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Abstract. This paper deals with an implicit free boundary problem for heat equa-
tion. The method of semi-discretization with respect to t is proposed for proving the
existence of the solution.

1. Introduction
Consider the following free boundary problem:

Problem (P). Find a pair {u(z,t),s(t)} such that the following equation and
conditions are satisfied:

1) s(t) € C'[0,T), s(t) >0, Vie[0,T], s(0)=b>0.

2) u(z,t) € C*'(Dy), where Dr = {(2,t) : 0 <z < s(t), 0 <t < T}.

3)

Uzz —ut =0 in Dr, (1.1)
u(z,0) = p(z), 0<z<b, (1.2)
u(0,8) = f1(t), 0<t<T, (1.3)
u(s(t), t) = fa(s(t),t), 0<t<T, (1.4)
uy(s(t),t) = g(s(t),1), 0<t<T, (1.5)

o(x), fi(t), f2(z,t), g(z,t) being given functions, b, T being given positive
constants.

This problem is the mathematical model of the earth compaction and seepage
with variable porosity taking into account the effect of molecularly bound water
[3]. It is observed that the seepage holds if and only if the gradient of pressure
u exceeds some threshold value g. Hence the line z = s(t) is the boundary
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between the region in which the seepage holds and the region in which there is
no seepage.

In this problem, the derivative s'(t) does not appear explicitly on the free
boundary conditions as in the Stefan-like problems. For this reason the problem
(P) is called implicit free boundary problem.

A somewhat unified technique has been developed for solving Stefan-like
problem: the problem is transformed into an equivalent integral equation and
then attacked by using a fixed point argument (see for instance [4]). The exis-
tence of the solution of our problem (P) is established by using the method of
semi-discretization with respect to t. This scheme has been used by T. D. Ventsel
[9], Nguyen Dinh Tri [7,8]. Gary G. Sackett 6] for somewhat different problems.
Another method for solving Cauchy type free boundary problem for nonlinear
parabolic equations can be found in [2].

The plan of this paper is the following. In Sec. 2 the uniqueness of the
solution is obtained. The existence of the solution and the asymptotic behaviour
of the solution when t — 400 are established in Sec. 3.

2. Uniqueness of the Solution

Theorem 1. Assume that the functions f1(t), fiz(@,t), fo:(x,1), 9(z, 1), gz(z, 1),
o'(z) are continuous, fi() < 0, fia(m,8) < 0, fa(@.) < 0, g(z,8) > O,
g (z,t) > 0, ¢"(z) < 0. Then the problem (P) cannot have more than one
solution satisfying ds/dt > 0.

Proof. The function q := u; satisfies the equation

gt —qee =0 inDr (2.1)

and the conditions
q(z,0) = ¢"(z) <0, 0 <z <b, (2.2)
q(0,t) = fi(t) <0, 0t <T, (2.3)
g(s(2),1) = [f52(5(8), 1) — g2 (s(), )]S'(8) + fau(s(2),8) <0, O<t<T. e

By the maximum principle, we get q(z,t) = u(z,t) = uze(z,t) < 0 in Dr.
Since ug(s(t), ) = g(s(t),t) >0, we have uz(x,t) > 0 in Dr.

Suppose that the problem (P) has two solutions: (s1(t),u1(z,t)) and
(s2(t), uz(t)). Then v(z,t) = ua(z,t) — ua(z, t) is the solution of the equation

Vs — Ve =0, 0 <z < 8(t) = (i {s1(t),s2(t)}, 0<t<T,  (25)

satisfying the conditions

v(z,0) =0, (2.6)
v2(0,t) = 0. (2.7)

Hence v can reachpositive maximum or negative minimum only on z = s(t). If
s(t) = s1(t), we have
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o(s(), ) = ua(s1(2), 1) — ua(s1(8), 1) = fa(s1(8), 8) —uals1(t), )
> falsa(t),t) — ua(sa (), t) = ua(sa(t), t) — wa(s2(t),1)
= [52(t) — 51 (D)]uho (€(2), 1) 2 0, £(F) € (s1(2), 52(8)),

ol (5(8), 1) = o (51(8), ) — g (1(),1) = 9(82(8), 8) — upe(51(8), t)
< g(52(t),t) — ubg(s1(£), 8) = upa(s2(t), t) — g (51(8),1)
— [s2(t) — 51()]ulaa(n(2), 8) < 0, M(t) € (52(1), 52(8)).

