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Abstract. By constructing a covaria"nt functor, called the "fuzzy functor", from the
set category into the category of finzy spaces, we show that, a Chu space is a fuzzy
space if and only if it is fully complete.

L. Introduction

This work is motivated by recent attempts to model information flow in dis-
tributed systems [2] as well as the work of Pratt in computer science, in which
a general algebraic scheme, known as Chu spaces) is systematically used [5]. In
this paper, we are interested in using Chu category framework in uncertainty
modeling. We specify an important Chu category: vague (fuzzy) evaluations
having the unit interval as the set of truth values. We address fundamental
questions in these modeling frameworks towards applications.

In Sec. 2 we consider Chu spaces in general settings. We define some numer-
ical data and prove that these data are invariant in the category of Chu spaces
in the sense that any two isomorphic Chu spaces have the same data.

In Sec. 3 we introduce a new class of Chu spaces, called. "fuzzy spaces". We
construct a covariant functor, called the "fizzy functor", from the set category
into the category of "finzy spaces". The "fivzy functor" characterizes fuzzy
spaces as fully complete Chu spaces.

The results in Sec. 3 are extended further in Sec. 4, where each map in the
set category is associated with a Chu space, called a "*-fuzzy space". This
establishes a covariant functor, called the "*-fitzzy functor", from the "dual" set
category into the category of *-fuzzy spaces.

Finally, the theory of Chu spaces applies to game theory in Sec. 5. We define
some statistical data as horm, mean, standard deviation of a game space. These
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data are proved to be game invariances.

Ngugen Nhuy and, Pham Quang Ttrinh

2. Chu Spaces in General Settings

A Chu space is a triple e : (X,A, /) consisting of two sets:
1. X, called the set of euents, or players of Cland
2. A, called, the set of states, or situat'ions of. C.

The two sets X and,4 are joined by a map f : X x A''+ K, where K is an
arbitrary set of values. In this paper, we take the set I{ to be the unit interval

[0,1]. Then the map f : X x A -+ [0,1] is called the probabili,ty function of e .

Example 1. Let X be a metric space. Then d : (X, X,/) is a Chu space, where

f : X x X -+ [0,1] is defined by

l@,a ) :  m in {d (2 ,  Y ) ,  1 }  f o r  n ,Y  €  x .

The notation (r,a) means the event r is at the state a. The value /(r,a) is
called the probability of the euent x g'iuen that i,t is 'in the state a.

L e t C :  ( X , A , f ) b e  a C h u s p a c e .  F o r  r  €  X  a n d o  € , 4 , w e d e f i n e t h e
supports of r and o respectively by

supp(r)  :  {a € A:  f ( r ,o)  > 0}  and supp(a)  :  { "  €  X :  f (n," )  > 0} .

For an event r € X we define the following statistical data:
1.  The number l l " l l . :sup{ / ( r ,  a) :a€,4}  is  ca l led the upper ualueof  r .
2. The number ll"ll. : inf{/(c, a) : a € A} is called the lower ualue of r.
3. The number ll"ll : (ll"ll. + llrll.) 12 is called the ualue of n.
4. The number d(n) : ll"ll. - llrll. is called the deuiation of r.

We can glso define the following statistical data for the whole rpu"" d,
l. M*(X,c) : tgp {l l" l l . , n € X}- The number M"(X d) is called the upper

euent ualue of C.
2. M*(x,A) : inf {l l  zl l. : n e X}. The number M*(X d) is called the

m'inimar euent ualue of C.
3.  m*(X,d)  :  t , tp{ l l r l l .  :  r  e  X} .
4.  m*(X,C)  :  in f { l lc l l .  :  r  e  X} .

Dually, we can define the values ll"ll., ll"ll., llall, d(o) for a state a e A, and
the numbers M*(A,e), ut.( A,A), m"(A,d), **(Ad; i" ttr" same way. For
instance:

l l " l l .  :  sup {/(r ,  a) :  r  e x}.

Roughly speaking, for an event z € X the upper value llrll* measures the
"skill" of z in the best situation and the lower value llzll* measures the "skill" of
r in the worst situation. An event z € X is called a strong euentif'llnll:1, or
equivalently f(u,a) : 1 for every o, € A, and o is called a null euentif llrll : g,
or equivalently supp(r) : fl.

