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Abstract. We study penalty function method for dual form of a class of nonconvex

mathematical programming problems which contains optimization problems over the

efficient and weakly efficient sets, and linear bilevel programs as special cases. In

contrast to the primal forms the resulting penalized problems for the dual form allows

handling the dual variables of the problem whose effective domains of the objective

function as well as the constraints are given explicitly. Application to linear bilevel

programming is considered.

1. Introduction

Recently some nonconvex mathematical programming problems, whose feasi-

ble domain is the solution-set of another optimization problem, have been con-

sidered intensively. Examples for these problems are linear bilevel programs,

optimization over the efficient set and weakly efficient set of a multiple objec-

tive programming problem. These problems have some important applications

in decision making and different fields of world real life. Mathematically, they

are difficult nonconvex constrained global optimization problems because their

feasible domains in general are neither convex nor given explicitly-

There are several ways to formulate these problems among them the primal

and dual formulations are widely used. The primal formulations deal only with

* This paper was supported in part by the National Basic Research Program in Natural Sci-

ences, Vietnam.
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the primal variables whereas the dual formulations use both the primal and dual
variables.

To avoid difficulties arisen from the fact that the feasible domain is nonconvex
and not given explicitly in a traditional format for an ordinary mathematical
programming problem, several penalty function methods have been developed
for the primal forms. In the articles 17,2,5,8, 12,22]1penalty function methods
have been developed for primal forms of optimization over the effi.cient set and
weakly efficient set. In [8] exact penalty function methods have been considered
for concave minimization subject to linear constraints and an additional facial
reverse convex constraint. It has been shown in [8] that, among others, the
primal forms of concave minimization over the efficient set of a multiple objective
linear program and linear bilevel programming problems are of this type.

In this paper we study penalty function methods concerning dual forms for a
class of nonconvex optimization problems which contains optimization problems
over the efficient and weakly efficient sets, and linear bilevel program as special
cases. We make use of the exact penalty function to develop an algorithm for
solving a linear bilevel programming problem which computes an exact penalty
parameter iteratively. In an important special case we give an estimation for the
exact penalty parameter. For linear optimization over the effrcient set and linear
bilevel problem our study can be considered as a parallel work of that of Fiilcip
in [8]. The main difference between two approaches is that here we use the dual
(parametric) forms of the problems rather than the primal forms. Comparing
with the primal forms the dual forms have the advantages that they allows us
to handle dual variables which in general is much less than the primal variables.
For global optimization problems this is essential, since it is well known that
computational costs (memory, time...) for solving a global optimization prob-
Iem increase very quickly as the dimension of the problem gets larger. Moreover
in contrast to the primal forms, in the dual forms the effective domains of the
objective function as well as the constraints are given explicitly. When applying
basic techniques such as branch-and-bound and outer approximation for solv-
ing a global optimization problem, in general, it requires constructing at the
beginning a simple structured set (box, simplex, polyhedral cone) containing a
solution and contained in the domain where the objective functions and con-
straints are finite. In the case where this set is not given explicitly, constructing
such a simple set in general is not an easy task.

2. The Problem Statement and Examples

Consider the following problem

q*  : :  m in { / ( z )  l h ( , \ ,  r )  : 0 ,  t r  €  A ,  r  €  X } ,  (P )

where A C H, X c Rn are polyhedral convex sets, / : X ---+ rR, and h :
A x X ---+ R. Throughout this paper we assume that A, X are bounded and that
hQ,,r) > 0 for every (.\, r) e h x X.

Let D denote the projection on fi' of the feasible domain of Problem (P),
i . e . ,
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D  : :  { r €  X  I  l I  €  A , h ( . \ , r )  :  0 } .

Clearly (P) is equivalent to the problem

o*  : :  m in{ / ( r ) l r  e  D} (P')

in the sense that if (),r) is a global optimal solution to (P), then r is a global

optimal solution to (P'), and if r is a global optimal solution of (P') then for

" r r e . y . \ € A s a t i s f y i n c h ( ) , r ) : 0 , t h e p o i n t ( ' \ ' r ) i s a g l o b a l o p t i m a l s o l u t i o n.o (P) .'Below 
are examples for Problems (P). In what follows we write ab or \a,b|

for the inner product of two vectors a and b'

2.t. Opt\mization Over the Efficient Set and Weakly Efficient Set

Let F .. X ---+ Rp be an affine fractional vector valued function. we recall

that a point r € X is said to be efificient (resp. weakly efficient) of the vector

optimization problem

vmin{F(z ) l r  e  X} (VP)

paper caII be giveu respectively as

min{ / ( r ) l r  e  E(F ,X) }

and
min { / ( r ) l r  e  WE(F ,X ) ) ,  ( 1 )

where / is a given real valued function defined on X'

suppose that the afflne fractional function F has the following form

r /  \  1 A 1 r l s 1  A o r * s o 1
r  w )  :  

\ B t " + f r '  " ' '  
4 ,  1 1 o ) '

where Ai, Bi are n-dimensional row vectors, s4,ti ?,te real numbers for all (i:

1 , . . . ,p) .As usual  we assume that  Bi r  * t t '  )  0  for  a l l  r  €  X and a l l  i :  I ,  " ' ,P '

Let p

ss  : :  { )  :  (1 r , . . . , }o )  l ^  >  0 ,D^ ,  :  t } ,

(0)

and p

5 1  : :  { )  :  ( ) r , . . . , ) o )  |  I  >  0 , D f ,  :  t i .
j : 1

Flom a result of Malivert [12] we have
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E(F, X) :
p

{r e X 13.\ e Ss,lXn11nn" *t. i)Ai - (Ap+ s;)B1l(y - r) > 0 Vy e X},

and

wE(F ,X) :
p

{n e X l3) e ,91, \Xo11An, *t)A,i - (Ap + s,;)Bl(y - r) > 0 Vy e x}.
i =1

Define the function gi : Si x X --+ R (j :0,1) by setting, for each (),r) e
S i x X ,

p

si(\,r) :: - m_i$ Llo11Bn" * tr)At - (Ap + si)Bily,g€x -_t

Denote by C the (p * n)- matrix whose ith row is tiA6 - s;Bt, (i :1,... ,F)).

