Short Communication

On Besov Smoothness and Non-Linear Approximations Using Wavelet Decompositions

Dinh Dung
Institute of Information Tèchnology
Nghia Do, Cau Giay, Hanoi, Vietnam

Received October 1, 2000

1. We are interested in non-linear n-term approximations with regard to the wavelet family \mathbf{V} formed from the integer translates of the mixed dyadic scales of the tensor product multivariate de la Vallée Poussin kernel, and optimal continuous algorithms of n-term approximation in terms of non-linear n-widths, for multivariate periodic functions from of the Besov space of common mixed smoothness $\mathbf{B}_{p, \theta}^{\Omega}$. Its mixed smoothness is defined via mixed modulus of smoothness dominated by a function Ω of mixed modulus of smoothness type. For a given Ω of a special form, we give the asymptotic order of these quantities.
2. Let X be a quasi-normed linear space and $\Phi=\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ a family of elements in X. Denote by $\mathbf{M}_{n}(\Phi)$ the non-linear manifold of all linear combinations of n free terms from Φ of the form $\varphi=\sum_{k \in Q} a_{k} \varphi_{k}$, where Q is a set of natural numbers with $|Q|=n$. Here and later $|Q|$ denotes the cardinality of Q. Let W be a subset in X. The best n-term approximation $\sigma_{n}(W, \Phi, X)$ by the family Φ is given by

$$
\sigma_{n}(W, \Phi, X):=\sup _{f \in W} \inf _{\varphi \in \mathbf{M}_{n}(\Phi)}\|f-\varphi\|
$$

An (continuous) algorithm of n-term approximation by Φ of the elements from W, is represented as a (continuous) mapping S from W into $\mathbf{M}_{n}(\Phi)$. Notions of non-linear n-widths $\alpha_{n}(W, X), \tau_{n}(W, X), \tau_{n}^{\prime}(W, X)$ based on optimality of continuous algorithms of n-term approximation, have been introduced in [4].

There are other notions of non-linear n-widths which are based on continuous algorithms of non-linear approximations different from n-term approximation, and related to problems discussed in the present paper. They are the Alexandroff non-linear n-width $a_{n}(W, X)$ and the non-linear manifold n-width $\delta_{n}(W, X)$ (see definitions, e.g., in $[4,6]$), and the non-linear n-width $\beta_{n}(W, X)$ (see [4]).
3. Let us define mixed smoothness Besov spaces of functions on the d-torus $\mathrm{T}^{d}=[-\pi, \pi]^{d}$. For a positive integer l, the univariate symmetric difference operator $\Delta_{h}^{l}, h \in \mathbf{T}$, is defined inductively by $\Delta_{h}^{l}:=\Delta_{h}^{1} \Delta_{h}^{l-1}$, starting from $\Delta_{h}^{1} f:=f(\cdot+h / 2)-f(\cdot-h / 2)$. Further, for $l \in \mathbf{N}^{d}$, we let the multivariate mixed l th difference operator $\Delta_{h}^{l}, h \in \mathbf{T}^{d}$, be defined by

$$
\Delta_{h}^{l} f:=\Delta_{h_{1}}^{l_{1}} \Delta_{h_{2}}^{l_{2}} \cdots \Delta_{h_{d}}^{l_{d}} f
$$

where the univariate operator $\Delta_{h_{j}}^{l}$, is applied to the variable x_{j}. Let

$$
\Omega_{l}(f, t)_{p}:=\sup _{\left|h_{j}\right|<t_{j}, j=1, \ldots, d}\left\|\Delta_{h}^{l} f\right\|_{p}, \quad t \in \mathbf{R}_{+}^{d}
$$

be the l th mized modulus of smoothness of f.
For $l \in \mathbf{N}^{d}$, we introduce the class $\mathbf{M S}_{l}$ of functions of mixed modulus of smoothness type as follows. It consists of all non-negative functions Ω on \mathbf{R}_{+}^{d} such that:
(i) $\Omega(t)=0$ if $t_{1} t_{2} \ldots t_{d}=0$,
(ii) $\Omega(t) \leq \Omega\left(t^{\prime}\right)$ if $t \leq t^{\prime}$,
(iii) $\Omega\left(k_{1} t_{1}, \ldots, k_{d} t_{d}\right) \leq\left(k_{1} k_{2} \cdots k_{d}\right)^{l} \Omega(t)$, for any $k \in \mathbf{N}^{d}$,
(iv) there exist positive numbers $a_{j}<l_{j}, j=1,2, \ldots, d$, such that for any $h>0$

$$
\int_{h}^{\infty} \Omega(t) t_{j}^{-a_{j}-1} d t_{j} \leq C(l) t^{-a_{j}} \Omega\left(t_{1}, \ldots, t_{j-1}, h, t_{j+1}, \ldots, t_{d}\right), j=1, \ldots, d
$$