Duallg for a state e e A the upper value llall- describes the quality of the
position a if a best player is staying there, and the lower value llall- describes
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the quality of the position a if a worst player is staying there. A state a e A is
called a winning stateif ll"ll : f, or equivalently supp(a): X and a is called a
dead state if ll all : 0, or equivalently supp(o) : fl.

We can define the distances ll, - yll between two events n,y and llo - bll
between two states a and b. For instance

tw - Yll : suP{l.f(r, 
") 

- f (Y, a)l : a e A}.

A Chu rpu"" d is separated,, see [2], if llo - bll : O implies a: b and. d is
ertens'ional it llr - yll: 0 implies r : A. ff d is both separated and. extensional
then we say that C is biextens'ional

Clearly, the Chu distance defines pseudometrics on X and A. Hence

Proposition 1. ff e * separated (resp. ertensional) then A (resp. X ) is a
metric space w'ith the Chu distance. Therefore if C i,s b'iertens'ional then both A
and X are metric spaces.

We say that a Chu space e : (X,A, /) is complete if for any function
p i X -+ [0, 1] there exists a state a € A such that cp(r) : l(n,o) for every
r € X. We say C fully complete if C is complete and separated.

I f  (X,A,/)  and (Y,B,g) areChuspaces, thena ChumorphismQ: (X,A,f)  -+
(Y,B,g) is a pair  of  maps Q: (p,ty ' ) ,  where g: X -+ Y and t l t :  B -+ A such
that the diagram below commutes:

X x B  Y x B

11*,U)J
X x A '

I'
[ 0 ,1 ]

(1 )

--------+
f

where l1a : X -+ X denotes the identity map. That is

f  (r , rh@)):  g(p@),b) tor r  € X and b e B. (2)

If Q : (p,rli, e : (X, A, f) -+ D : (Y, B, g) isa Chu morphism, then the
Chuspace (X,B,f  xog),  where

( f  xo  s )@,b) :  f  ( r , rh (bD :  s@@),b)  fo r  (2 ,  b )  e  X  x  B

is called the cross prod,uct of e and,b or", O, denoted by d xoD, see [3].
We say that the diagram (1) upper-commutes if instead of (2) we have

f @,rh\))  <s@@),b) for n € X and b e B. (3)

If (3) holds, then we say that O : (X, A, f) -+ (Y, 8,9) is a Chu upper-morphism.
The compositi,on of two morphisms O1 : (gt,t/1) and Qz : (gz,$z) is

given by OrOz - (ptpr,thzrltr). Clearly L6: (1x,1a) is the identity map of

e : (x, A, f).
An easy proof of the following proposition will be omitted.
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Propositon 2. If aL and,Q2 are chumorphisms (resp. chuupper-morphisrns),

thei Q$z is a Chu rnorphism (resp. a Chu upper-morphisrn)'

By Proposition 2 we can define:

1. The Chu category, denoted by C, of Chu spaces with Chu morphisms'

2. The Chu upper-category, denoted by C*, of Chu spaces with Chu upper-

morphisms.
For bhu spaces d : (X,,4, /) and D : (Y, B, g) let M(C,D) (resp' M. (9' D))

denote the set of a.ll Chu morphisms (resp. Chu upper-morphisms) from C into

D. Obr".-r" that M(d , fi) : A in many situations' In fact, let X and A be two

sets and t e [0,1]. Then e1: (X,A, f) is a Chu space' where fi is the constant

function defined by:

f r (* ,o) :  f  for  anY (r ,  a)  e x  x  A '

It is easy to see that

Proposition 3.
i. n, f s, then both M(dt,e ) : A and M(C-", ) : A'
2.  I f  t> s,  then M.(er,e):@ but M.(e",e) A'

More generally we have the following necessary condition for the existance

of Chu morphisms between Chu spaces'

Propositio n 4. Let e : (X, 4, il ana b : (Y, B, g) be Chu spaces' If M(e'D)

* 0 then M*(X,C) > M.(Y,D).

Proof. Weprove that M(e,D + A implies M*(X,e12 U.1V,D;' m fact, if

it is not the case, then

l l " l l .  < l ly l l .  for anv n e X and v eY' (4)

On the other hand, since M(e ,D + A there exists a morphism Q : (p,rb),

where p: X -+ Y and $: B -+ A such that

f  @,rb(b)) :  g(P(r) ,b) fot  n e X and b e B'

It follows that

l l " l l .  :  suP{/(r ,  a) :  a e A}

> s u p { / ( r , r l r l D , b e B }
: s u P { g ( P ( t ) , b ) : b e B }

:  l lp(r) l l . '

which contradicts (4). Consequently M*(X,e1> nt.1V,D; uoa the proposition

is proved. I

fi M(e,n|+A,.then we say that d is d,omi,nated,by fi and, denote d : n.