Proposition 2.1. (i) For each j (j : 0, 1), gi is a continuous b,iconuer function
on Si x X.

(i i) s1(.\, r) + \Cr > 0 for all (),,r) € Si x X.
(i i i) Problem (Pr) (f :0,l) canbeformulated,as

min/(r) (pi)
subject to

r  € X,  )  €  ,9 i ,  h iQ, , r )  i :  g j ( \ , r )  + ^Cr :0.

Proposition 2.L can be proved similarly as the proof of proposition 2.1' given
in [21]. For the sake of completeness we give here a proof for proposition 2.1
that is different from that given in [21]. For the proof we need the following
lemma:

L e m m a  2 . L .  L e t A  a n d B  b e t w o  c o n a e o  s e t s  a n d g t :  A x B  - - - +  R ( t  e
T) be a family of bil inear functions on Ax B. Then the function g(r,A)::
supr.Tgs(r, y) i,s biconuer on Ax B.

Proof. Let y €. B befixed and n,,n' eA. Then for every 0 < ) < 1 we have

s(Ar + ( l  -  \ ) r ' ,g)  :  supg1()r  + ( l  -  \ ) * ' ,a)
t

:  sup{)er(n,a) + Q - ^)sr@',y)}

( ,\ sup 91(r , y) + (7 - \) stry g1(r' , y)

: \s(r,a) + Q - \)g(* ' ,a).
In the same way we can prove that g(2,.) is convex on B when z is fixed. r

Proof of Propos'it'ion 2.1. By the definitionof gi(r,y) the assertion (i) is imme-
diate from Lemma 2.1.
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To prove (ii) we observe that
p

"lgl 
)'il(BP *t)Ai - (AP * s'i)BlY

a € X ''  
;='

< I fn[(.B, r i t.i)Ar - (At* + si)Bi]r Vr e X'- Z-/
i : 1

Then, since
p P

lxnlla;r * h)Ar - (An, + si)Bilr :\Xr1k't'a - siBi.)r,
i : l

239

(2)

(3)

(4)

(o.l

; - 1

we have

miq l \{(Bar * t)Ai - (Ar* * s6)Ba)y < | .fnltna i, - siBl)r.
oex u  

i=L

Thus by the definitions of 97(), r) and the matrix C we have Si(\,r) * trCr > 0

for all (,\, r) e Si x X.
Flom (ii) and the definition of 9i(),r) the assertion (iii) is straightforward'

t

From Proposition 2.1 we see that Problem (P1) of minimizing a real valued

function over the weakly efficient set of Problem (VP) can be formulated in the

form of Problem (P). Note that since ,9s is open, Problem (Po) is not of the form

of (P). However, in an important special case where F is linear, from a result of

Philip [15], the open set Ss appeared in Problem (Ps) can be replaced by the

simplex
p

A6 : :  { . \  € n" l  t t r ;  :  1,  t r r  2 d,  i  :  1, . . . ,p}
i : l

with d being a sufficiently small positive number. So, in the linear case both

the problems of optimization over the efficient and weakly efficient sets take the

form of (P).

2.2. Bilevel Programming

Consider the following bilevel programming problem (BL)

min f  1(u,u) : :  a(u) + b(u)

subject to
(u , r )  <  X1 : :  { (u ,u )  |  A1u I  BP 1  Pr ,  u ,u  >  0}

where o solves the (follower) linear program (P")

subject to

min f2(u,u) :: cu * du
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(u ,u )  e  X2  : :  { ( u , r )  |  A2u  - l  B2u  1  p2 ,u ,u  }  Q } , (6)

where o(z) and b(r') are co4tinuous functions on .R' and ,Rq respectively, c € Rn,
d e Re,  p7 e R* ' ,  p2 e R*"  and Ai ,Bd( i : I ,2)  arc sui table g iven matr ices.
Note that when a(u) and b(u) are linear, (BL) becomes a linear bilevel problem.

For a given z the inner problem (5)-(6) is a linear program. The dual problem
of this linear program, denoted by (D"), is

max\(A2u - p2)

tr ) 0, BT^> -d.

Suppose that for each given z > 0 the inner (follower) problem (P") has a finite
optimal solution. Then, by the duality of linear programming, the dual problem
(D") has also an optimal solution and their optirnal values coincide. Let

1 ,  / a t \  D  ( a r \ . r : I o 1 \ .
= \ a r ) ' " : \ " r ) 1 P - \ p ' ) '

Then the bilevel programming problem (BL) given by (f)-(0) can be reformu-
Iated equivalently as

subject to

min /(u,  u) : :  a(u) + b(u)
U , U

Au*  Ba  1p ,  u ,0  )  0 ,  BTA>- -d ,  ̂ >  0 ,

h() ,u,a)  ' . :  du -  ) , (A2u -  P2)  :  0 .

