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Abstract. For a given weight u(.) another weight v(.) = (Ru)(.) is found such that
the fractional integral operator I, 0 < a <, is bounded from the weighted Lebesgue
space LP(R™, v(x)dzx) into LP(R™, u(z)dx) whenever 1 <p < n/a.

1. Introduction

An inequality due to Adams [1] states that for 1 <p < nfaand 1 <7 < nfop
there is a constant C > 0 such that

(Lf)P()g(z)ds < C / £2(0) (Maprg™)' (4)dy. (1.1)
R™ R™

for all locally integrable functions f(.), g(.) > 0. As usual n is a nonnegative
integer. Recall that the fractional operator I, 0 < a < m, is defined by

L@ = [ o=y W)

And M., 0 < v < n, denotes the fractional maximal function

(o)) =swl{o™ [ lowlav},
t>0 B(z,t)

where B(z,t) = {z € R"; |z — 2| <t}.
Inequality (1.1) is a sort of control of the LP-norm of (I, f)(.) and can be
viewed as a two-weight inequality for the operator I,. Its introduction is mo-
tivated by studies of Schrédinger operators and weighted Sobolev inequalities
13]. :
Pérez [3] improved (1.1) by showing that
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/R (LafP(@)w(z)ds < C /]R ) FP(y) (Mop MPlw) (y)dy, for all f(.)>0. (1.2)

Here [p] is the integer part of p and M* = M o---0 M denotes the k-th iteration
of the Hardy-Littlewood maximal operator M = Mj,. The relevance in this
Pérez’s result appears through the double inequality

(Mapw)() < (MapMPw)() < e1(Maprw™)V/7 ()

where ¢; > 0 is a fixed constant which does not depend on the weight w(.). It is
found in 4] that (Ma, MPlw)(.) in (1.2) can be replaced by (Ma,w)(.) whenever
w(.) satisfies some reverse doubling condition and certain growth assumption on
annuli.
Now according to the author’s viewpoint, inequalities as (1.1) and (1.2) are
not satisfactory if they are considered as weighted inequalities for I,,. Indeed
if w(.) =1 then (Mypw)(.) = oo, ) (1.3)

however it is well-known (see for instance [5]) that
| tapp@is<c [ p@bea, a0 (4
R™ R"

Facts described in (1.3) and (1.4) lead to the question of finding another operator
R for which

| @irenEds<c [ po®Ro@dy, ol f0z0, 09

for some constant C' > 0 which does not depend neither on f(.) nor on w(.) and
such that (Rw)(y) < oo at least for all power weights w(y) = |y|®. Consequently,
as (two) weighted inequality for I, inequality (1.5) is more acceptable than (1.1)
or (1.2). To answer the above question is our main purpose of the present paper.

It should be emphasized that our intention is not to improve (1.2). We just
aim to bring a good substitute of (1.1) and (1.2) from the two-weight inequality
viewpoint, in the sense that for many weights w(.) we have (Rw)(.) < co though
(Mapw)(.) = co. For instance as a replacement of (1.2) or (1.1), we will see in
Corollary 2.3 that

/ (L) @)(a)dz < C / )P (yl)dy, for all £() 0
R™ R™

whenever 1(.) satisfies some suitable growth assumptions.
The question of finding another operator £ such that

/Rn (Inf)P(z)(Lw)(z)dz < C/Rn fP(y)w(y)dy, forall f(.)>0 (1.6)

will be also considered in this paper. It can be noted that some sufficient (or
necessary) conditions for the two-weight inequality
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/R (LafPEu@ds<C [ Paped, frall )20 ()

were found by many authors (see references given in [5]).

The gain with (1.5) and (1.6) is that, if one weight is given then the other
one for which (1.7) holds can be immediately determined without applying any
boundedness criterion. Therefore inequalities (1.5) and (1.6) lead to a little step
in the knowledge of the (deep problem) two-weight inequality (1.7) for I,.