We say that C and D ur" 
"quirll"nf 

, denoted by e = fi, it d < D and fr < e'
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and, d and. fi are connectedif either d : fi o, D <d. A 
"l*t 

of Chu spaces I
is called a connected system if any two members of I are connected. If. C x D

for e , D e 9, then we say that g is an equiualent system. A connected system is

called a 9lo2ed system if I is clgsed under cross products. That is, C x6 D e I
for any C,D eQ andQ e M(C,D). A cornplete system is aclosed equivalent

system.
We say that C and D are isomorphic, denoted by C = D, if C and D are

isomorphic objects in the category C of Chu spaces. It is easy to see that a Chu

morphism O: (p,rl,) t (X,A,f) -+ (Y,B,g) is an isomophism if and only if

both cp : X -+ Y and (,t : B--+ A are one-to-one and onto. Jf rp is one-to-one, Ty'

is  onto,  then we say that  C:  (X,A, / )  is  a subspaceof  D:  (Y,8,9) ,  denote

e c D .
It is easy to see that

Proposition 5. The spo"" e : (X,A, t) is a subspace of fr : (Y,B,g) if and

onlg i,f Q : (p,r/) t C : (X, A, f) -+ D : (Y,B,g) is a n'Lonornorph'ism, that

is, if Q1 : (gr,tlt) and Qz : (gz,tlt2) are two morph'isms with the same target

d : (X, A, f), then the equal'ity OiDl : QQ2 impli,es Or : (Dz'

The Chu .pu"" dl : (X, A,1 - /) is called the complement of A : (X, A, f).

Proposition 6. For any Chu ,po"" d : (X, A, f) we haue

Proof.
1. An easy proof is omitted.
2. We have

m*(x ,d \  : in f { l l r l l .  I  r  €  x }
:  inf{ inf{( l  -  f (* ,a))  :  a e A} :  r  e X}

: inf{1 - sup{/(r, a)) : a e A) : n e X}

:  1 + inf{-sup{/(r ,  a) :  a € A} :  r  e X}

: 1 - sup{sup{.f(r, a) : a e A} : n e X}

: t - s u p { l l r l l * : r e X }
: t  -  M.(X,e).

* *  (X ,e t )  : suP{ l l r l l .  :  n  e  dL}

:  sup{inf{ l  -  f (* ,a)}  :  a e A} :  n e eL}

:  1 + sup{-sup{/(r ,  a) :  a € A} :  n e et}

:  1 -  inf{sup f(r ,a) :  a e A} :  r  e eL}

:  r - M-(X,a\.

Of course Proposition 6 still holds if the set X of events is replaced by the

set A of states.
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Observe that i f  m*(X,e1> U.1X,d;, th"tt l l" l l .  > l lgl l .  for some r) a € X.
This means that in the worst situation the player r can do better than the player
3/ even when gt is in the best situation. Clearly, in this situatiog the qualification
of the set X is "very non-uniforgr". We say that Chu space C p euent uni,form
(resp. state uniform) if m"(X,C) < M.(X,C) (resp. *"(A,C) < U.1,n,C17,
and C is uniform if it is both event and state uniform. FYom Proposition 6 we
get

Proposition 7. For any uniform Chu space i :1X,1,7):

r. m*(X,e1 <*.1x,Q) < M.(x,A)< M-(x,e).
2.  m*(A,  C)  < m* (A,  C)  < M.(A,  C)  < M. (A,  C)  .

The following theorem shows that any two isomorphic Chu spaces have the
same data

Theo rem L .  Le td :  (X ,A , f )  and .D :  (Y ,B ,g )  be  Chu  spaces .  nd  g  n
then
L.  M*(X,Q)  <  U. {V ,b) .
2' M*(X,g) > M.(Y,9).
3.  m*(X,C) < m.(Y,2).
4.  m*(X,C)  >  m"(Y,  D) .

