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1. We are interested in non-linear n-term approximations with regard to the
wavelet family V formed from the integer translates of the mixed dyadic scales
of the tensor product multivariate de la Vallée Poussin kernel, and optimal con-
tinuous algorithms of n-term approximation in terms of non-linear n-widths,
for multivariate periodic functions from of the Besov space of common mixed
smoothness B;?,e- Its mixed smoothness is defined via mixed modulus of smooth-
ness dominated by a function Q of mixed modulus of smoothness type. For a
given {2 of a special form, we give the asymptotic order of these quantities.

2. Let X be a quasi-normed linear space and ® = {¢x}$2 ; a family of elements
in X. Denote by M, (®) the non-linear manifold of all linear combinations of
n free terms from ® of the form ¢ = ZkEQ akpr, where Q is a set of natural
numbers with |Q| = n. Here and later |Q)| denotes the cardinality of Q. Let W
be a subset in X. The best n-term approximation o, (W, ®, X) by the family &
is given by

on(W, @, X) o e £ —ell.

An (continuous) algorithm of n-term approximation by ® of the elements
from W, is represented as a (continuous) mapping S from W into M, (®). No-
tions of non-linear n-widths a, (W, X), 7,(W, X), 7,,(W, X) based on optimality
of continuous algorithms of n-term approximation, have been introduced in [4].

There are other notions of non-linear n-widths which are based on continuous
algorithms of non-linear approximations different from n-term approximation,
and related to problems discussed in the present paper. They are the Alexandroff
non-linear n-width a, (W, X) and the non-linear manifold n-width 4,,(W, X) (see
definitions, e.g., in [4,6]), and the non-linear n-width 3,(W, X) (see [4]).
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3. Let us define mixed smoothness Besov spaces of functions on the d-torus
T¢ = [, 7r]d For a positive integer [, the univariate symmetric difference
operator Al h € T, is defined inductively by Al = A} Al 1 starting from
A} f = f(-+ h/2) — f(- — h/2). Further, for I € Nd, we let the multivariate
mixed [th difference operator Al h € T?, be defined by

! I Al !
ALf = AR AR - ARLS,
where the univariate operator Aﬁlj, is applied to the variable z;. Let

W(f,t)p:=  sup ||A flls, teRg,

|hjl<t;,j=1,..

be the [th mixed modulus of smoothness of f.

For | € N¢, we introduce the class MS; of functions of mixed modulus of

smoothness type as follows. It consists of all non-negative functions 2 on Ri
such that:
(i) Q@) =0if t1tp...t4 =0,
(i) Q@) < Q) ift <t,
(iii) Qkity, ..., kata) < (kiks - - - kq)'Q(t), for any k € N¢,
(iv) there exist positive numbers a; < l;, j = 1,2,...,d, such that for any h > 0

o0
/ QG dty < CQE 1, sty Byt s ta)y =1,
h
(v) there exists a positive number b such that for any h > 0
h
/ Q)7 rdt; <C' PRt - t—1, Bty e ta), =1, d
0 .

Notice that MS; ¢ MSy if I <1'. For Q € MS; and 0 < p,0 < o0, let B;?,e
denote the Besov space of all functions on T¢, for which the quasi-norm

fllma, = 171+ e, ®
is finite, where | - ||, is the usual p-integral norm in Ly, := L,(T%) and
1/6
Flso, = / ((F,),/2(8))° Ht—ldt 0 < 00, @)

(the integral changed to the supremum for § = oo). For 1 = p < oo, the
definition of Bg does not depend on [, i. e., for a given Q, (1)-(2) determine
equivalent quasi-norms for all [ such that Q € MS;.