(v) there exists a positive number b such that for any $h>0$

$$
\int_{0}^{h} \Omega(t) t_{j}^{-b-1} d t_{j} \leq C^{\prime}(l) t^{-b} \Omega\left(t_{1}, \ldots, t_{j-1}, h, t_{j+1}, \ldots, t_{d}\right), j=1, \ldots, d
$$

Notice that $\mathbf{M S}_{l} \subset \mathbf{M S}_{l^{\prime}}$ if $l \leq l^{\prime}$. For $\Omega \in \mathbf{M S}_{l}$ and $0<p, \theta \leq \infty$, let $\mathbf{B}_{p, \theta}^{\Omega}$ denote the Besov space of all functions on T^{d}, for which the quasi-norm

$$
\begin{equation*}
\|f\|_{\mathbf{B}_{p, \theta}^{\Omega}}^{\Omega}:=\|f\|_{p}+|f|_{\mathbf{B}_{p, \theta}^{\Omega}} \tag{1}
\end{equation*}
$$

is finite, where $\|\cdot\|_{p}$ is the usual p-integral norm in $L_{p}:=L_{p}\left(\mathbf{T}^{d}\right)$ and

$$
\begin{equation*}
|f|_{\mathbf{B}_{p, \theta}^{\Omega}}:=\left(\int_{\mathbf{R}_{+}^{d}}\left\{\Omega_{l}(f, t)_{p} / \Omega(t)\right\}^{\theta} \prod_{j=1}^{d} t_{j}^{-1} d t\right)^{1 / \theta}, \theta<\infty \tag{2}
\end{equation*}
$$

(the integral changed to the supremum for $\theta=\infty$). For $1 \leq p \leq \infty$, the definition of $\mathbf{B}_{p, \theta}^{\Omega}$ does not depend on l, i. e., for a given Ω, (1)-(2) determine equivalent quasi-norms for all l such that $\Omega \in \mathbf{M S}_{l}$.

Let A be a given compact subset of \mathbf{R}_{+}^{d} such that

$$
\rho(A):=\min \left\{\max \left\{\rho_{j}: \rho_{j} e^{j} \in A, j=1, \ldots, d\right\}\right\}
$$

where $\left\{e^{j}\right\}_{j=1}^{d}$ is the canonical basis in \mathbf{R}^{d}. We define the function Ω_{A} on \mathbf{R}_{+}^{d} by

$$
\Omega_{A}(t):=\inf _{\alpha \in A} t_{1}^{\alpha_{1}} t_{2}^{\alpha_{2}} \cdots t_{d}^{\alpha_{d}}
$$

It is easy to check that $\Omega_{A} \in \mathbf{M S}_{l}$ for all l such that

$$
\begin{equation*}
l_{j}>\max \left\{\alpha_{j}: \alpha \in A\right\}, j=1,2, \ldots, d \tag{3}
\end{equation*}
$$

Therefore, (1)-(2) define the Besov space $\mathbf{B}_{p, \theta}^{A}:=\mathbf{B}_{p, \theta}^{\Omega_{A}}$ for any l satisfying the condition (3). We say that the Besov space $\mathbf{B}_{p, \theta}^{A}$ has the mixed smoothness A. For $r>0$, let $A_{r}:=\{r(e): e \subset\{1,2, \ldots, d\}\}$ where $r(e)$ denotes the element of \mathbf{R}_{+}^{d} such that $r(e)_{j}=r$ for $j \in e$, and $r(e)_{j}=0$ for $j \notin e$. We use the notation: $\mathbf{B}_{p, \theta}^{r}:=\mathbf{B}_{p, \theta}^{A_{r}}$.
4. Under certain conditions a function on T^{d} is decomposed into a series

$$
\begin{equation*}
f=\sum_{k, s} \lambda_{k, s} \varphi_{k, s} \tag{4}
\end{equation*}
$$

of wavelets which are the integer translates

$$
\varphi_{k, s}(x):=\varphi_{k}\left(x-2 \pi s / 2^{k}\right), s \in \mathbf{Z}_{+}^{d}, s_{j}=0, \ldots, 2^{k}-1, k \in \mathbf{Z}_{+}
$$

of scaling functions φ_{k}. Notice that for periodic wavelet decompositions (4), φ_{k} are different for $k \in \mathbf{Z}_{+}$. The coefficients $\lambda_{k, s}:=\lambda_{k, s}(f)$ are certain functionals of f. Since we investigate non-linear approximations of periodic functions, we are restricted to consider periodic wavelets only. The interested reader can consult $[1,7]$ for basic ideas and knowledge on wavelets.

