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Abstract. For a given weight u(') another weight o(') : (R")(') is found such that

the fractional integral operator 1o, 0 ( d I fr,is bounded from the weighted Lebesgue

space .Lp(lR' ,r1i1a*7 into trP(lR', u(r)d'r) whenever I < p < nf a'

1. Introduction

An inequality due to Adams [1] states that for 1 ( p ( nfa and | < r < nfap

there is a constant C > 0 such that

lo^tr. f )' t*) s (r) d'r = 
" I *^ f 

P (a) (M.o,s" )' / " (a) d'v' ( 1 . 1 )

for all locally integrable functions /('), s(') 2 0' As usual n is a nonrregative

integer. Recatt that the fractional operator /o, 0 ( d I f is defined by

f(I"f)("): 
Jo^l* 

- al"-^l(a)da'

And M1,0 < 7 ( n, denotes the fractional maximal function

(M,il@): :${t"-" I "oilg@)laa\,
where B(r, t) : {z € IR'; lr - zl < t}'

Inequality (f't) is a sort of control of the 'Lp-norm of (/"/)(') and can be

viewed as a two-weight inequality for the operator ro. Its introduction is mo-

ti*tea by studies of s"h.adirrger operators and weighted sobolev inequalities

l3l .
P6rez [3] improved (1-1) by showing that
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fo(il(M":oMlolr)(y)dy, for all /(.) > 0. (1.2)

Here [p] is the integer part of p and Mk - M o..' o M denotes the,k-th iteration
of the Hardy-Littlewood maximal operator M : Mo. The relevance in this
P6rez's result appears through the double inequality

(M.pw)(.)  3 (M.oMbl.)( .)  < q(Mo*w")r/"  ( . )

where c1 ) 0 is a fixed constant which does not depend on the weight ti,'(.). It is
found in [ ] that (M.oMlolul(.) in (1,2) can be replaced by (M.rw)(.) whenever
tu(.) satisfies some reverse doubling condition and certain growth assumption on
annuli.

Now according to the author's viewpoint, inequalities as (1.1) and (1.2) are
not satisfactory if they are considered as weighted inequalities for .Io. Indeed

i f  to( . )  :  1  then (M-ow)( . )  :  x ,  (1.3)

however it is well-known (see for instance [S]) that

I  g.ralw@)d'sc I
J]RN JIR4

( r .4)

Facts described in (1.3) and (1.4) lead to the question offinding another operator
R for which

fe(y)(Rw)(y)dy, for all /(.) > 0, (1.5)

for some constant C > 0 which does not depend neither on /(.) nor on,u,,(.) and
such that (R*)(y) ( oo at least for all power weights w(a) : lylB. Consequently,
as (two) weighted inequality for Io, inequality (1.5) is more acceptable than (1.1)
or (1.2). To answer the above question is our main purpose ofthe present paper.

It should be emphasized that our intention is not to improve (1.2). We just
aim to bring a good substitute of (1.1) and (1.2) from the two-weight inequality
viewpoint, in the sense that for many weights ur(.) we have (Ru.')(.) < oo though
(M.ow)(.): oo. For instance as a replacement of (1.2) or (1.1), we wil l see in
Corollary 2.3 that

fo(a)lal",rh(lyl)da, for all /(.) > 0

whenever T/(.) satisfies some suitable growth assumptions.
The question of finding another operator ,C such that

I I

|  ( I" f )o(r)(Lw)(r)dr <C I  f r@).(y)dy, for al l  / ( . )  > 0 (1.6)
JR. JR"

will be also considered in this paper. It can be noted that some sufficient (or
necessary) conditions for the two-weight inequality

r I fr@)lal.ody, for ail /(.) > 0,
Jo^Q.f)o{')0" 3 c 

Ju^

l*^u;ra)w@)d'x = " l*^

fo-rr. rY {dtlt(lrl)dr = 
" I*^
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f l
|  ( I" f )o(r)u(r)dx <C I  fo(y)o(a)da, for al l  / ( . )  > 0 (1.7)

JR. "/R.

were found by many authors (see references given in [5]).
The gain with (1.5) and (1.6) is that, if one weight is given then the other

one for which (1.7) holds can be immediately determined without applying any
boundedness criterion. Therefore inequalities (1.5) and (1.6) lead to a little step
in the knowledge of the (deep problem) two-weight inequality (1.7) for I,.

