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Abstract. In 1978, S. Brown proved that each subnormal operator has an invariant
subspace. In 1981, C. Apostol obtained an invariant subspace theorem on uncondi-
tionally decomposable operators. In this paper, we prove the Mohebi-Radjabalipour
Conjecture under an additional condition, and obtain an invariant subspace theorem
on subdecomposable operators. our theorem contains the results of S. Brown and C.
Apostol as special cases,

1. Introduction

In [11], Mohebi and Radjabalipour raised the following conjecture.
THE MOHEBI-RADJABALIPOUR CONJECTURE (see [11, p.236]). As-

sume the operators T e B(X) and B e B(Z) on Banach spaces X and, Z,
and the nonempty open set G in the complex plane c, satisfy the following
conditions:

(I) qT : Bq for some injective g € B(X, Z) with a closed range qX.
(2) There exist sequences {G(rz)} of open sets and {u(")} of invariant sub-

spaces of  B such that  G(n)  c  G(n+I) ,  G :  UnG(n) ,  o(BlM(n))  c  C\G(n)
a n d  o ( B  l M ( " ) )  c  G ( n ) , ,  :  t , 2 , . . . .

(3) o(7) is dominating in G.
Then ? has a (non-trivial) invariant subspace.

It is easy to see that the Mohebi-Radjabalipour conjecture, if true, will
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contain the main results of 1I,2,4,5,7,8,10,11] (and others) as special cases'

In the present article' using the S'Brown Technique' we prove the Mohebi-

Radjabaliptur Conjecture unde, an additional condition, and obtain an invariant

Subspacetheoremonsubd.ecomposableoperators.our theoremconta insthe
main results of. 12,41 as special cases'

2. Preliminaries

First we recall some basic notations and facts, and give some lemmas'

Wedenotebyf l - (G)theBanachalgebraofa l lboundedanalyt ic funct ions
on G equipped with tti" ,rorrr,. ll/ll : ."p{l/(r)|, I € Gl Il is well known that

I/* (G) is a tr*-closed suUrp*" of i- (G) ielative to the duality (Lt(G), ,- (G))

and that a Sequence t/1,} in I1-(G).converges t,o zeto relative.to u*-topology

if and only if it is norm-bounded and converges to zero. uniformly on each com-

pact subset of G' In particular, y:,:-uA:9""tify 1/-(G) with the dual space

of the Banach'pu"" q : Lr(G)l(H-(G))t ' Since Q is sepa'rable' the above

characterization of u*-convetgent sequences in f/-(G) immediately implies the

,r.u*-continuity of all poirrt 
"rruitutions 

e, : fI-(G) --'C' f -- /(A) (f € 9J- . ̂ '
For / e H-(G) ,"J,1 a G we denote by fi the unique function in fI-(G)

with () 
"- 

tDfx(i): }fil - lip; fot-ull 1't^e G' It is easv to check that for fixed

.l e i ttt"'*Lp'fi-(C) --- 1/*(G), f - f x, is to*-continu

A subset o of c wil l be called dominating in G if l l / l l  : t"p{l/())l; r e onG}

holds for all / e I/-(G)'
Let Eb" u suruih"pu"". Then E* denotes the dual space of E. lf M is a

subspace (:closed linear manifold) of E, then E lM denotes the quotient space

o f E m o d u l o M . I t M a n d l { a r e s u b s p a c e s o f . E , t h e n w e s e t

a(M,N): inf{ l lr  - ul l ;  r€ M with l lr l l  :  1 and s e If} '

If M is a nonempty subset of '8, then we denote by Mt the annihilator of M

and by YM the 
"lorJ 

li""u' huli of M' If N is a nonempty subset of 'E*' then

we denote by Nt the preannihilator of N ' Tt E and F are Banach spaces' then

B(E, F) stands fo, tnJgurruch space of all continuous linear operators of .E into

F. We write B(E) |*-B(A,A)' nor S e B(E)' if-M is a subsPace of E with

S M c M , t h e n w e d e n o t e b y S | M t h e r e s t r i c t i o n o f S o n l , o M a n d b y S l M t } l e
quotient operator i"a"""J u'v s on E lM ' As usual we denote by o(^9)' o" (^9) and

oo(S) the .p""t.,r*, tt 
" 

upi'o*i*ut" point spectrum and the point spectrum of

S, respectivelY.

