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Abstract. Martingales in the limit and mils would be regarded as two important

generalizations of martingales. It is known that every -Ll-bounded such a sequence

of random lrariables converges a.s. Recently , the first author of this note has noted

that this convergence result still holds for another essentially larger class, that is, the

class of quasi-martingales in thA limit. The rnain aim of this note is to give a complete

classification of the latter class into an increasing family of subclasses whose smallest

element is just the class of mils.

l. Notations and Definitions

In this note, let (n,A, P) denote a complete probability space, -ly' the set of all
positive integers and (,4") an increasing sequence of complete sub-a-fields of 

"4,
with "4, t "4. Given a sub-o-field B of Awe denote by LL(B) the Banach space of

all (equivalence classes of) random variables X : O -+ R which are B-measurable

and E(lXl) : [nlxlae < oo.
Flom now on, we shall consider only sequences (X") in L'(A), which are

assumed to be adapted to (Ar), i.e , each Xn is ,4n-measurable. For other
related notions, the reader is referred to [1]. For our purpose, we need to recall
only the following:

Definition L.l. A sequence (X.) i,s said to be
a) a martingale'in tke li,mit, i,f

t t ;n 
;!o" lE^(X^) - x-l :0, a.s.,

where g'i,uen n € l[ and X e LL(A), the funct'ion E"(X) 'is the conditional
erpectation of X giuen An.
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b) a mi.l, i.f for euery e ) 0, there eix'ists p € N such that for all n > p we haue

P( sup lEn(X^) -  Xql> u) < t .
p  < q < n

( 1 . 1 )

It is worth noting that martingales in the limit were first introduced and
considered by Mucci [4], who proves that every .Ll-bounded martingale in the
limit converges, a.s. Later, this result was extended to the Banach space-valued
case by Peligrad [5], under another additional condition. Next, by the upcrossing
method, Talagrand [6] introduced the notion of mil, essentially more general than
martingales in the limit and proves that every ,Ll-bounded mil in a Banach space
can be writte:r in the unique form:

Xn:  M, - l  Pn,

where (M.) is (rather) a uniformly integrable martingale and (P,) goes to zero
a.s. But it is not completely satisfactory. Recently, to answer the interesting
conjecture posed in 13], we have introduced the following:

Definition 1.2. A sequence (X") is called a quas'i-rnartingale 'in the limit
(shortly, a quasi,-mi,I), if for eaery € ) 0, there erists p € N such that for
eae rA rn )  p  t he re  e r i s t sp^  €  N  w i thP^ )  m  such tha t fo r  a l l n )  p t ^ ,  we
haue

P( sup lEn(X.) - Xnl > ,) > ,.
p<q<m

(1 .2 )

It is clear that by definition, every mil is a quasi-mil. In reality, the con-
jecture given in 12] says that there exists a real-valued quasi-mil which is not a
mil. Unfortunately, we could not prove earlier the conjecture until 1997 when
we luckly found a sequence of "locally dependent" random variables which jus-

tifies the truth of the conjecture. Further, we noted in 12] that together with a
stopping time technique the upcrossing Doob's method would also be applied to
get the above decomposition for.Lr-bounded quasi-mils in Banach spaces. Thus,
this note would be regarded as a natural continuation of the above mentioned
considerations. Namely, as the main result we shall give in the next section
a cornplete classification of the class of quasi-mils into an increasing family of
subclasses for which the smallest element is just the class of mils.

2. Main Results

Since the fi.rst example of a quasi-mil which is not a mil, given in 12] was con-
structed in a purely nonatomic probability space, it would be useful to know such
another example in a purely atomic situation. This suggests us to the following:

Example 2.L. There erists an Lr-bounded quasi-m'il'in a purely atom'ic proba-

bi,li.ty space wh'ich conuerges to zero a.s. But it'is not a m'il.
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Construct i lu  Let  f , ) :  [0 ,1] .  We take Qr :  { [0 , ] ) ]  and Ar:  o -  (Q1).  For
n

n ) 2, Iet an : Dr-t, Q- : {Qn-1,lan,anat)} and An - o - (Q'). Then
; - t

the chosen stochastic basis (",4.) increases to a o-field, denoted by "4. It is clear

that A is. purely atomic and the only one of its atoms, i'e', the interval [],1)
does not belong to any ,4r. Now we can construct the desired sequence (X') as

fo l l ows :  Fo rn  (2 , se tXn :0 .  G i venn  )3wechoose

Xn : 2n ( l  -  on-r) - 2n+L (L - an-1)Ip-,a-4). (2 .1 )

where 14 is the characteristic function of A e A. It is easily checked that

E(lX.l) I 2an-r, n € N with o,s : 0. Then (X") it .Ll-bounded. F\rrther, for

n ) 3 w e h a v e

E^-' (X.) : 2* (r - an-1)Ip--, "" 
- 

+# Ip^,rt.