Let A be a given compact subset of R4 such that

p(A) := min { max{p; : pi€ € A, j=1,..,d}},

where {e/}9_, is the canonical basis in R?. We define the function 24 on R4
by
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Qalt) = inf 115713,

It is easy to check that 24 € MS; for all / such that
l; > max{a; :a € A}, j=1,2,...,d. (3)

Therefore, (1)-(2) define the Besov space B;‘e = BQA for any ! satisfying the
condition (3). We say that the Besov space B;f‘ has the mixed smoothness A.
For r > 0, let A, := {r(e) : e C {1,2,...,d}} where r(e) denotes the element of
R< such that r(e), =r for j € e, and r( ); =0 for j ¢ e. We use the notation:
Bl , =Bl

4. Under certain conditions a function on T¢ is decomposed into a series

f = Z Ak,s‘Pk,sa (4)
k,s

of wavelets which are the integer translates

or,s(x) == pi(x — ors/2), s € 24,5, =0,..,25 -1, ke Z,

of scaling functions ¢. Notice that for periodic wavelet decompositions (4), v
are different for k& € Z,. The coefficients Ay s := A s(f) are certain functionals
of f. Since we investigate non-linear approximations of periodic functions, we are
restricted to consider periodic wavelets only. The interested reader can consult
[1,7] for basic ideas and knowledge on wavelets.

Wavelet decompositions are quite appropriate to non-linear approximations,
in particular, n-term approximation because of their good approximation prop-
erties. Firstly, they provide a simultaneous time and frequency localization.
This allows us to select different numbers of terms ¢y s at each kth dyadic scale
for n-term approximation, depending on a given target function. Secondly, they
give discrete descriptions of equivalent norms and semi-norms for Sobolev and
Besov spaces in terms of coefficients functionals Ay ,(f). Using these discrete
characterizations, we can process a quantization or discretization of our approx-
imation problems. In the discrete form, they are more convenient for study and
numerical computation. The interested reader can consult [2] for a survey on
non-linear approximation using wavelet decompositions.

Our purpose is to investigate the n-term approximation of the Besov class
SBAO with regard to multivariate wavelets generated from de la Vallée Poussin
kernels. The Besov class of the mixed smoothness A

Bl = {f € Bfig: flns, < 1}

is defined as the unit ball of the space Bp749 . Periodic wavelets and correspond-

ing wavelet decompositions (4), do not appropriate to the mixed structure of

smoothness A. For n-term approximations of functions from SBp g, we have to

construct so-called mixed wavelets and mixed wavelet decompositions . Let
2m—1

_ sin(mt/2) sin(3mt/2)
Vim( z Dl®) = 3m?2sin®(t/2)
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be the de la Vallée Poussin kernel of order m, where D,,(t) := 2 ikl<m ekt is
the univariate Dirichlet kernel of order m. Next we define N

Qg 1= 1, i 1= ‘/2k_1, k=1,2,...

ForkeZi ={scZ?:s; >0, j=1,..,d}, we let the mixed dyadic scaling
functions

() 1= iy (T1) Pk (T2) - Py (Ta)

be defined as the tensor product of the univariate scaling functions ¢k, (z;) and
the mixed wavelets

Pk,s = (Pk(' - 27‘-8/2’0)7 s € Qka
be defined as the integer translates of ¢y, where
Qr={s€Z%: 0<s;<2%, j=1,.,d}

and 27s/2% 1= 2m(s1 /2%, 85/252, ..., 54/2F¢).
For n-term approximation of functions from SBﬁ,o, we take the family of
mixed wavelets:

Vi={prs: k€ Z‘i; s € Qr}.

5. We use the notation F < FFif FK Fland F/F < F,and F < F'if F < CF'
with C' an absolute constant. Denote by «, any one of an, 7n, 7., Bn, an and &,.