Lemma 2.L. LetY be a Banach space. LetYs be a finite codtmens'ional subspace

ii. A A € B(Y) ."a x, o"(Aj\oo('4), then there is a sequence {v'} of unit

uectors in Ys such that limn-*()' - A)y" : g'

Proof' Deflne As : Ys -+ Y by Aoa : Ay, fot all 3r in Ys' Then As € B(Ys'Y)'

since dim(y lyo) <-J, ,h"." are a 
"finite 

dimensional subspace Yr inY such that

Yr rl Yo :'{0} and Y : Yo * Yr' Consequently

(^ - A)Y : (^ - As)Ys * () - A)Y1
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and (,\ - A)Yt is a finite dimensional subspace in Y. Therefore we claim () -

.As)Ys is not closed in Y. In fact, if (^ - A6)Ys is closed in I', then by the
foregoing argument (^- A)Y is closed in Y. Therefore it follows from \ / oo(A)
that ) / o"(A), a contradiction.

Since (.\ - Ao)Yo is not closed in Y, it follows that there is a sequence {y"}
of unit vectors in Y6 such that lly,ll : 1 for all n and ll(^ - Ao)y"ll r 0, and
Lemma 2.1 is proved. r

In the rest of the present article, we shall assume that X, Z,T,B,q,G,G(n)
and M(n) are as in the Mohebi-Radjabalipour Conjecture except Theorem 3.2,
Lemma 3.3 and Corollary 3.4.

For any z* e M (n)L we define the function aI z. lM (n) : (Z lM (n)). -- C by

(2 .  lM (n ) ,  z  +  M(n ) )  :  ( z * ,  z ) , 2  e  Z .

It is well known that the map p i z* r- z"f M(n),2* e M(n)L, is an isometric
isomorphism of M(n)L orto (ZlM(n))..

By  Lemma I . 2  i n  [ 11 ]  we  have  M( " ) t  C  M(n  *  1 )1  f o r  n :1 ,2 , - . ' .  Le t
M(G):u,M(n)L. Then for every z € Z andevery z* € M(G), there exists a
positive integer n such that z* e M(n)r. Noting that o(B lM (")) c G1n7 c C,
we can define a linear functional z E z* on II-(G) by

(z  a z . ) ( f ) :  (2 . lM(n) ,  f  (B lM(n)) (z  + M(n)) ) ,  f  e  H*(G),

wherc f (BlM(n)) is defined by the Riesz-Dunford functional calculus with ana-
Iytic functions. It is easy to verify that z8z* is a tr*-continuous linear functional
on f/-(G) which is independent of the particular choice of n.

Set  Y:  qX.  Def ine 1:  X - - -Y by l r :  Qn,  n € X.  Thenf l is  abounded l in-
ear operator that is bijective. Consequently the inverse operator 7-1 is bounded,
and  B IY  :  dTd - r .  Pu t  , 4  :  B lY .  Then  ,4  : 4Td - I .

Lemma 2.2. Let n be a fired posi,t i,ue i,nteger. Let y €Y,z* € M(")t be g,iuen.
The.n for anA e > 0 there erist two subspacesY' CY,ZI e M(n)L such that
di,m(YlY') < x, di,m(M(")L lZt) < @, Zd is w* -closed and

l la '  & r . l l  <  . l ls ' l l ,  y '  €Y ' ,

llu 4 1511 < .llrdll, zfi e z[

The proof of Lemma 2.2 is completely similar to that of Lemma 2.2 in 121.