It follows that

E q ( X . )  : 9 ,  q 1  n  -  2 . I " \

The fact rhat (X.) converges tozero a.s., is evident. It implies that for any but
fixed e > 0, there exists p € N such that

P(  sup lXnl  > t )  < t .
p<q<@

This together with (2.2) implies that for any n'L 2 p and n 2 P^ 
- m l2 we

have

P( sup lEn(X.) - Xnl > u) : P( suq l&l > ,) < u.
p<q<m P<q<m

Thus by Definition 1.2, (X.) is a quasi-mil. However, for every n ) 3 we also
have

1
p |8 " -1 (x , ) l  t ; )  >  p ( {E " -L (x . )+  0 }n {x , -1  :0 } )  :  r -an }

It follows that (X,) cannot be a mil. This completes the construction.

In order to establish a classification of quasi-mils, Iet G denote the set of all
nondecreasing functions "f , lf.-+ .l[. For f ,g e G,let define / :' g if and
only if card ({/ I S}) < oo and f <' g if and only if card ({/ > g}) < oo and
card ({/ < 9i) : oo. Then endowed with the partial order "5'", G becomes a
directed set. Thus the proof of the first part of the next main result is contained
in the following characterization.

Theorem 2.2. A sequence (X.) ,s a quasi-mil i'f and only if there erists some
g € G such that (X.) is a mil of size g,'i.e., for euery e ) 0, there ex'ists p € N
such that  for  a l ln 'L)n e N wi . th  p<m lml  S(rn)  <n,  we haue

P( sup lEn(X-) -  Xol > t)  < t .
p < q < n

1
2 '

(2.3)
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In particular, (Xn) is a mil i,f and only i.f i.t i,s a rnil of s'ize 1.

Proof. To prove.the general equivalence, let (X") be a quasi-mil. Then by
Definition L.2, one can find a strictly increasing sequence (p(n)) such that for
every'k'€ N, there exists a sequence (p"(k)) with each p*(k) 2 p(k) such that
if n > p*(k) ) rn ) p(k), then we have

P( sup lEo(X-) -  Xnl > 2-\  a 2-n.
p (k )<q<n

(2.4)

Now let define the function g : N -+.ly' as follows: For rn a r^Oiset g(ra) :

1 .  F o r  p ( k ) < m  < p ( k * 1 )  w i t h s o m e  k  €  l [ ,  s e t  g ( m ) : D D o , t i ) - * .
i : 7  j : 7

Then g e G. We shall show that (X") is a mil of size g. To check this, let
e > 0 and 2-n qe with some k e l[. Then for all njrn e- l/ with rn )p(,k) and
n ) m + S(m), by (2.a) we have

P( sup lEn(X-) -  Xnl >€) < P( sup lEn(X.) -  Xql > 2-*) <2-k < t ,
p ( k ) < s < ^  p ( k ) < q < m

since n > p^(k).Therefore, by definit ion, (X^) is a mil of size g. Conversely,
suppose that (X,) is a mil of size g for some g € G. Then by taking each
p* : g(m) -f rn, m € l[ we infer that the sequence (p-) does not depend on
e and satisfies Definition 1.2 autom'6.tically. It means that (X,) is a quasi-mil.
This completes the proof of the first equivalence.

For the particular case, suppose first that (X,) is a mil. Then for every
€ ) 0 ,  p , r n 1 n € I { w i t h n ' L > p  a n d . n  ) r n f  l w e h a v e

P( sup lEn(X^) - Xnl > €) < P( sup l.Eq(X,) - Xrl > ,).
p < q < m  p < q < n

This together with (1.1) implies (2.3). Thus by definition, (X") is a mil of size
1. Conversely assume that (X,) is a mil of size 1. Then by definition, given
e > 0 there exists p € l[ such that if rn,n €I/ with rn ] p and n ) m-f L, (2.3)
is satisfied. Consequently, given n ) p, by taking rrl : n - 1, we get

P( sup lEn(X*) - Xol > e) < r( sup lEo(X.) - Xnl > e) < e.
p<q<n  p<q<m

It means that (X.) is a mil, noting that for the case when n : p, (1.1) is always
true. The proof of the theorem is complete. r