It is a contradiction. We get the same conclusion if s(t) = sa2(t)- =

Corollary. We have the following estimation
s(t)< X, Vte [0,T] (2.8)
where X is the solution of the equation

zg(z,0) — fa(z,0) + f1(T) =0 (2.9)

Proof. Since ugz <0, ug > 0 in D, we get

fa(s(t),t) — £1(t) _ F2(s(1),0) - fi(T)

s(t) < =
T EOR) o(s(2),0)
ie.

s(t)g(s(t),0) — f2(s(t),0) + A(T) < 0. (2.10)
It is easy to check that the equation (2.9) has a unique solution X and from
(2.10) we obtain the estimation (2.8). =

3. Existence of the Solution

Theorem 2. Under the assumptions
1) f1(t) € C2[0,T), p(z) € C*[0,b], f2(2,t) € C*%(Qr), 9(z,t) € C**(QT),
Qr={(@t):0<z <X, 0<t<T}
9) f(t) <0, Vt € [0,T}; ¢ () < f2:(b,0), Yz € [0, 8];
fo(@,8) < 0, fae(@,t) <O, fhr(w,t) >0, foi(at) = f1(®) >0,
glz,t) >0, g;(z,t) >0, gi(z,t) > 0, V(z,t) € Qr;
3) (0) = £1(0), @(b) = f2(b,0), ¢'(b) = g(b, 0), ¢"'(0) = £1(0),
there exists a solution of problem (P) satisfying s'(t) > 0.

Proof. The semi-discretization method is applied for producing approximations:
we approximate the derivative with respect to t by a finite difference and leave z
as continuous variable. This scheme leads to a recursive family of free boundary
problems for ordinary differential equations of second order.

Let t, = nAt, with At >0,

Un(z) = u(z,tn), Sn= s(tn), So=0.

The problem (P) is approximated by the following problems (P).
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Problem (P,). Find a pair {u,(z), s} satisfying

M)_A%“—?@ =u/(z), 0<z<sn, (3.1)
uo(z) = p(z), 0<z< sg, (3.2)
un(0) = fi(tn), (3.3)
Un(8n) = f2(Sn,tn), (3.4)
Un(8n) = g(8n,tn)- (3.5)

We have to prove:

1) the existence and uniqueness of the solution of problems (P,);

2) the uniform boundedness of some quantities, to be used for establishing the
convergence of the approximation scheme;

3) the convergence of the scheme.

3.1. Existence and Uniqueness of the Solution of Problem (P,,)

Proposition 1. For At sufficiently small, the problem (P,) has a unique solu-
tion {un(z), sn} such that s, > sp—1, Yn.

Proof. We put
Un(z) = falsn, tn) + g(8n, tn)(x — 8n), ifz > s,.
The general solution of (3.1) is

+ B,ch En 1(€)dg,

tn(z) = Apsh——

= v r/ h7%

Apn, By, being arbitrary constants. From (3.3)—(3.5) we get

f2(sn,tn)ch — VAt g(sp,tn)sh

Sn, Sn.% _1_ f L
= T = Al + 0/ s (b

Consequently, we have to prove that there exists a unique zero s, > s,_; for
the function

8 S
¢n(5) = f2(sa tn)Ch\/—A_t - \/Eg(S, tn)Sh_E

1/ ¢
- hlt) - o= 0/ un 1 (b (3.6)

For this, it is sufficient to show inductively that for At small enough
D,(sn-1) >0, @ (sp-1)<0, ®’(s)<0 fors>s,_1.