Ftom the duality of linear programming we have h(),,u,u) > 0 for every ().,u,u)
satisfying (9). BV setting r ,: (u,u) and

(D")

(7)

(8)

(e)

(10)

X : :  { r  :  (u ,u ) l  Au  +  Bu 1  p ,  u ,u  )  0 } ,

A : :  { ) l B T ^ > _  - d , . \  >  0 }

( 1 1 )

(r2)

we see that the problem given by (8)-(10) is of the form (P). Notice that in this
case the function h(\,r) is bilinear on R!" x X.

In order to compare primal and dual formulations we briefly describe here
primal forms of optimization problem over the efficient set and linear bilevel pro-
gramming problem. For more details about the primal forms of these problems
we refer the readers to the references 12,4,8,II,22]1.

It is well known (see eg. 12,4,81) that the problem of optimizing a function

/ over the efficient set of (VP) can be equivalently formulated as

min{ / (z) l r  €  X,  r ( r )  :  g} ,

where the function r is concave and given as

r(r)  : :  min{e(F(y) -  F("))  l r (y) > F(r) ,y e X}
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with e € Ee being the vector of components one. Note that the effective domain

of r, that makes the problem nonconvex' is not given explicitly.

Similarly, for the bilevel problem (BL) we define

r(u) :: min{dulr., } 0, Azu I Bzu < P2},

and
h(u,u)  : :  du -  r (u) .

It is not difficult to check (see also [2]) that h is polyhedral concave, finite

nonnegative on Xz. Moreover a point (u, o) is an optimal solution of the bilevel

program (BL) if and only if it is an optimal solution of the problem

min{a(z)  + b(o) l (2,  u)  e X,h(u,u)  :  91 '

Although h(u,u) > 0 for every (u, u) e X this problem is not of the form of

Problem (P) because of the joint constraint (u,u) e X.

3. Penalty F\rnction Methods

We return to Problem (P). Let L1Q,,r) denote the Lagrangian function with

respect to the constraint hQ,r): 0. That is .L1(), r) :: f (r) +th(^,r). For

each f ) 0 we consider the penalized problem

a(t)  : :  min{.L1(. \ ,2) l I  e / t , r  e X}. (P')

The following lemma is well known [7].

Lemma 3.1. (i) o(t) is a nondecreasing funct'ion on Ra and bounded from
aboue by a*.

(ii) ff (It, rt) is an optimal solution of Problem (P1) for some t ) 0, and,

rt e D, then (\t,rt) ' is an optimal solution lo (P).

For each f > 0, denote by S(t) the set of global optimal solutions to (P1).

Take

,*  : :  sup{f  > 0lh(A,t)  > 0 for some () ,r)  e S(t)} . (13)

We agree to take t* : 0 if the set over which the supremum takes place is empty.
In what follows to a number t > t* we shall refer as an etact penaltg parameter.

Lemma 3 .2 .  ( i )  I f  0< t1 t *  then h( ) , r )  >0  fo r  euery ( ) , , r )  e  S( t ) .
( i i )  I f  t ) t*  then h(),r)  :0 for euery () , , r)  e S(t) .

Proof. Let 0 < t < f* and (), r) e S(t). By the definition of the supremum there
must exist t < t' S f* such that h()', n') > O for some (\',*') e ,S(t'). Since
(.\,2) e S(r), ()', n') e S(t'), we.have

f ( " )  + th ( \ , r )  <  f ( " ' )  * th (A ' ,x ' )

f ("') + tt h(^' , "') 
< f (r) + t' h(^, n) .



242 Ngugen Van Qug and, Le Dung Muu

Adding these two inequalities after a simple arrangement we have

( t '  -  t )h(^ ' , r ' )  < ( t '  -  t )hQ,, r )

which together with tI - t > 0 and h()', r') > 0 implies h(),c) > 0.
The assertion (ii) is immediate from the definition of l*. r

Theorem 3.L. Suppose that f is continuous on X and, h is cont'inuous on lt x X
and that the feasible doma'in of (P) i,s not empty. Then for euery t )-0, Problem
(P1) has an opt'imal solution ()t,"t) satisfyi.ng

(i) # h()t, rt) : 0 then (\t,rt) ' is an optimal solution lo (P)'
(i i) # h(\t,rt) > 0 for euery t then ang cluster point of the sequence {(}t,"t)}

is an optimal solution fo (P).
( i i i )  I iml*1-  f  @')  + th( \ t , r t )  :  a* .

Proof. The existence of an optimal solution of (P1) is immediate from the com-
pactness of A x X and the continuity of. f and,h.If h(lt,"t) :0 then rt € D.
Thus (i) follows from Lemma 3.1.

To prove (ii) let ()", 
"*) 

be any cluster point of the sequence {(,\t, rt)}. Then
there exists a subsequence of {()t,zt)} that, for simplicity of notation, we also
denote by {()t, rt)}. Since (A',*') is optimal to (P1), we have

f  ( r ' )  +  th( \ t , r t )  <  I  @) + th(^ , r )  V )  €  I \ , r  €  x .

If (.\,2) is feasible for (P), then h(),r):0. For such a point we have

l@\ + th(\t,rt) s f @) v r e D

from which it follows that

o < h(^', *1< {-(d-J?! sUp,j - \ - ' ' * / _ t _ t , (14)

where /(X) :: max,€x l/(")l < *oo. Thus h(\t,rt) ---+ 0 as t ---+ *oo. Since h
is continuous, and ()t, zt ) -+ (.\* , 2* ) we have h(l* , r* ) : 0. On the other hand,

since h()t, r') > 0 we can write

f  ( " t )  <  f  ( r ' )  +  t h ( t  , # ) :  o ( t )  1  a *  Y  t .