2. Results

Throughout this paper it is assumed that
O<a<n, 1<p<oo, p'——-L.
p—1

The restricted fractional maximal function M7 associated with M,, 0 <y <
n, is defined by

(@ = s {7 [ lowliv}

This expression is smaller than (Myg)(r) and for u(.) = 1 then (M.,u)(a:) ~
|z|” < oo though (Mu)(.) = co. Note that (]’\Zyu)() can be easily estimated
for many usual weights. It is for instance the case of those u(.) satisfying the
growth assumption

sup u(y) < Cl|z|_"/ u(z)dz, (H)

4~ z|<]y|<4|=] lyI<Cala|

or merely u(.) € H. Here the constants Cq, C2 > 0 do not depend on z # 0.
Indeed for all 7 with 1 <7 < n/y

if u(.) € H then (Mwu")%(x) < Cg|z|“’_"/ u(z)dz (2.0)
ly]<Caz|

for some constant C3 > 0 independent of z. The growth assumption (H) is
largely used in [4] and [5] and includes all radial and monotone weights.
Our main result of this paper reads as follows.

Theorem 2.1. Letp < 2 and 1 <7 < '077,- There exists a constant C > 0 such
that for each weight u(.) satisfying

/ u(x)dx :/ |z|(@~™Py(z)dz = 0o (2.1)
we have

| tatr@ueiz <o [ PuRu@E. fradif)z0  @2)

where the operator R is defined by
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= 1/7
(Ru)(z) = max {(MapTuT)l/T(m) + (|$|(°‘p'r_")/ u"(z)dz) g
47 z|<| 2| <4lx]

(/|“:|<|z' |Z|(a_")pu(z)dz) (|m|("—")1’u(z)) :
(le(a_n) /|z|<|z| U(Z)dz> ul_p(i)}. (2.3)

As will be seen in the proof of this result, the operator R must be modified
if the assumption (2.1) is not satisfied. The details are not given for shortness
reason and also since (2.1) holds for usual and significant cases.

If u(.) € H then, by applying (2.0), the first term in the definition of R can
be easily estimated and consequently we get the following,. :

Corollary 2.2. Letp and u(.) be as in Theorem 2.1. If moreover u(.) € H, then
for some constant C (which depends on the constant C involved in property H)

[ preueis < [ papw, for dl £)20

where

vi) = (i A—1|y|<|z|<4|y| %)
1-p
(f e meue) (e o)

ol s o

The inconvenience related to (1.1) and (1.2) as described in (1.3) for power
weights and u(.) = 1, vanishes with inequality (2.2) since easy computations
lead to (Ru)(y) = |y|*? < oco.

To give another illustration of the efficiency of Theorem 2.1 in explicit com-
putations, let us introduce the growth condition ¢(.) € A,, ¢ > 0, by which we
mean that ¢(.) is a nonnegative and increasing function on |0, oo[ such that for
some constant ¢ > 0

w(As) < cX(s), foralls>0and A> 1.
For instance if ¢(s) = s%In®(e+s), with a, b > 0, then ¢(.) € A, where o = a-+b.

Corollary 2.3. Let p < n/a. Assume that () € A, such that 0 < 0 <
p'(n/p—a). Then

[ apr@sias < € / PO (y)dy, for all () >0 (2.4)
R~ R

where ¥(|z|) = |z|~*Pp!~P(|z|), and C > 0 depends on o, n, p and the constants
in assumption A, .
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An answer to the question raised about (1.6) is as follows.

Theorem 2.4. Let p’ < n/a and 1 < 7 < n/op’. Then there exists a constant
C > 0 exists such that for each weight v(.) satisfying

/ VT )y = /R eV )y = oo, witha < (25)
we have
/R (Laf)?(z)(£v)(z)de < C /R _fPW)dy, for all f() 20, (2.6)

where the operator L is defined by
(Lo)(z) =
- {(MaplTv(l—p')T)l/T(w) 4 (‘x|(ap'r—n)A
o

(/l$|<IZI Z'(u B )dz)p’(|$|(°“")pvl—zr'(x))1— :

’

(lx |(@=n) /Iz|<‘zlv1‘p’(z)dz)p (vl_pl(x))l_pl}l_p- (2.7)

, 1/T
(1P )"(z)dz) / ;

i<zl <4lx]