2. Results

Throughout this paper it is assumed that

0 < a < n ,  1 ( P ( o o ,  P t : - ! - .p - l

The restricted fractional maximal function @ associated with M1,0 <.y <
n, is defi.ned by

(M.,s)(r): sup {n-" I b@)laa\.
O < t < Z _ l l r l  t  J B ( t , t )  )

This expression is smaller than (M.,g)(r) and for u(.) : 1 then (frru)(r) =

l"l" < m though (M"")(.) : oo. Note that (M"u)(.) can be easily estimated
for many usual weights. It is for instance the case of those u(.) satisfying the
growth assumption

sup u(a) S Crl* l -^ [  uQ)d,2, (71)
4-Llal<lsl<alrl J 1s1<Czlrl

or merely u(.) € Tt. Here the constants C1, C2 ) 0 do not depend on r I 0.
Indeed for all r with t < r < nl1

i f  u(.) e ' t l  then (Mr"u")i(*) Sczlr lr-" I  ue)d,z (2.0)
J  l a l<c2 l r l

for some constant C3 > 0 independent of z. The growth assumption (?l) is
largely used in [ ] and [5] and includes all radial and monotone weights.

Our main result of this paper reads as follows.

T h e o r e m  2 . 1 .  L e t p < f t  a n d l < r  1 f i .  T h e r e  e t i s t s  a c o n s t a n t C > 0  s u c h
that for each we'ight u(.) satisfyi.ng

[  "@a":  [  @(o-- )nu1*)d, r :  x
J R N  J ] R N

we haue

(2 .1 )

lo1t.f)o{r)u(r)dn t 
" I*^fe(v)(Ru)(s)d,v, for aul(.) > 0

where the operatorR is defined by

(2 .2 )
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(  -  /  ,  I '  r 1 / ' "
(Ru)(r): max l,Qut.o,r")'/" (r) * (l"l('o"-'l I u" (z)d") 

' 
,

t  \  J  a_r l r l< lz l<a l r l

U ̂  o ol 
zl@ - n) n u 1 "1 a ") '  ( l ' l ("  - ' '  o u @)) '  

-  

"
h*1r'-6 I ue)d,"\Put-"(")). e.s)\ "  J p 1 < 1 , 1  /  " )

As will be seen in the proof of this result, the operator R must be modified
if the assumption (2.1) is not satisfied. The details are not given for shortness
reason and also since (2.1) holds for usual and significant cases.

If u (.) e H Lhen, by applying (2.0), the first term in the definition of R can
be easily estimated and consequently we get the following.

Corollary 2.2. Letp andu(.) be as in Theorem 2.1. If moreoueru(.) €'11, then

for some constant C (which depends on the constant Cf inuolued in property'11)

f f
I  Q.f)o(")u(r)dr <C I fo(a)u(a)da, for alt f  (.) > 0

"/n. JR.

uhere

u(y): (lr(-o-", I uQ)dz)
\  J4 - l lal<l" l<alul /

t  f  \ D /  r l - o
+ 

Urr.r,r 
lzl\o--)nu1")az)' l lul\"-^t"(a))

+ ( lulr ' -"r  l ,o.r,u@)a')P 
ul-o101'

The inconvenience related to (1.1) and (1.2) as described in (1.3) for power
weights and u(.) : 1, vanishes with inequality (2.2) since easy computations
lead to (R")(a) = lEloP < m.

To give another illustration of the efficiency of Theorem 2.1 in explicit com-
putations, let us introduce the growth condition p(.) e A", d ) 0, by which we
mean that p(.) is a nonnegative and increasing function on ]0, m[ such that for
somecons tan tc>0

p ( ) s )  <  c \ " 9 @ ) ,  f o r a l l s > 0 a n d ) > 1 .

For instance if cp(s) : s" lnb(e+s), with a, b ) 0, then p(.) € Ao where o : a*b.