We will use the notation
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Ah(.,t) = h(.,tn) — h(,, ta),
A?h(.,tn) = A(AR(,tn)).
We have
Afa(sn ) Sn—1 Sn—1
q)/ e ) e " ) St
n(sn-1) = At \/— Jor(8n_1,tn)c =
VB oo s a0 )b

VAt VAL’
and for s > s,_1
s 2 s
&7 () =fope(s:tn)c h\/—ﬁ + \/_A_Eféz(s’t”)ShE

+ Ait [f2(s,tn) = f2(Sn-1,tn-1) — g(sn—1,tn-1)(s — sn_1)|ch

— VAtgY (s,tn)sh

VAt
TR 29..(s, tn)ChE
1
_E[Q( )+g(s'n 1, tn— 1)]Sh\/Kt—

Because f5, < 0, f4; < 0, g > 0, gi > 0, we get ®;,(sp—1) < 0 and with At
sufficiently small ®//(s) < 0 for s > sp—1.

Now we will prove by induction that ®,(sn_1) > 0. For n = 1 we have

®1(b) = fa(b,t1)ch — VAt g(b,t1)sh

b b
VAL VAt

b
—ﬁun—ﬁﬁ/w@mj%@
0

By integrating the last term by parts and using the compatibility conditions, we
get

b
VAL

Ql(b)=[fg(b,tl)—fg(b,O)]ch\/_ VAt[g(b,t1) — g(b,0)]sh

At
= Al 1) — fultn)] - VEIAg(t)(1 -~ &)

b
= \/A_t/ [ (6) - Afabt) | @Ag(b’tl)]sh € .
0

-ﬂﬁm—ﬁmn—WE/¢umlf
0

At At VAt

Sinde " (x) — f4,(b,t) < 0, for At sufficiently small, the kernel of the last term
is negative and this term is predominant. Hence ®,(b) > 0.

Moving on to the induction step, using the induction hypothesis that
®,_1(sn—1) =0, we get
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@, (5n-1) = Pn(sn-1) — Prn-1(5n_1)

—Aﬁ@,h@myi J—mmnh)myﬁ—Aﬁ@)

' ¢
_‘/—Kt_ / Aun_l(f)sh\/——A=td£
= Alfalon, tn) = fi(tn)] — VAIAG(Sn1,ta)(1 — & VA7)

_\/_/ Aun 1(& Af2(3£;1;tn)+\/Z£Ag(3nA—tlatn):|sh\/%d€.

We will prove that for At sufficiently small and for 0 < z < Sn—1,
Aup_1(z)  Afa(sn-1,tn)
At At

the kernel of the last term is negative and this term is predominant. Hence
®,.(sp—1) > 0. We put

<0, (3.7

Aupy_y(T)
tn-1(®) = =5
%qw=%4m-éﬁ%?@;

The function Q,—;(z) satisfies the_ following relations

= Qn- 1(-'1"} - Afi("l"n—‘latu)
At At? :

Qn(z)

Spen €0 K85 (3.8)

2 = ’f“ Sp— -.t - = £ — |tn—' Iin—1 — Sp—=°
Qn-1(sn— 1) fa($n1 1) = fo(sn—2,tn—2) — g(sn-2 2)(8n-1 — Sn—2)

At
. AfZ(sn—latn)
At
A2f2(sn—17tn) As-n—l
~[Ae =R (s g, ta) S
As,_
f2:z:(€1, n— 2) 1] 07

smce 2tt > 0, g > 07 féz < Oa {1 € (sn—ZaS’n—l)a

Sn— ,t'n,— “ Sn— )tn—
Q. (5n1) = 9(sn—1 1)At9( 2 2)

el Ag(sn—htn—l)
= At +gw(£2, n— 2)

A.Sn 1

At

>0,

since g; > 0, g, > 0, £2 € (Sn—2, Sn—1). Because the right-hand side of (3.8) is a
negative constant and because Qn—1(sn—1) < 0, @ _;(sn—1) > 0, it follows that

Qn-1(z) <0 for z € (sp_2,8n-1), (3.9)
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and, a fortiori, Qn_1(sn—1) < 0. On the interval [0, $n—2] we have