Proof. l. We have

M*(X d)  :  tnp{  sup{ / ( r ,  a ) :  a  €  A} :  r  e  X}
:  sup{sup{ " f  ( " , l l t \ ) ) :b  e  B} :  r  e  X}
:  sup{sup{e(p@),b) :  b e B} :  n e X}
< sup{sup{g@,b) t  b e B} :  y eY}
: s u p { l l g l l . : g e Y }

:  M.(Y,fr).
2. We have

M*(xd) : inf{r,tp{f (r,a) : a € A} : r e x}
: inf{sup{"f (*,rlt(b)) : b e B} : r e X}
:  inf{sup{g(p(r) ,b) :  b e B} :  r  e X}
: i n f { l l r p ( r ) l l . : z e X }

> i n f { l l y l l . : y e Y }

: M*(Y,fr).
3. We have
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m* (x,d) :  suP{inf{ f  (" ,a) :  a € A} :  r  e x}
: sup{inf{"f (",rlt(b)) : b e B} : r e X}
:  sup{inf{g(p(") ,b) :  b e B} :  r  e X}
: s u p { l l p ( z ) l l . : r e X }

< s u p { l l s l l . : y e Y }
:  m* (Y,f i ) .

4. We have

m*(X,d; :  i " f1i"r{ f@,") :  a e A} :  n e X}
:  inf{ inf{ /(n,V(b)) :  b e B} :  n e X}
:  inf{ inf{g(p(r) ,b) :  b e B} :  n e X}
>  i n f { i n f { e ( y , b ) : b  €  B } :  a  e  Y }

: m*(Y,fr),

The following subcategories of C and C" will be a,lso considered:
1. Cs (resp. Ci) denotes the category of separated Chu spaces with Chu mor-

phisms (resp. with Chu upper-morphisms).
2. CB (resp. C|) denotes the category of extensiona,l Chu spaces with Chu mor-

phisms (resp. with Chu upper-morphisms).
3. Cs (resp. C|) denotes the category of biextensional Chu spaces with Chu

morphisms (resp. with Chu upper-morphisms).
4. Cs (resp. C|) denotes,the category of complete Chu spaces with Chu mor-

phisms (resp. with Chu upper-morphisms).
5. Cp (resp. C|) denotes the category of full complete Chu spaces with Chu

morphisms (resp. with Chu upper-morphisms).
Observe that Cs, Cn, Ce, C6 and Cp are full subcategories of C, and Cb, Cb,

Cb, Cb and Cfi are full subcategories of C*.

3. F\zzy Spaces and the F\nzy F\rnctor

In this section, we introduce a special class of Chu spaces called fuzzy spaces.
The category of. fuzzy spaces is an equivalent system. That is, any two fuzzy
spaces are equivalent.

By a fuzzy subset of a set X we mean any function f : X -+ [0, 1], see [4].
Observe that if A is a subset of X, then the characteristic function Xa of. A is a
fuzzy subset of X. So by identifying -4 with Xa we can say that any subset of
X is a fuzzy subet of X. A fuzzy subset of X is also simply called a fuzzy set.

Let 5 denote the category of sets. For a given set X, let X* : [0, l]x denote
the collection of all fuzzy sets of X.

For any map a : X -+ Y we define the conjugate a* : Y" -+ X* of a by the
formula

a.(a)( r ) :  a(a(r ) )  for  every r  e X and o € Y*.  (5)

It is easy to see that
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(0o)- : a"B* for every 0 : X -+ Y, B :Y -+ Z.

For any set A C X* we define /a : X x A -+ [0,1] by

f d.(*,a) : a(r) for (2, a) e x x A- (6)

Clearly C: (X,A,f.q) is a Chuspace. This space is called a pre-fuzzy space
on X.  In the case A:  X* the Chu space F(X):  (X,X*, , fx- )  is  uniquely
determined by X, and called fuzzy space assoc'iated with X, or shortly a fuzzy
space.

We have the following proposition

Proposition 8. Any pre-fuzzy space is separated, but not necessarily erten-
sional. Howeaer, any fuzzy space F(X): (X, X",Fy-) i,s fully complete and
b'iertensional.

Prool. Firstly, we show that pre-fuzzy space is separated. Assume that lla-bll :

sup{ l / ( r ,  a)  -  f  ( r ,b) l :  r  e  X}  :0 .  Thus

f (*,o) : f (r,b) for every n € X.

a(n) : b(z) for everY r € X.

That  is  
a:  b.

Therefore, pre-finzy space is separated.
In the next we prove that the pre-finzy space is not necessary extensional.