3. Proofs of Results

To derive our main result we will need the following analogues of (1.5) and

(1.6) for the n-dimensional Hardy operators (H Ny = / fly)dy and
lyl<|=|

(" )(x) = /I T

Proposition 3.1. There is a constant C > 0 such that for all weights w(.) with
/ w(z)dz = co we have '

/ n[ /lyklzlg(y)dy]pw(m)dx <C /R : g”(y)( /lyklzlw(z)dz)pwl-z’(y)dy (3.1)

for all g(.) >0

And for all weights w(.) with w'™? (2)dz = 0o we have
Rn

/ n [/|y|<|w| g(y)dy]p (/|z|<|a,-| i (z)dz) 0 (@)de

<c | Puwy)dy (3.2)

Rn
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for all g(.) > 0. Again the constant C in (3.2) is independent of the weight w(.)
and the function g(.).

Similarly for all weights w(.) with / w(z)dz = oo we have

n

/R" [/|z|<|y| h(y)dy] P SG s ) </|zl<|y| w(z)dz)pwl_”(y)dy (3-3)

for all h(.) > 0.
Finally for all weights w(.) with / w? (2)dz = 0o we have

n

/IR" [/|w|<|y| h(y)dy]p(/lzkm w1~pl(z)dz) Hige s /mn AU

for all R(.) > 0. (34)

This result is based on the following two lemmas.

Lemma 3.2. Suppose that for some A >0

1

[ / w(z)ds] » ( /M(R P (y)dy)” <A, for all R>0. (3.5)

Then for some constant ¢ > 0 depending only onn and p

/" [/kalzlg(y)dy]%(x)dz < (cA)P/ P@)dy, for all o) >0. (3.6)

R™

Lemma 3.3. Let ¢(.) and 1(.) be nonnegative and measurable functions defined
on |0,00[. Then for all R >0

/R [/oo <P(T)dr] _plgo(t)dt R~ (/00 go(t)dt) l_p’, whenever /oo @(t)dt = oo
do t "’ ’ (3.7)
/R°° [/Ot1f)(7’)dr] _pd)(t)dt ~ (/()R 1,[1(t)dt)1_p, whenever /000 Y(t)dt = oco.

- (3.8)

Here and in the sequel a notation like a(R) ~ b(R) means that for some fixed
constants ¢, ¢ > 0: c1a(R) < b(R) < caa(R) for all R > 0.

Actually (3.5) is a necessary condition for inequality (3.6) to hold. And a
proof of Lemma 3.2 can be found in [2]. Elementary computations yield identities
(3.7) and (3.8).

We first prove Proposition 3.1 and Theorem 2.4. Next the proofs of Theorem
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2.1 and Corollary 2.3 will be performed.

Proof of Proposition 3.1.
We first begin with the proof of inequality (3.1) which is the same as (3.6)

with the weights u(z) = w(z) and v(y) = ( / w(z)dz) Cut (y). By Lemma

lyl<|z|
3.2, the task remains to check the test condition (3.5). It is suitable to make use

of polar coordinates as follows

/|y|<R pl—pl wa= /|y|<R[/|y|<lzl w(z)dz] _p’w(y)dy

3 /0 » [ /t ™ w(z)de] 7 byt

(here @(t) =t} / w(to)do and do is
Sn—l

the area measure on the unit sphere S,_1)

~ /0 * [ /t ” @(r)dr) 7 byt
ks (/: a(t)dt)l—p’

(by (3.7) and since /000 w(t)dt = /n w(y)dy

([ ) = (], 040

It means that condition (3.5) appears with the constant A =~ 1 (depending only

on n and p) and consequently, by Lemma 3.2, the inequality (3.1) is satisfied

with a constant C which depends only on n and p but not on the weight w(.).
Next let us prove inequality (3.2) which is the same as (3.6) with the weights

u(z) = (/|| ' |w1‘pl (z)dz) —pwl_p'(x) and v(y) = w(y). By Lemma 3.2, the
z|<|z ;

00)

task remains to check the test condition (3.5). Again by making use of polar
coordinates then

/R<Iz| Fo= /R<Izl [/|z|<|zl e (z)dz] St @)
~ /R g [ /0 : i (r)dr] P E(t)dt

(here @y (t) = t"* / w' P (to)do)

Sn-1
~ /O " ﬁl(t)dt)l_p

(by (3.8) and since F wy(t)dt =~ /n w'? (y)dy = o)
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- (/Iy|<R wl_pl(y)dy)l—p K (/|y|<R vl_p’(y)dy)l_p.