Letting f --+ *m we obtain in the limit that f (*-) < a* which together with
h(,\*,o*) :0, )* € A, r* € X shows that (tr*,.z*) is a global optimal solution
to (P) .

(iii) Since a(t) is monotone and bounded from above by o*, we have
liml-..o6 a(t) < a*.

On the other hand, since /(r*) : Q.*t it follows that

a * :  f  ( r * ) :

Hence a* : liml-1- o(t).

lim /(r') < lim a(r).
l + * o "  

'  '  -  
t + * r c

FYom Lemma 3.1 and Theorem 3.1 we see that one can solve Problem (P)

by solving a sequence of linearly constrained penalized Problem (P1) as follows:
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Set ts ) 0 and solve (P1o ) to obtain an optimal solutio-n (trO, 
"o)' 

If h('\0, r0) :

0, then ()0,"0) is optimal for (P). Otherwise if h()0,u0) > 0, then set t1) ts

(for example h :2to) and solve Problem (Ptr) and so on'

Notice that in view of Lemma 3.2, except for t : f*, the fact that h(), r) > 0

or h(),u) :0 does not depend on the choice of ( '\,2) from the set S(i) '

As we have seen in the preceding section a point I e X is efficient (resp.

w e a k l y e f f i c i e n t ) i f h 0 ( ' \ , r ) : 0 ( r e s p ' h 1 ( ) , r ) : 0 ) f o r s o m e ' \ € S s ( r e s p '
) e ^9r). Since he and h1 is nonnegative' we may agree to say that a point

r e  X  i s a n e - e f f i c i e n t i f  h 6 ( . \ , n ) < e f o r s o m e t r e  S o '  S i m i l a r l y , a p o i n t  n € X

is said to be an e- weakly effi,cient if h1 (,\, n) I e for some ,\ e Sr. Following this

terminology we call a point (,\, z) e S x X an e-feasible solution to Problem (P)

if h(.\, r) < e.

following theorem.

Theorem 3.2. In addition to the assumptions in Theorem 3.1 we assume that

the functions f(.) and, h(^,.), for each ) € A, are concaue on X. Thent* is

fini,te.

Proof. Fromthe concavity of the objective function L1(A,t) t: f (*) *thQ',t)

on X for each .\ € A fixed, Problem (P1) attains its optimal value at a vertex of

X. Let V(X) denote the set of the vertices of X' Then

a ( t ) :  m in { ' L1 ( ' \ ' u )  :  ' \  e  I r ' u  eV(x ) } '

We consider two cases
Case 1. V(X) cD. In this case for every t ) 0 one has S(t)' D +0' Thus

f * : 0 .
Case 2: V(X) ( D. Then there is u eV(X) such that h('\ ' 'u) ) 0 for everv

.\ e A. Set

Mo ' . :  m in {h ( . \ ,  u ) l u  ev (X ) ,  h ( ) , u )  >  0  V  ' \  e  A } '

Since A is compact, h(.,t,) is continuous on A while V(X) is finite, we see that

M o > 0 .
Let ()t,rt) e S(t) and (.\0,r0) such that h(.\0,r0) :0' Then

f  ( r ' )  + th(^ t ,n ' )  < f  @o) + ,h()0,  ro;  :  ;1ro; .

I f h ( I t , r t ) > 0 t h e n

f (o .o \ -  f ( r t \  ^ f (X )t<ff i  s2"fr  (*oo'

consequently we conclude that h(\t,rt):0 for every ('\t,rt) e '9(t) whenever

t > 2f (X)lMo which implies that f* ( *oo. I
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Note that in view of Lemma 3.2 every optimal solution to (P1) is also an
optimal solution to Problem (P) provided t > t*.

Remark 2. Flom the result of the previous section, Problems (0) and (1) of
minimizing the function / over the efficient and weakly efficient sets of the
multiple objective linear program

vmin{Czl r e X}

can be formulated as

min{/(r)  l r  e X,) € As, hQ,,r)  ' :  g())  *  \Cr < 0} (0 ')

and

min{ / ( r )  :  r  €  X , )  €  A1,  h (A, r ) , :  S( ) )  +  }Cr  <  0 } (  1 ' )

respectively, where g()) : rrroxaE;6 \Cr is convex (independent of r), So when
/ is concave on X, these problems satisfy the assumptions of Theorem 3.2.
Likewise for the bilevel programming problem given by (8)-(10) by setting z :
(u, u) one can see that when o(u) and b(u) are concave, the assumptions of
Theorem 3.2. are also fulfilled, since the objective function is concave and h(), r)
is bilinear. Thus, for both these problems we have the exact penalty, i.e., f* is
finite.

4. Application to Linear Bilevel Programming

In this section we apply the results obtained in the preceding sections to solving
the problem given by (8)-(10). As we have seen this problem is the dual form
of the bilevel problem (BL). By setting r : (u,u), it can be rewritten as

min/(z) : :  a(u) + b(u) (DBL)

subject to
n  €  X  : -  { r  :  (u ,u ) lAu  - l  Bu  1  p ,  u ,u  )  0 } ,

A  e  A  : :  { \  e  R^" IBT A>_ -d , . \  >  0 } ,

hQ,r)  : :  h() ,  u,u) :  du -  ) , (A2u - p2) :0.