3. Main Results

Theorem 3.1. Assume the operators T € B(X) and B e B(Z) on Banach
spaces X and Z, and the nonempty open set G 'in C, sattsfy cond,i,tians (l),
(2) and (3) i,n the Mohebi, Radjabalipour Conjecture and the followi,ng addi,tional
cond,it'ion:

2L
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Then T has an 'inuariant subspace.

Proof. First note that it suffi,ces to show that A has an invariant subspace, and

assume without loss of generality that o(A) : o"(A)\op(A)'

Wenowprove tha t fo ru t t yg i venp l€G, the reex i s t sequences {y * } f f i : o i n
Y and {rh}ffi:o in M(G) such that

lly* - a^-rll . #-, llrh - ,h-rll . fu, m : r,2, "' ,

l ler -  a* 8 'k l l  < #U' 
m : o'r '2 '  "" (1)

Proceeding by induction, we assume that yi and z| have been constructed up

through j-S * with Es : 0 and zd :0' We wish to construct y*a1 and zl*1

o(A) a [G\G(n(m))] such that

By Lemma 2.2 lhercexist two subspaces Yt cY, ZI c M(n(m))r such that

aim(VlV') < oo, dim(M(n(m))L lZ[) < *, Z$ is w*-closed and

l la 'a rhl l  <Li '  l ls ' l l '  a '  €Y' i

l lv- a ,.l1. + #llnll, z* e zf,'

Therefore (Zilt ) M(n(m)).

Fix a non-zero vector a,o e Y, , Then by Lemma III 1.1 in |12] there ists

a finite codimensional subspace Y1 inY'such that t(v{g6}'yt) > 1- It

i s p l a i n t h a t Y r i s a f i n i t e c o d i m e n s i o n a l s u b s p a c e i n Y . F i x a r e a l n u m b e r
. j 0. Th"r, by Lemma 2.1 there exists a vector Al eYt such that lls,ill : 1 ?"{

ll(pr - A)arll < e, that it l l(pt _ A)v'rll <-e' Againbv LemmaIII 1'1 in [12]

tt 
"i" "*i.t, 

u finite codimerrsio.ral subspace Y2 inY' such that.a(V {a'o,Ar},Yr) >

| - + Again by Lemma 2.1 there exists El €YriYz such that llgill ,t:i!,
ll0rr" - |aLll < e . Continuing in this way we obtain vectors y't'aL' ".' ' ; € Y '

such that the relations

(3)
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l l s i l l  :  1 ,  l l (p r  -  B)aL l l  <  e ,a (v {v ' l ,a ' t , ' ' '  ,aL- t } ,v {vL ,  " ' ,Y ' , } )  >  1  -  + '

hold for k : I,2,... ,r. Itis standard to deduce that the inequality
r

max{lo6l ;  7 < k <" i  < 4l l  \ " ruLl l
k :L

hold.s for all a1, &2, ... t a, € C and that the canonical projection of. L : VT--o AL
onto M : yl:r y,r lnas norm less or equal to 4. By the Zenger Lemma (see

13,p.20], [9,p.129], or [13]. If necessary, decompose c6.) there exist a bounded

Iinear functional I on L and complex numbers )r, tr2, ... , .\r such that

T r r

l l  !  r ru i l l  < ( t  l "* l ) ' / ' ,  l l l l l  < 4( \1"* l ) ' / "  ,
k : L  h : : - k = r' "- '^nt(aL) 

: Cn, k : 1,2, " '  ,r '  l (go) : O' (4)

Write ps : llM, wherc tlM denotes the restriction of I onto M ' Then gs € M*
and

lleoll < tlllcnl)L/'. (5)
lc:1

on the other hand, it follows from the condition (4) in Theorem 3.1 that

l l r t l l  S  a , l l z t *zz l l  fo r  a l l  z r  €  M,z2  Qd) t .Def ine  p(z t *zz) :  rp6(21)  fo r  a l l'rr-i 
U, iz' e (ZilL . Then by (b) 9 is bounded linear functional on M +(Z[)L ,

and l l rpl l  < ao,(Di=r l"* l ) t / ' ,p((Zd ) :0.  Extend cp to an element u* € Z"

by the Hahn-Banach theorem. Then

llr.ll < +",(Dl"rl)'/' (6)
k:r

and u* e ZdG M(n(m))r) .