In fact, Iet A : {a : a(n): 1 for all z € X}. Then for r fg we sti l l  obtain

l l "  -  y l l  -  sup  { l f  ( " , " )  -  l ( y ,a ) l :  a  e  1 }  :  o .

We show that F(X) : (X,X*,fx") is biextensional. Since F'(X) is sepa-
rated, it is enough to show that ,F(X) is extensional. Assume that

l l "  -  a l l -  sup { l / ( " ,o)  -  l (a,a) l  :  a eX*} :  0.

Hence

It follows that

Hence
a(n) : a(Y) for all a € X* '

Let a : Xp1 we have a(r) : 1. It implies that a(g) : X{d(a) : 1, that is
r :  A .

Finally, we show that F(X) - (X,X*,"fx.) is complete. Let g : X -+ [0,1]
be amap of aset X into the interval [0,1]. Then g e X*.Thuswith a - 9 € X*,
we have

f  ( * ,o ) :  p@) fo r  r  e  X .

The assertion is proved.

f  ( * ,o ) :  I (y ,o )  fo r  a l l  a  e  X" .



Chu Spaces, Fuzzy Sets and Game Inuariances 123

In pa.rticular ) arry tnzzy space -F (X) : (X, X* , "fx. ) is biextensional. There-
fore by Proposition 1 the Chu distance on X defines a metric. It is easy to see
that it is a d'iscrete metric.

The category of pre-fuzzy spaces with Chu morphisms is called the pre-fuzzy

category, denoted by fp. Tlne fuzzy category, denoted by F, is the subcategory
of .Fp consisting of fuzzy spaces.

Observe that a Chu morphism O: (X,A,fa) -+ (Y,B,gn) in the pre-fitzzy

category is a pair of maps Q : (g,ly'), where g ; X -+ Y and tlt : B -+ A satisfy
the condition

' l t (u)(" )  :b(P(r) )  for  ( r ,  b)  e x  x  a '

As we have seen, in general Chu spaces are not connected. Fortunately it is
not the case in the fuzzy category. In fact, we get

Theorem 2. The fuzzy category F is an equiualent systern.

Proof. We need to show that M(F(X),F(y)) f A for any fwzy spaces F'(X) :

(X ,X* , f i 6 . )  and  F (Y )  :  (Y ,Y . , l v . ) .
Let a: X -+Y be any map (in the set category). Define Q.* :Y* -+ X* by

o - ( y . ) ( " )  : y . (a ( r ) )  f o r  r  €  X  and  y *  €Y* .

We have

o .  (a . )@)  :  f  x .  ( n ,o - (9 . ) )

:  y*  (a(r ) )

:  yy . (a ( r ) , y * ) .

Therefore the diagram below commutes

Thus, O : (o, a*) e M(F(X), F(Y)), and the theorem is proved. r

We shall show that F(X) : (X, X* , "fx- ) 
is a covariant functor from the set

category S into the fuzzy category ? and F will be called the fuzzy functor.
In fact, let o : X -+ Y be a map. Define F(o) : F(X) -+ f'(f) by

,F(a) : (o,o*), where d| :Y* -+ X* is the conjugate of o, see (5).

Observe that

P@a) : (0a,(0")-) : (0a,a* 0*) : r(B)r@)

for any a: X -+ Y and B:Y -+ Z. Therefore F preserves the composition.
Now we shall prove the following theorem stating that finzy spaces are, in

fact, fully complete Chu spaces.

Y  x Y *

l -
V".

[0, 1]

X x

(1x, ' - )J

X x
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Theorem 3 (Charaterization of fuzzy spaces). A Chu tpo"" e : (X,A, f) is a

fuzzg space if and only Lf d ls fully complete. 
i

Proof. By Proposition 8 any fivzy space F'(X) : (X,X*,,fx.) associated with
a set X is fully complete.

Conversely, let C : (X,A,/) be a fully completae Chu space. Then F(X):
(X,X*,"fx-) is a fivzy space. We shall show lhat C and F(X) are isomorphic.
To see this we first defi.ne T : A -+ X* by

T(a)(n) :  f  ( r ,a)  for  every r  € X.  (7)

We claim that ? is one-to-one. In fact, assume that a,b € A and, a I b.
Since d is separated there exists r € X such that f(*,o) * f(r,b). Hence
r@) l r (Q.