Under the assumptions of Theorem 3.2 this problem has finite exact penalty
parameters, i.e., 0 ( f* ( *m, such that for every t ) t" , it and the penalized
problem

min{ ,L1( ) ,  r ) : :  f  ( r )  + th (^ , r )  |  )  e  A , r :  (u ,u )  e  X} , (DBL)

have the same solution-set. Since /(r) is linear on X and hQ,r) is bilinear on
RT' , X, this problem is a linearly constrained bilinear program that could be
solved by some existing methods (see e.g. [9, 10, 17, 18] and references therein).
Note that although the existence of an exact penalty parameter is ensured,
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determining it is difficult except for some special cases. Usually one takes t > 0

large enough. However from computational experiences on penalty function

methods, it is well recognized that with t too large the penalized problem would

be instable wheleas with t small, solutions of the penalized problem may not be

optimal for the original problem.

In a special case, when the objective function of the leader depends on the

objective function of the follower, the exact penalty parameter f* can be esti-

mated. Namely we have the following proposition.

Proposition 4.1. suppose that the polyhedron X is bounded and b(a) : o(du)

where 0 is a continuously differentiable funct'ion on an open interual containing

lms,m1], where

TTLs i: min{dr. ' : A2u * B2u 1 P2,u,u ) 0},

rnr  i :  max{du :  A2u *  B2u I  P2,u,u )  0} .

Let

Then

0'* :: max{?'(r) : r € [rn6, rn1]].

t *  < t : :  max{0,  -d ' - } .

Proof. Let t/ > 0 be arbitrary and f : t'+ t-' Consider Problem (DBLI)

min tr1(tr, u,u) :: a(u) + 0(d'u) + (t' + t.)ldu - X(A2u - p2))

subject to
(u ,u)  e  X,  BT^> -d, )  > o,  da -  \ (A2u-  P ' )  3o-

Let (,\t, ut,ut) be an optimal solution of this penalized problem. Then

a(ut) + o(d,ut) + (t' +Dldo' - ^t(A2ut - pz))

3 a(") + 0(d,u) + (t'+ Dld" - x(A2u - p2)l

for every point (),u,u) feasible for (DBL1).

Let it be an optimal solution of the linear program (P,')

of the dual program of (P,'). Applying (15) with (),u,a) :

observing

d,at - \t (A2u' - p') :0,

we obtain

t'ld,ut - \t (A2ut - p\l s o(dat) - 0(dut) + [(dat - dr')

+Il\t(A2ut - p2) -\'(A2u' - p21) (16)

Using the mean-value theorem for 0 we have

e@ut) - o(dat) : 0' (ro)(dat - du')

(15)

and )t be that
( \ ' ,u t , r . , t )  and
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for some rs efdat,dot]. This and (16) imply

t'fdat - \t (A2ut - p\l < l[ + 0' (rd]@il, - d,rt)

+t l^t(A2ut -p\ - \ ,11.ru, -p211 (17)

Since ot is optimal to Problem (P,') and f : max{0, -0!}, we have

(da' - dut)f l  +d'(re)l < 0. (18)

On the other hand, since )t is optimal for the dual problem of (P,,), we have

tlxt(A2ut - p\ - \tlArut - pr)l < 0. (19)

Thus, the right-hand side of (17) is nonpositive. Using again (1?) we get

t t ldut  -  ^ t (Azut  -  p ' ) l :  o

which, since f/ ) 0, implies

h( \ t ,u t , r ' )  :  do '  -  \ t (A2ut  -  p2)  :0.

Hence (\ ',u',ot) solves Problem (DBL). Since t : t '* t with tt > O arbitrary,
we deduce that t* < max{0, -0'.} that proves the proposition. r

Remark 3. When 9(t) is affine, i.e., 0(t) : {, + {o then 0'(t) : {. In this case
f* : 0 if { > 0 and f* < -€ if 6 < 0.

For each t ) 0 we define the function dr(l) bV setting

dr()) : :  min{tr1(), r) : :  f  (r) + th(^,r) lr e X}. (20)

Clearly
a ( t ) :  m in { /6 ( r ) l )  e  A } .

Moreover if .\t is an optimal solution of this problem and. rt is an optimal solution
of problem (20) with ) : )t, then ()t, rt) is an optimal solution to (DBL1).

The algorithm to be described below is a decomposition branch-and-bound
procedure using the convex envelope functions for bounding and an adaptive
simplicial subdivision on A for branching. First we describe these two operations.

4.1. Bounding by the Convex Envelope F\rnction

It is well known that [6,9] the convex envelope function of a concave function
f (r) on an ?n2-simplex S is an affine function of the form cps(,\) :: (1,^) +{
where I e R^, and ( e R are uniquely determined by the system of linear
equations

( l , u ' )  *  € :  f  ( u " )  ( i  :  0 ,  1 , . . . , m 2 )

with ui (i : 0, ...rn2) being the vertices of ,S. Note that at the vertices of the
simplex the values of a concave function and of its convex envelope function
coincide [6,9].
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We shall use the convex envelope function of the function fl()) for com-
puting lower bo;rnds. Namely, let 5 be an rn2-dimensional simplex vertexed at
ao, ... ,un2 . Let pts()) denote the convex envelope function of S1 on,S. Take

gG) :: minigls())l) e ,S n A).

Then B(,S) < min{f t( . \ ) l )  e SnA}.
S ince)€A,express ing

,€ ,2 0,  f rn: ' ,
i :0

x : f t n '
i :0

we have

subject to

06):  minrPls({)

n2 m2

€ : (€0, . . . , t^,)  > o, t(r  :  1, l&Alon > -a.
i :O  i :O

(LS)

4.2. An Adaptive Simplicial Subdivision

Simplicial subdivisions are widely used in global optimization. For the lower

bounding using the convex envelope function defined above, we shall determine

a simplicial ubdivision as follows.
let ,fs ,S be an optimal solution for the program defining B(S). If )s e

V(,S), then dr(Is) : pts(,\s). In this case the Iower bound f(S) is the exact

bound, and therefore the simplex ,S is not of interest in further consideration.