Wavelet decompositions are quite appropriate to non-linear approximations, in particular, n-term approximation because of their good approximation properties. Firstly, they provide a simultaneous time and frequency localization. This allows us to select different numbers of terms $\varphi_{k, s}$ at each k th dyadic scale for n-term approximation, depending on a given target function. Secondly, they give discrete descriptions of equivalent norms and semi-norms for Sobolev and Besov spaces in terms of coefficients functionals $\lambda_{k, s}(f)$. Using these discrete characterizations, we can process a quantization or discretization of our approximation problems. In the discrete form, they are more convenient for study and numerical computation. The interested reader can consult [2] for a survey on non-linear approximation using wavelet decompositions.

Our purpose is to investigate the n-term approximation of the Besov class $\mathbf{S B}_{p, \theta}^{A}$ with regard to multivariate wavelets generated from de la Vallée Poussin kernels. The Besov class of the mixed smoothness A

$$
\mathbf{S B}_{p, \theta}^{A}:=\left\{f \in \mathbf{B}_{p, \theta}^{A}:\|f\|_{\mathbf{B}_{p, \theta}^{A}} \leq 1\right\}
$$

is defined as the unit ball of the space $\mathbf{B}_{p, \theta}^{A}$. Periodic wavelets and corresponding wavelet decompositions (4), do not appropriate to the mixed structure of smoothness A. For n-term approximations of functions from $\mathbf{S B}_{p, \theta}^{A}$, we have to construct so-called mixed wavelets and mixed wavelet decompositions. Let

$$
V_{m}(t):=\frac{1}{3 m^{2}} \sum_{k=m}^{2 m-1} D_{k}(t)=\frac{\sin (m t / 2) \sin (3 m t / 2)}{3 m^{2} \sin ^{2}(t / 2)}
$$

be the de la Vallée Poussin kernel of order m, where $D_{m}(t):=\sum_{|k| \leq m} e^{i k t}$ is the univariate Dirichlet kernel of order m. Next we define

$$
\varphi_{0}:=1, \quad \varphi_{k}:=V_{2^{k-1}}, k=1,2, \ldots
$$

For $k \in \mathbf{Z}_{+}^{d}=\left\{s \in \mathbf{Z}^{d}: s_{j} \geq 0, j=1, \ldots, d\right\}$, we let the mixed dyadic scaling functions

$$
\varphi_{k}(x):=\varphi_{k_{1}}\left(x_{1}\right) \varphi_{k_{2}}\left(x_{2}\right) \cdots \varphi_{k_{d}}\left(x_{d}\right)
$$

be defined as the tensor product of the univariate scaling functions $\varphi_{k_{j}}\left(x_{j}\right)$ and the mixed wavelets

$$
\varphi_{k, s}:=\varphi_{k}\left(\cdot-2 \pi s / 2^{k}\right), s \in Q_{k}
$$

be defined as the integer translates of φ_{k}, where

$$
Q_{k}:=\left\{s \in \mathbf{Z}^{d}: 0 \leq s_{j}<2^{k_{j}}, j=1, \ldots, d\right\}
$$

and $2 \pi s / 2^{k}:=2 \pi\left(s_{1} / 2^{k_{1}}, s_{2} / 2^{k_{2}}, \ldots, s_{d} / 2^{k_{d}}\right)$.
For n-term approximation of functions from $\mathbf{S B}_{p, \theta}^{A}$, we take the family of mixed wavelets:

$$
\mathbf{V}:=\left\{\varphi_{k, s}: k \in \mathbf{Z}_{+}^{d} ; s \in Q_{k}\right\}
$$

5. We use the notation $F \asymp F^{\prime}$ if $F \ll F^{\prime}$ and $F^{\prime} \ll F$, and $F \ll F^{\prime}$ if $F \leq C F^{\prime}$ with C an absolute constant. Denote by γ_{n} any one of $\alpha_{n}, \tau_{n}, \tau_{n}^{\prime}, \beta_{n}, a_{n}$ and δ_{n}.