Tosee  tha tT  i son to ,  l e tg€  X* .  Then  g :  X  -+  [ 0 ,1 ] .  S inced i ss ta te
complete there exists a state a € / such that

p(r) : f(r,o) for every n e X.

It follows that T(a) : 9.
Now we define

o :  (1x,  T- t )  ,  d  :  (X,A,  f )  -+ F(X) :  (X,X" ,  f  x - ) .

V :  (1x,  r )  :  F(X)  -  (X,X*,  fx . )  -+ i  :  1X,1. ,  f ) .
Flom (6) and (7) we get

f  (n,T-r  (a))  :  r r - r  @)(x)  :  a(n)  :  f  x .  ( r ,  a)

for every n e X and a € X*, and by (7)

f  y" @,r @)) : r (a)(r) :  f  (r,  a)

for  every n € X and a € A.  Therefore O:  ( lx , t - t ;  and V:  (1x,?)  are Chu
morphisms.

It is easy to see that rtrO : la and OV : lr(x). Consequently e and, F(X)
are isomorphic, and the theorem is proved. r

Corollary l. The two categories F and Cp are isomorphic.

Proof. The functor F defined in the proof of Theorem 3 is an isomorphism
between the fivzy category f and the Category Cp of fully complete Chu spaces.

Flom Theorem 2 and Corollary 1 we get

Corollary 2. The category Cr of all fully complete Chu spaces is an equ,iualent
system.

Let ,F'(X) : (X,X*,fx-) be a fuzzy space. Observe that if a € X* is a
winning state in the fivzy category, then lloll : 1 which implies that a : Xx,
and if a € X* is a dead state in the fuzzy category, then lloll : 0 which implies
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that a : Xo. Consequently the whole set X will be called t}'e winning set and
the empty set 0 will be called the dead set.

Clearly there are neither strong events nor null events in this category.

Remark 7. Since any subset of a set X is a fizzy set we can consider the family
A : 2x C X* consisting of all subsets of X. The resulting pre-fuzzy space
D(X): (X,2",/2x) wil l be called lhe crisp space assoc'iated with X, and the
category D of all crisp spaces is called the crisp category.

We shall show that

Proposition 9. Euery crisp space is biertens'ional.

Proof. By Proposition 8 a crisp space is separated, we shall claim that it is
extensional.

Assume that 0 : l lr-yll: sup{l/(o, a)- f @, a)l : a e A}, then a(r)-a(y) :
0 for every a e A. FYom this it follows that n : y, since if it is not the case,
setting a: Xp1 € ,4, we get a(z) : 1, but a(A) : O.

The crisp category D is a subcategory of f. Observe that

Proposition 1O. The map D defi,ned'in Remark 1 is a couariant functor from
the set category 3 into the crisp categoryD.

P roo f .  I n fac t ,  l e t  a :X -+  Ybeamap .  Then themorph i sm

D(a) : D(x) - (x,2' ,  fr*) -+ D(Y) : (Y,2Y ,7r,)

is defined by

D(a) : (o,o-t), where o-1(b) e z* for every b e 2Y .

We shall show that the following diagram corrxmutes
, 1

X x  2Y 
\d 'L2Y )>  

Y x  2Y

rl*,,-')J I,""
X x2x ---------+ 10,1]

tzx

To do this, we have to show that

fz , (n,o-1(b))  
-  

f2 ' (an,b)  for  every b e2Y.

That is, we need to claim that

a-T(\(r) : b(ar) for everv b e 2Y .

Since o-l(b) and b are two characteristic functions of the sets o-l(b) and b
in the spaces 2x and 2Y, respectively, they admit only two values 0 or 1. If
a-i(b)(u) : 1, then r e a-r(b) which implies d,n' € b, hence b(ar) : l. rt
a-1(b)(z) : 0, then r ( a-r (b) which implies ar (. b, hence b(an) : g.
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Thus, in both cases we have

o-l(a)(r) : b(ar) for r € X.

Therefore the proposition is proved.

4. *-I\tzzy Spaces and the *-Frtzzy Functor

As we have seen, the fizzy category f is an equivalent system. Unfortunately
.F is not closed under the cross product, therefore f is not a complete system.
In this section, we expand tlne finzy category F to a complete system.