Now we are able to formulate our main result as follows

Theorem 2.3. When g runs oaer the d'irected set (G,<t), the set of all quas'i-
mils 'is class'ifi,ed into the increasing family of the subclasses of mils of size g for
which the smallest element, i.e., the subclass of mils of si,ze 1, is just the class of
mils. Furthennore, if f ,g eG wi,th f 1' g, the class of mils of s'ize f i,s strictly
conta'ined 'in the class of mi,Is of size g.
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Proof. Clearly, the first part of the classification is contained in the previous

theorem. Before proving the second part, we define fi.rst for any h e G the

following:

a * ( h ) : m * h ( r n ) ,  r n € N ,

b-(h)  :max{rn :  a*(h)  I  n} ,  n  > 
" t (h) .

(2.5)

Then it is clear that

b - ( h ) + h l b * ( h ) l < n ;  n >  o t ( h ) .  ( 2 . 6 )

F\rrthermore, since h e G, the sequence (a^(h)) strictly increases to infinity

when rn runs to infinity. This implies that

b^(h) : rn if and only if a^(h) < n I apal(h). (2.7)

Consequently,
b"^g,1(h) :  m;  n 'L e N. (2.8)

Now let L g e G with / <, g. w" shall prove the second part of the theorem

by constructing a mil (X") of size g which is not a mil of size f . Indeed, let
(Q,A,P) be the usual Lebesgue probability ipace on [0,1). Given n' € ^tr, let

an : fl2i , Qn lhe pa,rtition of [0, 1) in intervals of equal length and "4' the
d - 1

o-field generated by Q*. Let denote by k the fiist element m e N such that

g(m) > /(rn) and /(") < g(s), s 2 m. Then, in particular, S&) > 2' With all

the additional notations we can define the desired sequence (Xr) as follows: For

n < akb) set X, : 0. For any fixed,n > ak(g), we define

xn: ou^(d*, 
o, x*: -;k, resp.

on the first interval of Q, which is contained in the (2p - l)-th or 2yth interval

of Qa^G)+t, resp., with I1 p < a6^16ar12. Then by the definit ion and (2'7) we

have

a-b)  2boua\(9) :  k ,  n2 ax(s) .

Consequently, for n > o*(d we have glb"(S)l > S&) ) 2 since 9 is nondecreasing.
This remark together with (2.6) guarantees that

n>  b* (g )  +  s lb " ( s ) l>b " (s )  *2 ,  n>  on (g ) -

Therefore, n
P({Xnl O}) :  

ab^!g)+t -  
i l  2- i  < 2-n

an 
i :b^\s)+2

This proves that

(2.e)

the sequence (X-) converges to zero a.s. (2.10)

F\rrther, for all n> ox(g) and r: a.b)+ 1, also by the same construction we

!rave
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E ' (X* ) :  1  o r  E " (X* ) :  - 1 ,  r esp . , (2.tr)
on the (2p - 7)-th or 2p-th interval of Qu^@)+r resp., with | 3 p < aa*b)+t|2.
Consequent ly ,  for  a l l  ^> o*(g) ,  n)  m+g(m),  we have En(X-) :0 for  a l l
q< m since, by (2.5), m< b.(S). This remark proves that

sup lEo(X.) -  Xol:  sup lxol  u. t
ox (s )<q<^ ax\g)  <q  <m

Thus by the property (2.10), the sequence (X,) must be a mil of size g. To see
that it is not a mil of size f . we set

Then by (2.5),

V :  {a > ak(g) ,  a"( f )  < a"(S)} .

V : {, > ek(s), f(r) < s@)}.
This together with the assumption that f <' g implies that card (V) : oo. But
by (2.8), we have

It follows that

b""<gl@) : 1) : b""ft)ff), u e V.

r : b o , U ) ( 9 ) < u ,  u € V (2.12)

since by (2.7), a"(g) is the smallest n € ntr such that b,(9) : o, while a"(f) <
a,(g) .  Thus,  g iven p > ak(g) ,  m:  u )  p,  n:  rnt  f  ( * )  :  a , ( f ) ,  by (2.9)  we
get

P( sup lEn(X")  -  Xnl :1)  > P( lE '+ ' (X")  -  X, l  :  1)
p < q < m

> P({ln'*'(x")l : 1} n {x' I o}) > L - 2-".

It implies that (X") cannot be a mil of size /. This completes the construction.
T
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