So we assume ̂s / V(S). Let
m2

1s :  ! €nu t
i:o

with €r > 0, D €t : 1. Since .\s /V(S), the index-set

,I(.\s) :: { i : { i > 0} (2r)

has at least two elements. We then subdivide ^9 into subsimplices S4 (i e

/(,\(S))), where each S1 is obtained from ,9 by replacing the vertex u' of S

by )s. We call .\s the subd'iuis'ion po'int

In comparison with the bisection via the midpoint of a longest edge, this

subdivision has the advangtage that it takes the information obtained from the

bounding operation into account. The disadvantage however is that it in general

does not ensure convergence. This suggests combining these two subdivisions.

In the algorithm to be described below we shall use the following rule.

Rule 1. [20] Suppose that ,S is the simplex to be subdivided at iteration k. Let

ao , ... ,u^2 be the vertices of S, and ,\s e S \ y(S). Let N be a given arbitrary

natural number. Then we subdivide ^9 by the above simplicial subdivision, where

the subdivision point is the midpoint of a longest edge of ,9 if k is a multiple of

l[. Otherwise it is )s.



248

As usual for a given
problem

if

Ngugen Van Quy and, Le Dung Muu

e ) 0 we call a point z* an e- opt'imal solut'ion to the

/ . : m i n { , f ( z ) : z e Z } ,

z*  € Z,  and / (2. )  -  f .  <  e( l / (2. ) l  +  1) .

Now we describe steps of an algorithm for solving problem (DBL) by us-
ing the penalized problem (DBL1). The algorithm to be described below will
determine an exact penalty parameter iteratively as follows:

With a penalty parameter t ) 0 given in advance the algorithm computes
an e-optimal solution to Problem (DBLr). If the obtained solution is feasible for
(DBL), then the algorithm terminates yielding an e-optimal solution to Prob-
lem (DBL). Otherwise, f increases by A > 0, the objective function thereby is
changed. Then the algorithm recomputes lower bounds for the new objective
function on each generated partition simplex, and thereby upper bounds are im-
proved. The penalty parameter is also increases iteratively in such a way (cases
2a and 2b of Step 2) that the obtained upper bounds tend to the optimal value.
Since the exact parameter is assumed, the steps involving updating penalty pa-
rameter (cases lb and 2b) cannot occur infinitely many times. In order to save
computational costs, the algorithm verifies feasibility for each newly generated
simplex ,S by computing 7(,S) (step 4). The algorithm deletes every generated
simplex ^9 if it is infeasible, i.e. 7(^9) > 0.

The algorithm now can be described in detail as follows.

ALGORITHM 1 (no f > t* is known in advance)

Init ialization. Take e ) 0,, > 0, A > 0and anaturalnumber,A/. Con-
struct an rn2- simplex ,So ) A. Let fs ,: {So} and take

| +-, if no feasible point is available,
ot-r : 

| ,Lr1)-t, 
"-t;, 

otherwise,

where (,\-1,2-l) is the best currently known feasible point.

I;et ,k <- 0.

I tdrat ion k (k  :0,  1. . . . ) .
For each ̂ 9 e fr solve the linear program

0(S) :min{g1s() )  :  A e S n A}

to obtain an optimal solution )s.

For each obtained )s solve the linear program

a(,S)  : :  min{ ,L1()s,  r ) :  r  e  X}

to obtain a basic solution rs eV(X).
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Step 0. Update the currently best lower and upper bounds by setting

Bp :: min{B(S)lS € fft}.

o k : : m i n { o r - r , t r t ( l s , n s )  :  S e  f r } .

Let ^  
( ^ o , * r ) € { ( ^ * - t , r o - ' ) , ( 4 " , " " ) :  s e f p }

such that
Lr ( \k , rk )  :  ox .

Step 1. If.
a n - 0 x < e ( l a * l + 1 )

we distinguish two cases
la. If h(\k,rk) ( 0, then terminate: (Ak,"ft) is an e-optimal solution to

(DBL,).
lb. If h()k, nk) > 0, then set f + t * A and go to iteration ,k (with k

unchanged).

Step 2. If
o , * - 0 x > e ( l o ; l + 1 )

select ,96 € fp such that

F(S*) :  B6::  min{B(S)lS e fr} .

Consider two cases:
2a. If

h ( \ k , r k ) 1 a x - g x ,

then go to Step 3.
2b. rf.

h ( \ k , r k ) ) a * - 0 x

then set t <- t I A and go to iteration ,b (with /c unchanged).

Step 3. Subdivide S;" by a tu- radial subdivision according to Rule 1, i.e' we
take the subdivision point ur : ,\ft if ft is not a multiple of N, and v1 : (ui +ui) f 2
otherwise, where ui,ai are the two end points of a longest edge of S.

Step l. For each i e /()k) defined by (21) with )s : ,\ft determine

r(s*t) ' :,, j l i t*,)min{h(u', r)lr e x}.

Let
ro()f t )  : :  { i  € /(}k) l r (S*r)  < o}.
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Step 5. For each i € /o(^fr) compute

B$d :: min{g1sn,(I) |  ̂  € A O Sy.i} : prsnn()ftt).

Set
ot (Snr. ) :  Lr( \k i , rk i )  t :  min{-L1()k i ,  r ) ln  e X}

where, ad before, \ki e Sn,i is an optimal solution of the problem determining

0(Snt).
Define

f6,u1 : :  ( f ;  \  {Sr} )U {Sru :  i  e  Is( )F)}

and update the upper and lower bounds by setting

c t k+ r  i :m in {a r ,  a (S* r ) :  z  e  / 0 ( ^k ) }  ,  gn+ t : :  m in {p (S ) l  S  e  f 6 *1 } .