Let 5 denote the set category. We define the category 5* as follows:
1. Objects of .9* are morphisms in 5.
2. If o.: X -+ Y and a' : X' -+ Yt are two objects of 5*, then a morph'ism

g i a -+ a' from a to at in S* is a map (in the set category) p,Y -+ X'.
Let a : X -+ Y, at : X' -+ Yt and e" : X" -+ Y" be objects in S*

and g i a -+ (t', g' i at' -+ e" be morphisms of 5* (i."., g : Y -+ X/ and
g' ,Y' -+ X"). Then compos'it'ion of g and g', denoted by g' * cp, is given by

g'  *  g:  g 'o 'g ;  a  -+ or" .

It is easy to check that with the above definition 5* is a category.
For o: X -+Y we define f '-(o) - (X,Y","fo), where Y* denote the collec-

tion of all finzy sets of Y, and f o : X x Y* -+ [0, 1] is given by

l .@,o)  :  a(a(r ) )  for  every ( r ,a)  e X xY* '

The Chu space F-(a) : (X,Y*,fo) is called the *-fuzzy space associated
with the n'Lap a : X -+ Y. The category of all *-fiizzy spaces associated with
maps in the set category S is called the *-fuzzy category and denoted by F* .

The *-fizzy category F* contains the fuzzy category F as a subcategory. In
fact we have

Theorem 4. Any fuzzy space is a *-fuzzy space.

Proof. If F(X) : (X,X*,F;.) is afuzzy space, then clearly F(X) : F-(1;) is
a *-fuzzy space.

Theorem 5. F* 'is a complete sgstem.

Prool .  Assumethat  Q :  (p, { )  :  F-(a)  :  F*(X,Y*,  fo)  -+ F.(o ' )  :  (X ' ,Y '* ,  f  o , )
is a Chu morphism, where F-(o) and F*(o') are*-fuzzy spaces associated with
the map q : X -+ Y and e' : X' -+ Y' respectively.

Put t ing A:  a 'g:  X -+ Y'we get  the cross product  C:  (X,Y * , loxofo, )

which is a*-fr,nzy space associated with the map B. Infarct, for every (r,b) e
X xY *  we have

( . f -  xo fo,)(*,b):  f . , (9@),b) :  b(a'9@))
: f o , g ( f r , b ) : f B @ , b ) .
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Thus, the category f" is closed under the cross product. Therefore the theorem
is proved. r

Theorem 6. F* : 3* -+ F* 'i,s a couariant functor.

Proof. For a morphism g i a -+ o' in 5* we define

F - (p ) :  ( pq ,p *a ' * ) ,

where rp* and o'* ur" conjugate of tp and o/ respectively, see (5)

,We c la im that  F. (cp)  :  F*(a)  -  (X,Y*," f ' )  -+ F.(o ' )  :  (X ' ,Y '* , fo , )  is  a
Chu morphism. That is, the following diagram commutes:

x  xY ' *  x '  xY ' *

11*,,r..'.)J lr.,
X xY*  10 ,1 ]

I n f a c t , f o r e v e r y  r € X  a n d a e  Y ' * ,

f  o(" ,  p*  o '  *  (a))  :  g*  a '  *  (a)(ar) )

:  (a,9) .@)(o,r )

: aa,g(ar)

:  f . , ( pa ( r ) , a ) '

Consequently the diagram (8) commutes. Hence F-(p): (ga,tp*c'*) is a
Chu morphism.

Now we shall show that .F'* preserves the composition. In fact, let a : X -+ Y,
a' : X' -+Yt, att : X" -+Y" be objects in the category,S*, and let g: e. ) ott,
g' t e' -+ at' be morphisms in 5- (i. e. , g : Y -+ Xt and g' , Yt -+ Xtt are
maps in the set category). Then by definition we have g'*g: g'a'g.Therefore

F* (g' * g) : (p'o'pa, (9'a'9)* a" *)

/  |  |  *  
' *  ' *  / / * t

: \ 9 4 9 4 , 9 d  I  a  )
:  F.  (p ' )F.  (p) .

Consequently F* preserves the composition, and hence F* : 5* -+ f* is a
covariant functor.

The functor F* : 5* -+'f* is called the *-fuzzy 
functor.

5. Game Spaces and Game Invariance Theorem

Given a set -4, by a game space ouer,4. we mean a Chu rpu"" d : (X,A,f),
where:
1. X is a finite sef, called lhe tearn game. If. n e X, then r is called a playerof.

the game G.

(8)
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2. A is any set) called the fi,eld game. If. a e A, then a is called a pos'ition in
the field game A.

