphi)\right]^{T}$-column, where $\gamma_{\nu_{j}}(\varphi)(j=1, \ldots, r)$ are defined by (3) and set $\Delta_{\mu_{k}}^{\prime}(\varphi)=\operatorname{det} \overline{\mathcal{A}}^{\mu_{k}}(\varphi)$.

The set of all equations of the form

$$
\left(K_{0} \varphi\right)(t)+\lambda \sum_{k=1}^{s} d_{k}(t) v_{k}(\varphi)=f(t)
$$

will be denoted by $H_{K_{0}}^{s}$, where $\left\{d_{k}(t)\right\}_{k=1, \ldots, s}$ is a linearly independent system in $X, 0 \neq v_{k} \in X^{*}(k=1, \ldots, s)$ are linear functionals, $f(t) \in X$ is a given function, $0 \neq \lambda \in \mathbb{C}$.

Denote

$$
\begin{aligned}
H_{K_{0}}^{0} & =\left\{\left(K_{0} \varphi\right)(t)=f(t) \mid f(t) \in X\right\} \\
\widetilde{H}_{K_{0}}^{s} & =\bigcup_{l=0}^{s} H_{K_{0}}^{l}
\end{aligned}
$$

Evidently, every equation of the form (1) belongs to $H_{K_{0}}^{n}$.
By similar arguments as in the proof of Theorem 1, we obtain

Theorem 2. If $\Delta^{\prime} \neq 0$, then the equation $(\tilde{\widetilde{K}} K \varphi)(t)=(\tilde{\widetilde{K}} f)(t)$ belongs to $\widetilde{H}_{K_{0}}^{n+\kappa_{0}-r}$, where

$$
\tilde{\widetilde{K}}=I-T_{2}, \quad\left(T_{2} \varphi\right)(t)=\lambda \sum_{k=1}^{m} \frac{\Delta_{\mu_{k}}^{\prime}(\varphi)}{\Delta^{\prime}} a_{\mu_{k}}(t)
$$

Corollary 1. Suppose that $u_{k}(\varphi)=e_{k}\left(k=0, \ldots, \kappa_{0}\right), e_{k} \in \mathbb{C}$ are the given complex numbers. If $\Delta^{\prime} \neq 0$ then the equation $(\widetilde{\widetilde{K}} K \varphi)=(\widetilde{\widetilde{K}} f)(t)$ belongs to $\widetilde{H}_{K_{0}}^{n-m}$, where

$$
\begin{aligned}
\widetilde{\widetilde{K}} & =I-T_{2}^{\prime} \\
\left(T_{2}^{\prime} \varphi\right)(t) & =\lambda \sum_{k=1}^{m} \frac{\Delta_{\mu_{k}}^{\prime}(\varphi)}{\Delta^{\prime}} a_{\mu_{k}}(t)+\sum_{j=m+1}^{r} \frac{\Delta_{\mu_{j}}^{\prime}(\varphi)}{\Delta^{\prime}} \varphi_{\mu_{j}-n}(t)
\end{aligned}
$$

Acknowledgement. The author would like to express his deep gratitude to professor Nguyen Van Mau for helpful suggestion in the preparation of this paper.

References

1. F.D. Gakhov, Boundary Value Problems, 3rd ed., Nauka, Moscow, 1977 (Russian).
2. Ng. V. Mau, Boundary Value Problems and Controllability of Linear Systems with Right Invertible Operators, Dissertationes Math., CCCXVI, PANIM, Warszawa, 1992.
3. Ng.V. Mau, Generalized Algebraic Elements and Linear Singular Integral Equations with Transformed Arguments, WPW, Warszawa, 1989.
4. D. Prezeworska-Rolewicz, Algebraic Analysis, PWN and Reidel, WarszawaDordrecht, 1988.
5. D. Prezeworska-Rolewicz, Equations with Transformed Argument, An Algebraic Approach, Elsevier Scientific Publishing, Amsterdam and PWN, Warszawa, 1973.