Let k <- k + 1 and go to Step l.of Iteration k.

Before proving the convergence we have some remarks on the algorithm.

Remark l. When a(u) and b(r') are linear, the function L1(A,r) is bilinear on
A x X. Thus, the algorithm for this case involves only linear programs.

Remark 5. Since hQ,,r) is bilinear, from the definition of 7(S), it is clear that

7(S) > 0 if and only if h(),,r) ) 0 for all (),2) € S x X. This means that

S x X does not contain a feasible point of (DBL).

Theorm 4.1. (i) If the algorithm term'inates at' i terat' ion k, then (\k,rk) is an
e-opt' imal solution lo (DBL).

(1i) The algorithm does not term'inate only when e : 0. In th'is case ar \ a*
and Bp / a* as k -r *oo. Moreouer, any cluster poi,nt of the sequence {(Ao, r*)}
i,s a global optimal solution lo (DBL).

Proof. (i) If the algorithm terminates at some iteration k, then

a x - 0 n < e ( l o ; . 1 + 1 )

and h,(.\k,rk) < 0.Since B6 is a lower bound, o1 is an upper bound and

ap :  f  ( rk)  + th(^k, rk1 :  7  1rk7,

it follows that f (rk) - 0* <.(l/("k)lf 1). Hence (tr*, r*) is an e-optimal solution
to (DBL).

(ii) Suppose now that the algorithm does not terminate. First we show
that case 1b of step 1 cannot occur infinitely many times. Indeed once case lb
occurs, the penalty parameter increases by A. Since A > 0, at some iteration k
the penalty parameter f must exceed f*. Then at Step 1we have h(\k,rk):g,
and therefore case lb cannot happen infinitely many times.

Similarly case 2b cannot also happen infinitely many times. In fact at
case 2b
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h(\k ,rk) )  ax -  0r > o.

Since ar : f @k) +th(.\k,rk), we have

(r -  l )h()k,  rk) < 0n - f@n).

Observing that rft eV(X) we obtain

h(\k, rk) > piX{h(r, r) lr  e v(x),h(\, r) > 0} : d > 0'

Noting that the sequences {0r} and {f("u)} are bounded we see from (22) and

(23) that f cannot go to *oo. Thus case 2b cannot happen infinitely many times.

Consequently if the algorithm floes not terminate, then it generates a nested

sequence of partition simplices. For simplicity of notation we also denote this

sequence by {sr}. Ftom Rule l for subdivision, by Theorem 2120], there exists

a subsequence {Sp1} of the partition simplices {St} satisfying

, tykt :  ^ki Yi, (24)

)k i  - -  ) * ,  d( I* ,  y(srr ) )  - *  0 as j  -  *a,  (25)

where d(.\*,V(Sri)) denotes the Euclidean distance from '\* toV(Spi)' By the

rule for computing lower bounds we have

g*i : gtsn5(,\fri ) Vi . (26)

Noting that, for every vertex t'fti of the simplex ,St' since qtsn,(\) is the ccnvex

envelope filnction of /1(.\) on S1i, we have

6r@kt) :  p tsy luk i )  V i . (27)

Letting J * *oo we obtain from (24),(25), (26), (27) that 0r,' dt().) as i'
*oo. Since gr", is a lower bound for the optimal value of Problem (DBL1) and
I* € A, it follows that .\* is a minimal point of fi()) over A' Thus,

I i ;np*  :  d r ( ) . )  :  m in{ " f ( r )+  'h (^* ,  r ) :  r  e  x } :  f  (x . )  * th ( \ * , r * )

which implies that ()*,r*) is an optimal solution to (DBL1).
On the other hand, from the rule for computing upper bounds we have

a1" , :  f ( rk i )  + th (^k i ,nk t )  1  f ( " . )  + th (^k i , r * ) .

Letting .? ---+ *oo and observing that the sequence {a6} is monotone we obtain
in the limit that

t t f l  oo 3 f (r.) a th(\*, r"). (28)

Since or is an upper bound for the optimal value of (DBL) it follows from (28)
that

t t f  o*  :  f  ( r " ) - f th ( \ * , r * ) .

(22)

(23)
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So
t t f  o* :hyt0x:  f ( r * )  * th( . \ * ,o*) .

As the case 2b cannot happen infinitely many times, without loss of gener-

ality, we may dssume that case 2a occurs for every ,k. Then

h ( \ k , r k )  1 a *  -  0 x  Y  k .

Flomthis and h()ft,rk) > 0 for every,k, letting k * +oo we get h()*,o*) : g.

Since ()*,e*) is a global optimal solution to (DBL1), in view of (i) in Theorem
3.1, we deduce that (.\*,r*) solves (DBL) globally as well.

Now let (), r) be any cluster point of the sequence {(l*, "o)}. 
For simplicity

we assume that

(Ak,rn) -- (),r) as k ---+ *oo.

Since a6 :  l@\+th(^k, rk1Vk and ( , \ f t ,ck;  e A x X,  we obta in in  the l imi t
that

( . \ , r )  e  A x X ,  a n d  t t p o * : e * : f ( " ) + t h ( ) , , r )

which together with a* : f (r*) *th(^* , r*) : f (r.) imply that (), r) is a global

optimal solution to (DBL). I

Remark 6. In the case an exact penalty parameter is known in advance, Al-
gorithm 1 becomes much simpler. Namely, in this case the algorithm can be
described simply as follows.