3. f (r,o) is called t}re uinn'ing probability of the player e while he is in the
position o in the field game.

Example 2. A soccer team X in a soccer field A is a game rpu"",9 : (X,A,f),
where
1. The team X is the player team. Hence X is a finite set consisting of eleven

elements.
2. The field game A is the soccer field. Hence .4 is an infinite set: Every point

in the soccer field is an element of A.
3. (r,a) means the player r is having the ball at the position o in the soccer

field, and f (*,o) means the probability that the player r kicks a goal from
the position o in the soccer field A.

Examp)e 3. An armed force ,9 : (X,A,/) is a game space, where:

1. X is the set of soldiers of the force 5.
2. The field game ,4. is the.arsenal of the force ^i.
3. (n,a) means the soldiei r is having the weapon a at hand, and, f (r,a) is the

ability of the soldier o to kill an enermy when he has the weapon o at hand.

Example 4. A university fl : (X,A,/) is a game space, where:

1. X is the set of students of the university &.
2. The field game A is the set of courses being taken at the university 7.
3. (r,a) means the student r is taking the course a, and f (r,o) is his grade in

course a. For instance f(*,o): 1 if the student u gets an "A" in course o.
In this example the function f : X x A -+ 10,1] takes only five values: A: L,
B : 1 , C :  t , D :  i  a n d  F : 0 .

Observe that if 3 : (X, A, f) is a game space, then the value llrll- describes
the "skill" of e in the best situation, and the lower value llzll- describes the
"skill" of r in the worst situation.

Dually llall. describes the "qualification" of the position a in hands of the
best players and lloll- describes the "qualification" of the position a in hands of
the worst players.

For instance, if we take the "soccer example" ll"ll : f means that the player
z can kick a goal from any point o in the soccer field. (This player is really too
good!) On the other hand if r e X is a null event, then ll"ll : O. This player r
is, perhaps, the goal keeper!

Dually, 1f a e A is a strong state in the soccer space S, then lloll : 1. This
means that o is, in fact, a "winning position". Flom this point any player can
kick a goal! Clearly there are many "winning positions" in the soccer field. If
a € A is a weak state, then ll"ll : 0. This position is clearly a most difficult
position in the soccer field. FYom this point no player can kick a goal.

On the other hand in Example 3 the value llzll- describes the "fighting
ability" of the soldier c when he has best weapon at hand, and the lower value
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llzll" describes the "fighting ability" of the soldier z when he has no weapon at
hand.

Since the team X of a game tpu"" G : (X,A,/) is finite we can define the
following statistical data for a game space:
1'  The number 

tet  :  . ly^*
^l  z-r
\  r €x

is called the norm of G.
2. The number

n t2 i tu \ v ) :

is called the stand,ard, d,euiati,on of G.
3. The number

M(G) :  !  l l " l l ,
a e X

where lXl denotes the cardinality of X, is called the rneanof G.

Now given a set A, we define the game category ouer the fi,eld A, denoted by
I.n, as follows:
1. The objects of.9t are g€,me spaces over ,4.
2. If S : (X, A,f) and. T -- (Y,A,g) are two game spaces over -4, then a

morphism a : (p,la) : S + ?, where g : X -+ Y is a map satisfying the
condition:

f (* ,o)  < S(p@),a)  for  n € X and a e A.

Consequently morphisms in the glme category are C-hu upper-morphisms.
Observe that a morphism O : S : (X,A,f) -+ T : (Y,A,g) in Qa is

determined by a map a : X -+ Y such that

f  (*,o) < s@@)) for n € X.

The existence of a morphism A :,9: (X,A,f) - T : (Y,A,g) in the game
category over the field A implies that for any player r of the team X there exists
a player 9@) of the team Y such that at any position a in the game field ,4 the
player tp(r) has better chance to win than the player r at the same position a.
It follows that the team Y has some advantages over the team X in the field A.
It is straightforward to check that

Proposition LL. If 3 g G, tnen llsll< llell.

The following theorem shows that the statistical data as norm, mean and
standard deviation are game invariances.

Theorem 7. (The game inuariance theorem.) The num,ber llGl1, ttl1?1 ana
D(G) are 'inuariances in the game category ouer the field A. That is, if S and G
are isomorph,ic, then I l  ̂ ql l  :  yG11, u137: M(G) and D(3): D(G).

| { | l " l l .  -  l l " l l . ) '  : \ lat")1,
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