Corollary 2.3. Let p < nf a. Assume that 9O e Ao such that 0 I o I
p'(nlp - a). Then

f f
I g"f)P(r)tlt(lrl)dr <C I fo(y)lal'ot(lyl)da, for alt /(.) > 0 (2.4)

JR. JR.

where tlt(lrl) : lrl-ae ,t-o (l*l) , and C > 0 depends on e,, n, p and the constants
in assumpt'ion Lo.
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An answer to the question raised about (1.6) is as follows'

Theorem 2.4. Let p' < nlo and I < r < nf ap'. Then there ex'ists a constant
C > O etists such that for each weight u(.) satisfyi'ng

t  '  
:  [  1 r (a -n)n ' r r - r ' (a )d ,y : * ,  w i tha<\  (2 .s )

Jo^"-o 
(r)a, 

"/n. 
,-' p

we haue

f f

Ju^{t . f )o{")(Lu)(r)dr 
=" | /n^ ' f ' (v)r(a)dv, for au f  ( . )20, (2.6)

where the operator L is d'efined' by

(Lu)(r) :
( -

*u*{{IZ.o, ,u'-n'),1r/ '1r; + (l"l("o',-.) fo_,r,r<rzr<4rrrr{t-r ') '1"yd")t/",

( t , l z l @ - n ) o ' r r - n ' p ) d , z ) e  ( l * l ( ' - * t o r ' - o '  @ ) ) ' - o ,
\ . /  1c ;< ;z ;

hr1<'-^1 1 u.-p' (")d,r\p (ur-p' (d)r-o')t-o. (2.7)
\ ' - - '  J p 1 < 1 r 1 -  

\ /  /  \  \ "  
)

3. Proofs of Results

To derive our main result we will need the following analogues of (1.5) and

(1.6) for the n-dimensional Hardy operators @f)(r) : 
J,or.r,rf 

(y)dy and'

(H.f)(d: I  f@)dv.
J  l c l < l s l

Proposition 3.1. There is a constant c > o such that for all weights w(.) with
f

Jn^-Q)o': 
q we haue

f  r  f  1 p  f  - . . t  f  \ P  1

J o-U,o,.o,s @ aa l' w (r) dr s 
" J o^ no (r) 

U,o,., "t ' 
( ') d' ) w' - p (v) dv (3' 1 )

for ail e(.) > 0.

Antt for all weights w(.) with [ .t-o'1"1d,2: q we haue
JIR4

t  I  t ,n@)arf ' ( t  6-n 'P)dz)-" ' -o ' (*)d '*
Jn.  LJ ly l< l r l  I  \ " / l z l< lc l

< 
" J*^gP(v)w(v)dv 

(3.2)
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(3 4)

for all g(.) > 0. Again the constant C in (3.2) is 'independent of the wei,ght u)(.)
and the functi,on gO.

Si,milarly for all weights u(.) wi.th 
lo_.Q)a, 

: q we haue

l*^l I o, o"h 
(y) d,y)e w @) d,r < c 

A- 
n' ro, U, o o^w 

(,) d, z)e .t - e (y) d,y (z.s)

for all h(.) > 0.

Finally for all wei,ghts w(.) with 
[o^.'-o'(z)d,z 

: oo we haue

A^l I ̂  o^n@) 
avf' U r,., o.t 

- n' e) d z) o,t - o' (r) dr < c lo^ no 1y1. 1y7 ay

for alt h(.) > 0.

This result is based on the following two lemmas.

Lemma 3.2. Suppose that for some A > 0

r  f  - L ,  r  \  1

I  I  "@)a" l i  
(  l  r ' - r '@)dy \ '  .  A ,  fo r  auR>0.

t J  R< l t l  ,  . J lc l<R /

Then for some constant c > 0 d,epend,i,ng only on n and p

f  r  f  1 p  I
I | | sfu)dyl u(x)dr < ("A)' I so(a)r@)da, for att e(.) > 0.

JR.  L" / l s l< lc l  r  JR.

(3.5)

(3.6)

Lemma 3.3. Let 9O and rh(.) b" nonnegatiue and measurable functions defined
on ]0, oo[. Then for all R > 0

1," U,* ,tila,l 
e 

eft)at " U: e|)dt)L-e , wheneuer fo* ,lr)or: *
(3.7)

and

f * r  l t  1 - P  r  l R  r l - p  f @

I  l l  $ ( r )d r l ' t ! ( t ) a t x ( l  { , ( t ) d t )  
' ,  

r heneuer  I  t l , t ( t ) d l : a .
JR  LJO r  \ J0  t  JO

(3.8)

Here and in the sequel a notation like o(R) = b(R) means that for some fixed
constants c1, c2 ) 0: c1o(iR) < b(R) < c2a(R) for all fi > 0.

Actually (3.5) is a necessary condition for inequality (3.6) to hold. And a
proof of Lemma3.2 can be found in [2]. Elementary computations yield identities
(3.7)  and (3.8) .