1 Qn—1($) il Qn—2($) I A2f2(3n—1,tn)

Qn-1(z) AL o , (3.10)
A - A n—1,'n
Qn—l(o) — fl(ilt 1) _ fZ(SAtl t )
_ _A[fz(sn—litn) - fl(tn)] + Azfl(t'n) <0
B At ’
for At small enough, since f}.(z,t) — fi(t) >0,
Qo(x) = ¢ (z) — ————Afzél;’ ) <0

for t; sufficiently small, since ¢ (z) — f2,(b,0) < 0. Because the right hand side
of (3.10) is positive, Qo(z) < 0, @n-1(0) < 0, Qn-1(8n—2) <0, we obtain

Qn_1(x) <0 for z€[0,8n-2] (3.11)
The estimation (3.6) is deduced from (3.8) and (3.10). The proof is complete.
i

3.2. Some a Priori Estimations

Proposition 2. We have
sn £ X, Vn, \312)
where X is the solution of the equation (2.9), and for every n, for x € [0, 5n]

(@) = | 2Bt @) < g 3.13)
lur,(z)| < M2, (3.14)
|un(@)| < Ms, (3.15)
f;sm; (3.16)

M; are the positive constants which do not depend on x, n, At.

Proof. From (3.7) it follows that
tn
%@z%@SéM%iQSQVmWEMM,

and for At small enough, since f3,(z,t) <0, and

n — < /) ,t — M .
(@) = lan(@)| < mox |faont)] = My
Since u/,(x) decreases on [0, sp}, up,(sn) = g(sn,tn) > 0, we have ul (z) > 0 on
[0, sn]. Because u(z) < 0, uj,(z) > 0 on [0, sn], we get (3.12) as in the corollary
of Proposition 1. The estimations (3.14), (3.15) are deduced easily from (3.13).
Because
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f2(3natn) _f2(3n—1atn—1) A

gn(8n) = At = 9(Sn—1,tn1)—— At
and both terms of the right-hand side are negative, we obtain
(Sn)' < M1
Consequently
Asy, M
Ast min 1 (z,t) =M
(z,t)eQT o

Proposition 3. We have for every n, for x € 0, s,_1]
lan (2)] = |uy ()] < Ms. (3.17)
Proof. The function z,(z) := ¢/,(z) satisfies the following relations

2n(T) — 2n_1()

i) = ==,
20(z) = ¢"(z), 0<z<b,
) (sn, ) Z(tsn—latn—l) Asn //(53)

0<z <5,

(sn 1

(&)AS"

= 9i(sn, ) + gi(

€3 € (8n-1,8n), &4 € (87—1,8n), 7 € (tn—1,tn). Hence
lzo(z)| < Jnax ls0”’(9:)| =Ms, Vzel0,d

[2n—1(8n- 1) < (@ n;ax gt (z, t)] +( max 'gz(x t)| - My + MMy, = M.

We need a bound for 2,,(0) and to this end we introduce two Bernstein auxiliary
functions

Afi(tn) - 1
+ Mgz
=gn(2) = S5 4 Mge ™ g<gc 1
1
where the positive constants Mg, My will be chosen later with e < b (see [1]).
We get

hi(z) = hi_i(z) (%) — gn—1()
+ _=in n—1 L= T, _4n n—1
i A fi(tn )
2 —Myz
+M8M96 B Atz
- A fl( n)
= 2_—Myz
= MMe™Mo =20,

the right-hand side is positive for MgM, large enough, independent of the sign
of f{'(t). Thus h}(x) takes its maximal value for n = 0,z=0,0rz=1/M,.
We have
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h(0) = Ms,
h,t(Mig) ! qn(ﬁl;> — gn(0) + %—8- < oM, + %ﬁ < Ms,

if Mg is chosen larger than 4M;,

+/ — M N Moz m
h (z) = " (z) — MgMge _Ofélj%(bl‘f’ ()|

_ MsM,

2 <0

for Mg large enough. Consequently, bt (z) takes its maximal value on z = 0,

hence A}'(0) <0, or
] q;(O) - MgMg S 0.