For given A and p, θ, q, we established the asymptotic orders of $\gamma_{n}\left(\mathbf{S B}_{p, \theta}^{A}, L_{q}\right)$ and $\sigma_{n}\left(\mathbf{S B}_{p, \theta}^{A}, \mathbf{V}, L_{q}\right)$. It turns out that they are closely related to the following convex problem in \mathbf{R}^{d}

$$
\begin{equation*}
(\mathbf{1}, x) \rightarrow \sup , x \in A_{+}^{o} \tag{5}
\end{equation*}
$$

where $A_{+}^{o}:=\left\{x \in \mathbf{R}^{d}:(\alpha, x) \leq 1, \alpha \in A, \quad x_{j} \geq 0, j=1, \ldots, d\right\}, \quad 1:=$ $(1,1, \ldots, 1) \in \mathbf{R}^{d}$. Let $1 / r=1 / r(A)$ be the optimal value of of this problem, i.e.,

$$
1 / r:=\sup \left\{(\mathbf{1}, x): x \in A_{+}^{o}\right\}
$$

Further, let $\nu=\nu(A)$ be the linear dimensions of the set of solutions of (5), i.e.,

$$
\nu:=\operatorname{dim}\left\{x \in A_{+}^{o}:(\mathbf{1}, x)=1 / r\right\}
$$

$\mu=\mu(A)=d-1-\nu(A)$ and

$$
v(h):=\operatorname{Vol}_{d-1}\left\{x \in A_{+}^{o}:(\mathbf{1}, x)=1 / r-h\right\}
$$

where $\operatorname{Vol}_{m} G$ denotes the m-dimensional volume of $G \subset \mathbf{R}^{d}$. One can explicitly construct from the set A a function w so that $w=w(A, \cdot)$ is a concave modulus of continuity if $\nu<d-1$, and $w=1$ if $\nu=d-1$ and

$$
v(h) \asymp w^{\mu}(h) \text { as } h \rightarrow 0
$$

(see [3]). Notice that $r(A)=\min \{t>0: t 1 \in \operatorname{co} A\}$ and μ is the linear dimension of the minimal extreme subset of $\operatorname{co} A$ containing the point $r \mathbf{1}$, where $\operatorname{co} A$ denotes
the convex hull of A. If $A=A_{r}$, then $r(A)=r$, and if the set A is finite, then we have [3]

$$
w(A, h)=h \text { if } \nu(A)<d-1
$$

We proved the following
Theorem 1. Let $1<p, q<\infty, 0<\theta \leq \infty$. Assume that either $\rho(A)>1 / p$ and $\theta \geq p$ or the condition $\rho(A)>\max \{0,1 / p-1 / q\}$ and $\theta \geq \min \{q, 2\}$. Then we have

$$
\gamma_{n}^{\prime}\left(\mathbf{S B}_{p, \theta}^{A}, L_{q}\right) \asymp \sigma_{n}\left(\mathbf{S B}_{p, \theta}^{A}, \mathbf{V}, L_{q}\right) \asymp n^{-r}\left(w^{\mu}(1 / \log n) \log ^{d-1} n\right)^{r+1 / 2-1 / \theta}
$$

where $r=r(A), \mu=\mu(A)$ and $w=w(A, \cdot)$. In addition, we can explicitly construct an asymptotically optimal (continuous) algorithm S of n-term approximation with regard to \mathbf{V} such that

$$
\sup _{f \in \mathbf{S B}_{p, \theta}^{A}}\|f-S(f)\|_{q} \ll n^{-r}\left(w^{\mu}(1 / \log n) \log ^{d-1} n\right)^{r+1 / 2-1 / \theta}
$$

If the mixed smoothness A in Theorem 1 is finite, then we have

$$
\gamma_{n}\left(\mathbf{S B}_{p, \theta}^{A}, L_{q}\right) \asymp \sigma_{n}\left(\mathbf{S B}_{p, \theta}^{A}, \mathbf{V}, L_{q}\right) \asymp n^{-r}(\log n)^{\nu(r+1 / 2-1 / \theta)}
$$

where $\nu=\nu(A)$. The last asymptotic order was proved in [4] for $\theta \geq 2$. Theorem 1 has been proved in [5] for the Besov class $\mathbf{S B}_{p, \theta}^{r}$. The asymptotic order of the n-term approximation $\sigma_{n}\left(\mathbf{S B}_{p, \infty}^{r}, U^{d}, L_{q}\right)$ with regard to the family U^{d} formed from the integer translates of the mixed dyadic scales of the tensor product multivariate Dirichlet kernel [8].