We frrst prove Proposition 3.1 and Theorem 2.4. Next the proofs of Theorem
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2.1 and Corollary 2.3 will be performed.

Proof of Propos'ition 3.1.

we first begin with the proof of inequality (3.1) which is the same as (3.6)

with the weights u(r) :tr(r) and a(y) : 
Ur,.rOrQ)d'")'.1-o(v). 

Bv Lemma

3.2, the task remains to check the test condition (3.5). It is suitable to make use

of polar coordinates as follows

t , ' - o ' @ a y :  [ . ,  l  t , w e ) a z f  
o , @ ) d a

J tu l<n  J l y l<n ' J l y l< l , l
t R  .  f  t ' p '

x l l l  w ( z ) d z l ' f r ( t ) d t
J  o  L J  t < l z l  r

(here P(t) : t-t I wQo)do and do is
J  S ^ - t

the area measure on the unit sphere ,Sr-1)

f R r  f Q  1 - p '
= l l l  6 ( r ) d r l ' f r ( t ) d t

Jo LJt  r

t  le  r  1-p '
= ( I fr(t)dt)

\ J R  '

(by (8.?) and since [* ,1t1ot = [ w@)dy : 6)
J O JR,.

* ( [ w@)d,r)'-P' : ( t u61a,)L-o .
\./R<lcl '  'J R<lrl

It means that condition (3.5) appears with the constant ,4 = 1 (depending only

on n and p) and consequently, by Lemma 3.2, the inequality (3.1) is satisfied

with a constant c which depends only on n and p but not on the weight u,r(.).

Next let us prove inequality (3.2) which is the same as (3.6) with the weights

u(n)  :  (  t  , * ' -o ' (4dz)-pwL-p ' ( r )  
and o(s)  .@).  By Lemma 3.2,  the

\ " / 121<1z l  /

task remains to check the test condition (3.5). A in by making use of polar

coordinates then

[ _ ,  . u ( x ) d , r  :  [ ^ ,  l  t , w L - P  Q ) a " f - o , t - n '  ( r ) d ' r
J  n < 1 r 1  J  R < l r l L J l z l < l r l

= f | [' a,g1a,]-o a,(r)a,
JR  LJo  )

(here fi1(t) : t't [ $-d (to)d'o)
J  S ^ - r

= 
U: 

nLQ)dt)L 
e

(bv (s.s) and since 
l* 

,rp1ot - 
fn^-t-'' 

(y)da : *)
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- 
U r,. o'' 

- o' (v) dv)' 
-' 

: 
U,o,. o" 

- o' 101 ar)' 
-' 

.

Therefore (3.5) appears with the constant A x r (depending onry on n and, p)
and consequently inequality (3.2) is satisfied with a constant C independent of
the weight u.r and the function 9(.).

Now to derive inequality (3.3) we will use the result (3.2).

s ince [  fu ' -o ' \ , - r t  
I

./n*. 

'.2)dz : 
Ju_w(z)dz 

: oo, and applying (3.2) (with the

index p/ and the weight u|-P'(.)) then

|  |  f  1 q ' l r  f  \ p  ,  1 L - P '

J*-LJr,.r,s(a)dvl L(1,,.,,, 
w(z)dz)' '-o(')] dr

f  I  t  ,  1 P ' r  f  , .  r - D /:  
J,-LJ*,. t , ,s@)au1 U,o.o, 'Q-i lG-n') 1z)az) ' ' {r-dt-n')  (r)d'r

f ,
s 

" J*-no' 1o1tt]-c' (y)dy.

By duality and since g(.) is an arbitrary nonnegative, then from this last in-
equality it follows that

lo^11,,,,.,,,h (il da]'' @) d'' = 
" lo^ n' (il U,,,., o,- Q) d' ")e w' - o (il av

for all h(.) > 0. This is just the inequality (3.3).

Finally to get inequality (3.4) we will proceed as above. sirrce 
/. 

.r_n' 1z)d,z :

oo, by applying (3.1) (with the index pt and the weighttat-r'(.)) then

f l f  1 p '

J*^ l [ ' ' " 's ( i lda ] ' t -n  
( r )dr

= 
" l*^ so' @) (, l, o,., ",.' 