ALGORITHM 2 (case t > t* is known in advance)

Initialization. Take e ) 0 and a natural number N. Construct an n1,2-
simplex So f A.

Step 0. Compute
€(^90) :: min{rplso()) l) e A}, (LPo)

where glso(,\) is the convex envelope function of ft()) on the simplex ,So. Let

B6 :: B(Ss): prso (trO)

os : :  m in{ ,L1( )o , r ) l r  €  X} :  L r ( \o , ro ) ,

is an optimal solution to Problem (LPo).where )o
Set

n I A, when os - 0o 3 e(losl + 1),
to:  

I  {so} otherwise.

Let k <- 0.

I terat ion k (k :0,  1. . . . . ) .

Step 1.If I.k :0, then terminate: (\*,*o) is an e-optimal solution to (DBL).

Step 2. If I k + 0 choose ,Sr € fr such that
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96i: 0x: rrrtn{0(S)ls € fft}.

Step 3. Subdivide ^9r by a u-radial subdivision according to Rule 1'

Step l. For each i € /(lfr) determine

ilS*) ':,'.?i(t*,)min{h(u', r)lr e x}.

Let 
/o()ft) :: { i € /(}o) | z(s6) S o}.

Step 5. For each i e /o(.\k) comPute

gEno) :: min{cP1sn, (A)l) e A o Srt},

o(,Sru) : Lr(\ki,xki) t: min{'Lt('\k', a)lr e X}'

Update the upper bound bY setting

ek+l  : :  min{o6 lo(Su) i  €  10()k)}

Set

1,"+r  : :  ( f r  \  {Sr} )U {Sr"r  lor+,  -  g$d > e( lot+r l  + 1) ,  i  €  I0(^k)} .

Set /c <- k + 1 and go to Iteration k.

comment. The gtobal search in the above algorithms takes place in the )-

space whose dimension is rn2. So it is expected that the algorithms are efficient

when m2 is relatively small

4.3. Computational Experiences and Results

We illustrate the algorithm by the following simple example:

min{-2u1 + u2 + O.1ar  I  u t  + uz I  2 ,ut ,u,  > 0}

where tr : (aL,u2,u3) solves the program

min{-4o1 I uz + 5q | -2ut* ur - u2 ! -2.5, ut- 3uz I u2- u3 1 2, ur, u2, us ) 0}'

We choose f : 5 and solve this problem by Algorithm 2 with the initial partion

simplex vertexed at (0,0), (11,0), (0' 11). At iteration 4

fa :  { ,Sa : :  conv ( (0,0) ,  (6,5) ,  (0,  11)) } ,

and the best upper bound ota : -3.25 corresponding to the feasible point u* -

(2,0), u* : (1.5,0,0) (this point has been found at iteration 1). The algorithms

divides Sa into two simplices

,Sa , r  :  conv ( (4 ,3 .33 ) ,  ( 6 ,5 ) ,  ( 0 ,11 ) ) ,  Sa ,z :  conv ( (0 ,0 ) ,  ( 4 ,3 ' 33 ) ,  ( 0 '  11 ) ) '
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The lower bounds for these simplices arc P(54;) : 0(S+,2) : -3.25. Since lower
and upper bounds coincide, the algorithm terminates showing that z* : (2,0),
u* - (1.5,0,0) is a global optimal solution.

In order to obtain a preliminary evaluation of the performance of the pro-
posed algorithms, we have written computer code by PASCAL TURBO 7.0 that
implements the algorithms. The code used the ordinary simplex method for
solving the linear programs called for by the algorithm. To test the code we
use it to solve hundreds randomly generated problems on a Pentium II personal
computer. For all tested problems we take e : 10-4. The computed results are
reported in Table 1. In the table we use the following headings:

- n,p: the number of variables u and u respectively
- ntr t Tn2 : the numbers of constraints (without nonnegative one) of the leader

and follower problems respectively,
- ite : the average number of the iterations
- s : the average number of all generated simplices
- re.s: the average number of the simplices stored in the memory,
- t'ime: the average CPU time (in second).

Table 1

The results in the table show that the algorithm could be used for solving
linear bilevel programs with moderate size on a Pentium II. It appears that
the running time is much more sensitive to the growth in the number rn2 of
constraints of the follower problem than to the growth in the number of variables
or constraints of the leader problem. The required memory however increases
slowly as the program runs, since a Iarge percentage of the generated simplices

Prob. rnl TTL2 n p ite s re.s time s

1
2
3
4

10
10
20
20

3
3
3
3

40
OU

40
50

10
10
10
10

18
18
10
13

t9,

27
L I

20

8
n
I

5
I

20.51
27.20
31.02
61.01

5
o
,7
I

8

10
10
20
20

4
4
A

A

40
50
40
bU

10
10
10
10

43
33
22
38

t 6

61
4 l
72

74
7 7
10
14

59.38
57.53
87.56

143.48
q

10
1 1
1 2

1 0
10
20
20

5
o
l)
o

40
bU
40
50

10
10
10
10

68
45
69
O I

117
98

154
I17

bb

35
58
24

107.80
89.04

24t.96
376.60

13
t4
1 5
16

10
10
,n
20

6
6
6
6

40
50
4U
50

10
10
10
10

46
49
62
63

79
124
LL4
1 1 6

23
56
22
65

106.01
129.80
262.85
279.87

t 7
18
19

10
20
10

F7

.7
I

t

40
40
50

10
10
10

66
60
82

208
178
2II

145
80

150

155.29
389.55
226.99
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is eliminated from further consideration. A main property of this algorithm is

that a feasible point found at some iteration is recognized as a global optimal

solution very late.
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