Therefore (3.5) appears with the constant A ~ 1 (depending only on n and D)
and consequently inequality (3.2) is satisfied with a constant C independent of
the weight w and the function g(.).

Now to derive inequality (3.3) we will use the result (3.2).

Since / (wl_p’)l_p(z)dz = / w(z)dz = oo, and applying (3.2) (with the
R» R=n
index p’ and the weight w!~?'(.)) then

/n [/|y|<|z| g(y)dy] i [(/Iz|<|z1 “’(Z)dz)pwl_”(z)] 1—pldx
=/ [/m(lzlg(y)dy]p’ (/lz'dzlw(l—p)(l—P’)(Z)dz)_P'w(l—p)(l—p’)($)dx

< C’/ y)dy.

By duality and since g(.) is an arbitrary nonnegative, then from this last in-
equality it follows that

/IR". [/Iw|;|y| h(y)dy] pw(m)dx 2 -C/ W) (/|z|<|y| w(z)dz)pwl_” (y)dy

for all A(.) > 0. This is just the inequality (3.3).

Finally to get inequality (3.4) we will proceed as above. Since / wi? (2)dz =

n

oo, by applying (3.1) (with the index p’ and the weight wl‘p'(.)) then

/" l:/ly|<|m| g(y)dy] p’wl_p’ (x)dz

! : 7 pl 7 7
<C 2 g° (y)(/ll ‘ |wl—p (z)dz) w(l—p)(l—p)(y)dy

0 fo (] o] T

This last inequality combined with a duality argument leads to

/Rn [/|z|<|yl h(y)dy]p(/lz|<|z| Wi ()dz) "W (e < € /R AP (y)w(y)dy

for all h(.) > 0. This is just inequality (3.4).
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Proof of Theorem 2.4.
Since [n v1 7P (y)dy = [gn |y|(@=™2'y1=P'(y)dy = oo then Theorem 2.1 can

be applied to derive

1-p

(Lh)? (@' @)z < C | 17 () [(RV) ()] dy
R™ R™

for all A(.) > 0 with
(Rv'~)(x) =

mas{ (Mo 002770 (2) + (Jol( 7 [

v(l_”’)T(z)dz) %;
4-1z|<| 2| <4|x|

(

(

_p,

! 7 i 7 ’ 1
[t i a)aa)” (jal 7wt (@)
lz|<|z|
ol [ ot @) 07 @)
jz|<|z]

By duality argument and since Iaf)(z)g(z)dx = / f(z)(Iog)(z)dz, then
]R'n ]Rn

the above inequality is equivalent to
[ taiyr@@@ds<c [ Pap@i, o f() 20
R™ R™
0 1-
where (Lv)(.) = [(va‘p )()] ’. And this is just the expected inequality (2.6).

Proof of Theorem 2.2. To derive the inequality (2.2) consider a function f(.) > 0
Then for some constant ¢ > 0 (which depends only on p)

/R (LafP(@)u(e)ds < o(81+8+83),

where

Z | Uafl, P (@)u(z)de

S = Z /E (Lo Mo P (@)
$=% / (Lo f TR, P (@)u(z)ds
Ep = {z;2* < |1:| < 2k+1} My, = {z; 2871 < |z| < 2k+2)
L = {z;|z| < 2¥7'}, Rk = {z;2""? < |z|}.