- o' { "1 d, z)e' wG - n' ) {t - o) 1y) du

- r n ral( [ 6-n' e)d,z\-o.,-o' (i lf '-o' oo.: " J o * n t  
L \ J 1 y 1 < 1 2 1  ,  J

This last inequality combined with a duality argument leads to

A-ll^orntv) daf' U o,., ",'t 
- o' 121 az)''' -o' (x)dx < c f ^ n' 1v1- 1v1av

for all h(.) 2 0. This is just inequality (3.4).
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Proof of Theorem 2.1.

Since Ju. aL-o' (a)da: /o. lvlt'-n)P'u|-p' (y)dy: oo then Theorem 2.! can
be applied to derive

lo*tr.n)o' {*1ur-n' (r)d,r = 
" Iu^*n' 1o1l1nur-o')t-o @)lt-p' dv

for all h(.) > 0 with

(Rur-n')61 :

^u*{1t.o,,r(t - n), y 11"; + ( | " | 
(.o', - d 

I n_, r,r <l zl <alnlu<, 
- o' l, e) d,")i ;

( t ,lzl@-n)n'or-'' 1"1ar)o (lrl@-*tn'rt-'' @))t-' ,
r J l c l <  1 2 1

h*1'-"1 l rt-o' (4a"\' (ur-r'1";;1-r').
\ ' - '  Jv l . l r l  , t  \  \  ' /  )

By dualiry argument and since 
l*^V.n4ls@)d,x 

: 
l*^fOfl.s)(r)dr, 

then

the above inequality is equivalent to
f f

Jo*Q"f)'{")(Lu)(t)dr 
3 c 

Jo-f'fu)o(ilda, 
for all /(') > 0

where (fu)( .1 : llno'-o')(.)l 
t-o. 

And this is just the expected inequality (2.6).\ -  / \ /  L .  " ' )

Proof of Theorem 2.2. To derive the inequality (2.2) consider a function /(.) > 0.
Then for some constant c ) 0 (which depends only on p)

lo-{r. rY @)u(r)d* 5 "(s, + s, + ss),

where

s, : I I g.fo".)e(r)u(r)d.r
T Jn*

s, : f I g.yl*.)e(x)u(r)d,r
T Jen

s, : I I e.fl^-)p(x)u(r)d,r
- T J e n

E6 :  {r ;2k < lnl  < 2r* ' } ,  Mp :  {r ;2k-r < l r l  < 2** ' } ,

Lp : {r;lrl < Zo-'}, R6 : {r;Zk+2 < lrl}.

Estimate of 51

Since the function (/1Ir. )(.) has its support contained in the ball B(0,2k-L) :

{y; lal < 2k-L} then for each r e Ex
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Q.yy-71*1 : I b - al"-'f@)da\  " ' '  J a e L n

= | lr- al '- ' f(y)dy
.t lyl<il, l

<ctlr lo-n t ,-  f@)da . i , ,""  j1"1 <lr_ul<f, tr l .
J lvl<lrl

Using this last inequality and (3.1) in Proposition 3.1 then

s1 1 c2 t I t ffu)aylolr(o-n)ou(r)d*
J n .  L J l s l < l c l  r

. 
" [^- f'@)lt pl'-dnup7a,]'(lal@-"toutu))'-o or.

JR.  ' J ly l< l " l  r  \  ,  
(g .S)

Estimate of 53

As above, for each r € Ep: r does not belong to the support of the function
( / l lp*) ( . ) .  Then

(r.f lrpo)@) = 
lro,.,o,l, 

- yl'-^ I@)dy

="n  [ ,  ,  ,  , f@) ly l " - "da  , i r , " "  
] lu l  < l r -a l<2 ly l .

J  l " l < l v l

Consequently this last inequality combined with (3.3) in Proposition 3.1 leads
to

s3 ( c5 
[^^l[ ,^,-,_,., , f  

(y)lyl"-^dy]eu@)d,r
tw^ LJ {2lr l<lsl l

f r f

= ̂  J*- fo{il l lul-" J,o.,o,u(")d,zfe 
uL-'(ildv. (3.10)

It should be noted that the constants ca and c6 do not depend on the weight
u ( . ) .