To prove Theorem 1 we essentially developed methods of [5] and used the following special decompositions for $\mathbf{B}_{p, \theta}^{A}$. Under the condition $\rho(A)>\max \{0,1 / p-$ $1 / q\}$, every $f \in \mathbf{B}_{p, \theta}^{A}$ has a wavelet decomposition into the series

$$
\begin{equation*}
f=\sum_{k \in \mathbf{Z}_{+}^{d}} \sum_{s \in Q_{k}} \lambda_{k, s} \varphi_{k, s} \tag{6}
\end{equation*}
$$

with the convergence in the space $\mathbf{B}_{p, \theta}^{\Omega}$, where $\lambda_{k, s}=\lambda_{k, s}(f)$ are linear (continuous) coefficients functionals of f. Moreover, there holds the following quasinorms equivalence

$$
\begin{equation*}
\|f\|_{\mathbf{B}_{p, \theta}^{A}} \asymp\left(\sum_{k=0}^{\infty}\left\{2^{S(A, k)-|k| / p}\left(\sum_{s \in Q_{k}}\left|\lambda_{k, s}\right|^{p}\right)^{1 / p}\right\}^{\theta}\right)^{1 / \theta} \tag{7}
\end{equation*}
$$

where $S(A, x):=\sup \{(\alpha, x): \alpha \in A\}$ is the support function of A and $|k|:=$ $k_{1}+k_{2}+\cdots+k_{d}$. To construct an asymptotically optimal (continuous) algorithm S of n-term approximation with regard to \mathbf{V} and establish the upper bound of Theorem 1, for a natural number ξ, we constructed a sequense of subsets of \mathbf{Z}_{+}^{d} $\Delta(\xi, \eta), \eta=\xi, \xi+1, \ldots$ such that $\mathbf{Z}_{+}^{d}=\cup_{\eta=\xi}^{\infty} \Delta(\xi, \eta)$ and

$$
S(A, k) \leq r \eta, k \in \Delta(\xi, \eta)
$$

and for any pair ξ, η satisfying the condition $\eta \leq(2 \lambda-1) \xi$ with $\lambda>1$ a fixed number,

$$
|\Delta(\xi, \xi)| \ll \xi^{d-1} w^{\mu}(1 / \xi), \quad|\Delta(\xi, \eta)| \ll \xi^{d-1} w^{\mu}(1 / \xi)(\eta-\xi)^{\mu}, \eta>\xi
$$

From the wavelet decomposition (6) - (7) we deduced that a function $f \in \mathbf{S B}_{p, \theta}^{A}$ is decomposed into the series

$$
f=\sum_{\eta=\xi}^{\infty} f_{\xi, \eta}, \quad f_{\xi, \eta}=\sum_{k \in \Delta(\xi, \eta)} \sum_{s \in Q_{k}} \lambda_{k, s} \varphi_{k, s}
$$

converging in the norm of L_{q}, with the following property

$$
\left(\sum_{k \in \Delta(\xi, \eta)}\left(\sum_{s \in Q_{k}}\left|\lambda_{k, s}\right|^{p}\right)^{\theta / p}\right)^{1 / \theta} \ll 2^{-(r-1 / p) \eta}
$$

References

1. I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, 61, SIAM, Philadelphia, 1992.
2. R. DeVore, Nonlinear approximation, Acta Numerica 7 (1998) 51-150.
3. Dinh Dung (Din' Zung), Approximation by trigonometric polynomials of functions of several variables on the torus, Mat. Sb. 131 (173) (1986) 251-267; English transl. in Math. USSR Sb. 59 (1988) 247-267.
4. Dinh Dung, Continuous algorithms in n-term approximation and non-linear n widths, J. of Approx. Theory 102 (2000) 217-242.
5. Dinh Dung, Asymptotic orders of optimal non-linear approximations, East J. on Approx. 7 (2001).
6. Dinh Dung and Vu Quoc Thanh, On non-linear n-widths, Proc. Amer. Math. Soc. 124 (1996) 2757-2765.
7. Y. Meyer, Ondelettes et Opérateurs, Vol. 1\&2, Hermann, Paris, 1990.
8. V. Temlyakov, Greedy algorithms with regard to the multivariate systems with a special structure, Constr. Approx. 16 (2000) 399-425.