For given A and p, 8, ¢, we established the asymptotic orders of *yn(SBﬁg, Ly)

and an(SBﬁ’a, V, L;). It turns out that they are closely related to the following
convex problem in R¢

(1,z) — sup, z € AS, (5)

where A% = {2 € RY : (a,z) <1, @ € A, zgn 2 00 g = Buagdls | o=
(1,1,..,1) € R% Let 1/r = 1/r(A) be the optimal value of of this problem, i.e.,

1/r:=sup{(1,z): z € A%}
Further, let v = v(A) be the linear dimensions of the set of solutions of (5), i.e.,
v:=dim{r € A : (1,z) =1/r},
p=pu(A)=d—-1-v(A) and
v(h) ;== Volg_1{z € A} : (1,z) =1/r — h},

where Vol,,,G denotes the m-dimensional volume of G C R%. One can explicitly
construct from the set A a function w so that w = w(A4, ') is a concave modulus
of continuity if v <d—1,andw=1ifv=d —1 and

v(h) < w*(h) as h = 0

(see [3]). Notice that 7(A) = min{t > 0: t1 € coA} and p is the linear dimension
of the minimal extreme subset of coA containing the point 1, where coA denotes
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the convex hull of A. If A = A,, then r(A) = 7, and if the set A is finite, then
we have [3]

w(A,h) =hifv(A) <d-1
We proved the following

Theorem 1. Let 1 < p,q < oo, 0 < 8 < oo. Assume that either p(A) > 1/p
and 0 > p or the condition p(A) > max{0,1/p —1/q} and 6 > min{q,2}. Then
we have

1 (SBis, Lg) < 0n(SBjg, V, Lg) < n™"(wH(1/logn) log?~! p)"t1/2-1/6,
where v = r(A), p = p(A) and w = w(A,-). In addition, we can ezplicitly
construct an asymptotically optimal (continuous) algorithm S of n-term approz-
imation with regard to V such that

sup [|f — S(f)lly <« n”"(w(1/logn)log" " n) /2P,
fesBA,

If the mixed smoothness A in Theorem 1 is finite, then we have
%(SBI‘%, L,) =2 Un(SB;?,O,V, L) 524 nif (log n)v(r+1/2-1/6)

where v = v(A). The last asymptotic order was proved in [4] for § > 2. Theorem
1 has been proved in [5] for the Besov class SB;, o. The asymptotic order of the
n-term approximation oy (SB}, o, U 4 Ly) with regard to the family U formed
from the integer translates of the mixed dyadic scales of the tensor product
multivariate Dirichlet kernel {8].

To prove Theorem 1 we essentially developed methods of [5] and used the fol-
lowing special decompositions for B;‘, ¢- Under the condition p(A) > max{0, 1/p—
1/q}, every f € Bf},o has a wavelet decomposition into the series

F=30 D Mshs (6)

keZg $€Qu

with the convergence in the space Bﬁe, where A\ s = Ag,s(f) are linear (con-
tinuous) coefficients functionals of f. Moreover, there holds the following quasi-
norms equivalence

3 /
||f||B§'9 = (k{:{){25(1‘1719)—|k|/1o(s;}c |Ak’s|p)1/p}0)1 e" -

where S(4,z) := sup{(a,z) : @ € A} is the support function of A and |k| :=
ki +kg+---+ky. To construct an asymptotically optimal (continuous) algorithm
S of n-term approximation with regard to V and establish the upper bound of
Theorem 1, for a natural number £, we constructed a sequense of subsets of Z‘i
A(¢,m),n=£E6+1,... such that Z¢ = Us2 ¢ A(€, ) and

S(A, k) =, ke A& n),
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and for any pair &,7 satisfying the condition 7 < (2 — 1)¢ with A > 1 a fixed
number,

[AE )] < €7 wk(1/€),  |AE )| < 7w (1/€)(n - ¥, n> &

From the wavelet decomposition (6) - (7) we deduced that a function f ¢ SB;"O
is decomposed into the series

f = Zf&,m ff,n = Z Z )\k,s(pk,sv

n=§ kEA(E,n) s€EQk

converging in the norm of L, with the following property
o/p 1/6

Z Z |Ak,s|” < 9~ (r=1/p)n_

k€A(Em) \$€Qk
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