Estimate of 52

Observe that for A € Mx

(Mo*u"7IB) *(y) <

".,11E,o,u1*(y)+ (lr1r.o"--7 t u"p1ar)+].
L \  Ja_t ly l< lz l<als l  /  J  (g. l l )

Of course, the constant c7 ) 0 depends just on n,. Indeed if. y e Mx (..g.
2k-L < lal < 2o+r) and f > 2-1lyl then

f  . .  t
1@nr-n) | u" (z)dz < c"2@n"-n1k I u" e)d,z

J ff(s't)nEu J Ep

< cslyf.n"-d I u, e)d,2.
.t a-Lful<lzl<alsl
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Now the estimate of 5z can be performed by using (3.11) and the D. Adams
inequality (1.1) as follows

s, : I I g.fl*)e(x)u(r)dn
T Je*

. 1
r  ,  /  \ ?

ScroL I f ' (u)lMor"u"1ln,) @)da by (1.1)
T Jun

by (3 .11)

. ",, T l*_r{r)
l{tw,o, 

u) r( s ) + ( | s | ('e' - ̂ ) 
f n-, to t.t, | < atu tu" 

1r1 a r)+ 
lau

I
: cn I f'(y)

J]R.

|  -  ,  /  /  r l l
l (M.o,u") i  (y) + (  ly l \aer-n) |  u" (z)dz) '  laa. (3.12)
L \ J+-tlsl<lzl<alyl / J

Therefore (3.9), (3.10) and (3.12) lead to the expected inequality (2.2).

Proof of Corollary 2.3

To get the inequality Q.\ we can apply Corollary 2.2 with the weights
u ( . )  :  , l / ( l . l )  :  l . l - " peL -p | . 1 )  and  u ( . )  : l . l " r ' ! ( ) ) p t -o ( .1 ) .  I ndeed

f r
| 1r1@-"tnu@)dr >_ | ld-neer-elnl)dn

J n *  J  l " l < r

> , p ' _ o 1 )  [  l r l n p d , r : o o ,
J td<t

and ^ f
I

I  u(r)dr2 | lnadeeL-e(lr l)dn
J IR .  J  7<b l

> 
"ogt-rg1 [  @l@n+@-r)o]d,* -  x,

J  t < l x l

because p(.) e A, with n - lop + (p - t)"1> 0. Therefore the task remains to
prove that u(.) e 11 and a constant c ) 0 exists such that

(lal@o-"t fn_,,o,.,o.nto,u(4dr) 
: ur@) < cpr-o(lvl) : cu(a), (s.13)

( t , lzl@-dnup)ar)' ( lul@-"tou@))'-o : ur(a) < 
"et-o(lyl) 

: ca(a),
. J l g l< l , l  /  \  

( 8 .L4 )
and

(lolr"-", t ue)d.")o uL-o(il -- uz(a) 3 ",p'-r(lyl) 
: 

"r(a). 
(3.1b)

t  J l . l < l s l
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The assumption u(.) €ll is satisfied since from 9(.) e A" then

sup u( i l  = Qlr f \ -"nrt- 'Ql" l )
a-rlnl<lsl<alrl

= @1. I elr l)-.n*t-eelr l) iz
J  2- l l t l< lz l<2 lx l

I

< l* l - "  I  uQ)dz.
J  l z  <2 l r l

Inequalit ies (3.13) and (3.14) follow from 9(.) € Ao since

h( i l  3  " r la l 'o  
x  ly l - 'o  p ' -o( ly l )  :  c rpL-p la l )

and

uz@) 3 "r(,pr-rQal) t 
pl-^od")' ( lol-"rrr-o(ul)) '-"-  \ ,  . . _ , .  

J t u l . l " l ,

. 
", (lal"G 

- nt rr 
- o 11011)' (1, l- ", r' 

-o ( | s | ) )' 
o

:  c rp ' -p (aD.

Finally inequality (3.15) appears after using cp(.) € A, with the restriction
n - l o P t o ( P - 1 ) ]  > o s i n c e

/  f  -  \ P z  .  r l - p
Uz@) :  

l la l 'o-"  I  lz l 'net-n11zl)dz) (r ' - ' ( lu l ) )
\  J l z l <  s l  /

/  r  \ P z  r l - p
.  

" r ( la l6 r -n )+o(p-7)pL- r |aD I  l z l - l "n+o1o-1) ld r l  (p t -o f l s l ) ) -  
-

\  
-  "  J 2 t . l o l '  /  \ '  ' ' "  ' '  /

/  .  -  . . \ P /  ,  - . ,  . . \ l - P
S ', (p'-o(luD)' lv'-' luD) 

: , ',p'-o(lvl).
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