Estimate of S;
Since the function (f1Iz, )(.) has its support contained in the ball B(0, 2¥~1) =
{y; |yl < 2¥~1} then for each z € Ej
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(farl)@ = [ o=yl "Wy

yELy

<[ le-seiwd
lyl<3|z|
a—n ¥ 1 3
< ¢z F(y)dy since —|z| < |z —y| < =|z|.
lyl<la| 2 2

" Using this last inequality and (3.1) in Proposition 3.1 then

si<e [ [[ sl e e
<es /]R" 2(y) [/|y|<|z| |z|(a-")Pu(z)dz]p(|y|(“—")1’u(y)) 1_pdy. 5

Estimate of S;

As above, for each = € FEy: x does not belong to the support of the function
(fIg,)(.)- Then

(I flIr,)(z) < / & — y|*" f(y)dy

2|z|<|y|

_ ] 1
e[ f@hledy since Zlol <o~ ol <2l
=] <]yl

Consequently this last inequality combined with (3.3) in Proposition 3.1 leads
to

)
si<es [ [ fiema) ue)s
R~ =/ {2|z|<|y[}
p
<a[ F@r [ w@e]vrew. @)
R" lz|<ly] .
It should be noted that the constants c3 and cg do not depend on the weight

Estimate of S,
Observe that for y € My,

(Map‘ruT g, )% (y) <

¢ [(Mapfu*)%(y) + (Jylterm= A_1|y|<,z,<4|y| uT(z)dz);]' (3.11)

Of course, the constant c¢; > 0 depends just on n. Indeed if y € My (e.g.
2k—1 < |y| < 2%+2) and ¢ > 27 !|y| then

t(“‘”"_")/ u”(2)dz 3082(""”_")"/ u(z)dz
B(y,t)NE) Ey

< coly| @) / u" (2)d.
4~ y|<|z|<4|y]
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Now the estimate of Sy can be performed by using (3.11) and the D. Adams
inequality (1.1) as follows

=3 /E o, P @u(a)de

< C10 Z fp(y ( ap‘ru ]IEk) :(y)dy by (11)
<cn Ek: T P (y)

| (ograry )+ (tl ™ [

47yl <|z|<4ly|

u"'(z)dz)%]dy by (3.11)
=eu [ 1)
Rn
[(Mapq—uf)%(y) e (|y|(ap7-—_n)/

4~ Hy| <[ z]<4ly]

uT(z)dz) %] dy. (3.12)

Therefore (3.9), (3.10) and (3.12) lead to the expected inequality (2.2).

Proof of Corollary 2.3

To get the inequality (2.4) we can apply Corollary 2.2 with the weights
u() = () = |.I7*Pe'P(|.}) and v(.) = |-|*P(|-)* P (|.]). Indeed

/ 2| ~Pu(z)de > / 2|~ (o))

|z|<1

R(@) |z~ dz = oo,
|z|<1

RO / L G

> cop (1) [ fal ler*trelaz — o,

1<]z|

and

because ¢(.) € A, with n — [ap + (p — 1)g] > 0. Therefore the task remains to
prove that u(.) € H and a constant ¢ > 0 exists such that

(e [, ) U Sep ) = evts), (313

</|y|<|z| |z|(a—")Pu(z)dz)p(lyl(a—n)pu(y))l—P — Uy(y) < ccpl_”(lyl) B Tk

(3.14)
and

('y'(“_")/l U)W = U < P = o). (19)
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The assumption u(.)} € H is satisfied since from ¢(.) € A, then

sup  u(y) ~ (2lz) TP P(2]z})
471zl <y|<4le]

-

~ [z / (2le]) PP (2]z])d
2- 1z <| 2| <2|z|

< |:c|—"/ u(z)dz.
|z|<2|z|

Inequalities (3.13) and (3.14) follow from ¢(.) € A, since
Ui(y) < eulyl® x [y|=*Po" 2 (lyl) = erp' 2 (ly])

and
1-p

Vo) < e (2sl) [ Je17az)” (1P 2 )

lyl<|z|

< e (P2 ()" (7 7))
= e 2 (ly).

Finally inequality (3.15) appears after using ¢(.) € A, with the restriction
n — [ap + o(p — 1)] > 0 since

P
0w = (o [ e ds) (#12)
z|<|y '
(ap-n)+a(p—1) ,1-p ~lepto-11 g, ) (AP (1)) "
<1yl e | ARCE)
) =

z|<|yl
< ca( (D) (¢ (D) = cs* ().

1—p
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