Putting o : Di:r A;AL, and noting that

lo.(y' i l0'o) - (u" /M(n(m)), f (BlM("(*D)(aL + w(n(m))))l
: l (u. l M (n(*)), f ,o @ l M (n(rn)) ) 0r* - B I M (n(m))) (aL + u (n(m)))) l
s  l l , . l l  l l f r r@lM(n(-))) l l  l l j 'x-  B)aL,

holds for all / e H*(G), we deduce that the inequality

T

lll"*'**
k :L

holds, if e is small enough.
Let A*+t : Ym * u and zft*t

we obtain

1 1- o 8 u - l l  < i . 2 2 m + L

: zh* u*.  Then by (2),  (3),  (4),  (6) and (7)

r

lla*+t 8 zin+t - 9* &'h - r, c*e pt ll < ll' e zi"ll + lla* a u. 11
k:1-

+ l l ,u o ,. -Dcner"*l l .  
# (8)

k:1.

\ / i
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Consequently, it follows from (2), (4), (6) and (8) that

lla*+, - v*ll . #, llrk+, - z;,ll <

lle, - a^+r I ,h+tll <

This completes the proof of (1).

Finally, we prove that A has an invariant subspace. In fact, it follows from (1)
that there exist y/ € Y, z* € Z* such that y' :lim--- U^, z* :lirn^-* zh.
Define A: 0-r- A)A', where p is as in (1). Let Ys denote the subspace generated
b v  ( l -  A ) - t a , \ / o ( A )  u G .  A s  i n  1 2 , p . 1 0 ] ,  w e  c a n p r o v e  a  € Y o , y t / Y s  a n d
AYs C Ys. This proves Theorem 3.1. r

Flom now on assume lhar B is an unconditionally decomposable operator
on a Banach space Z, that Y is an invariant subspace of B, and lhat A denotes
the restriction of B onto Y. Then by [2] it can readily be seen that the uncon-
ditionally decomposable operator B satisfies the condition (4) in Theorem 3.1,
where o, is replaced by a", depending only on B. Thus by Theorem 3.1 and
the properties of decomposable operators we obtain the following:

Theorem 3.2. Let A be the restrict'i,on of an unconditionally decomposable
operator B on a Banach spaces Z. Let G be a nonempty open set in the compler
plane C such that o(A) i,s dominat'ing in G. Then A has an 'inuario,nt subspace.

In order to derive the main results of 12,4] from Theorem 3.2, we recall
Theorem 3 in [5].

Lemma 3.3 (f5, Theorem 3]). Let K be a cornpact set' in the compler plane
C.. wi,th the property that for all nonemptA open set G 'in C, the set K 'is not
dom'inat'ing in G. Then R(K) : C(K), where the symbol C(K) denotes the
space of all cont'inuous functions on K, and R(K) denotes the closure inC(K)
of the rat'ional functions wi,th poles off K.

Theorem 3.2 and Lemma 3.3 together yield immediately:

Corollary 3.4 (12, Theorem 2.71. Let A be the restrict'ion of an uncond'iti,onally
decomposable operator B on a Banach space Z. Let G be a s'imply connected set
such that R(;@ a G) + C(o(A) n G). Then A has an 'inuariant subspace.

As in [2], the next corollary can follows from Corollary 3.4.

Corollary 3.5. ([4, Corollary 4.8]). Euery subnormal operator has an inuariant
subspace.

Remarlr. FYom the above argument it is easy to see that our main results contain
the main results of 12,4] as special cases. Moreover, from the properties of

Mingrue Liu
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decomposable operators and the counterexample II.1 in 110,p.2371 it can be
seen that our main results still possesses the further value.
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