The similar argument applied to h;, (z) yields g; (0) + MgMy > 0. Consequently,

|zn(0)| S MSMQ:
|zn(z)| = |qn,(z)] < max(Me, M7, MgMg) = Ms. .

Proposition 4. We have for every n, for z € [0, sp_2]

Gn(z) — gn-1(2)

< My .
At — 104 (3 18)
Sn — 25?&-—'1 + Sn—2
e | < M. (3.19)

Proof. The function r,(z) := [gn(z) — gn—1(x)]/At satisfies the following rela-
tions

ralE) — Tn-
i) = @l g cpey, ,

At
ro(z) = oW (z), 0<z<b,
A2.fl(tn)
rn(O) =] —Atg'__,
n\on— -2 n— n— n— n—
rn(sn-a) = nlon=e) = Bintieeca) £ tncs(ons)
A2s,

where
o= fi,”z:(£5)tn—l) " Q(Sn—l, tn—l) <0, 65 € (Sn—2,5'n—1)a

A is uniformly bounded with respect to z, n, At,

A2s,,
’I";,'(Sn_z) = ’BA—tz + B, (321)

where

B = [g5(6,tn-1) — vpn_1(Sn—1)]
As, | Asy
=i [féz('fﬂtn—l) = g(&n_l,tn_l)](Tst + sAt 1

)>0,
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&6 € (8n-2,8n-1), &7 € (Sn—-2,8n—1). From (3.20), (3.21) we get
Brn(Sn—2) — ary(sn—2) = BA — aB. (3.22)
If |rn(z)| takes its maximal value at z = 0, then

< 1 b .
Ira(z)] < Jusces LY ()] = M12

If |rn(x)| takes its maximal value on n = 1, then

< ' s d
lrn(w)l_orggbw (z)| = Mi3

If |rn(z)| takes its maximal value at = = s,—2, then both 7 (sp—2) and 7 (Sn-2)
are positive, or negative. Thus the two terms of the right-hand side of (3.22)
have the same sign. Consequently,

Irn(2)] <

max |BA— aB|= M.
min |gL(z,t)| (z,t)eQT 1 | "
(=,t)eQr

In any case, we obtain
|7n ()| < max(Mi2, M13, M14) = Mio.

From (3.17) we get
A?s,,

1

M A]) = Myy. "
At? min g(a:,t)( 14+ max|A)) H
(z,0)€QT

3.3. The Convergence of the Scheme

un(z) and s, are defined only on the line ¢ = t,. By linear interpolation we
put for (n — 1)At <t < nAt

t—(n—-1)At nAt —t
SAt(t) = (nAt ) Sn + At Sn—1,
t—(n—1)At nAt —t
ubt(z,t) = ——(—AT)—un(m) + Tun_l(x).

From the estimations (3.12), (3.16), (3.19) it follows that the families
AsA(t)
At
{0}, (=5}

are uniformly bounded and equicontinuous. Hence, by Arzela’s theorem, there
exists a sequence At; — 0 for which

s2(t) — s(t),

AsBt(E)
A oW

uniformly on {0, T]. The families

udt(z, 200t (g
e}, {222 (T
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are equicontinuous and uniformly bounded on D7 because of the estimations
(3.13), (3.14), (3.15), (3.17), (3.18). Consequently, there exists a subsequence of
{At;} (which we still denote by At;) such that

uBt (z,t) — u(z,t),
oulti(z,t)  Bu
—_—

ot ot
O?ulti(z, t) i %u
ox2 Ox?

uniformly on Dr. It is not difficult to check that u(z,t), s(t) are the solution of
problem (P). ]

Theorem 3. Assume that the assumptions 1), 2), 3) of Theorem 2 are satisfied
fort € Ry, x € [0, X], where X is the solution of the equation
zg(z,0) — fo(z,0) +£=0, (3.23)
L= . lir_'p fi(t), and that
t—lémao fa(z,t) = Fy(z), t—l}gloog(x’ t) = G(z)
uniformly on x € [0, X|. Then there ezists
t—I}Too Al

‘where S is the solution of the equation
zG(z) — F2(z) +£=0 (3.24)

and

t_lhr}loo u(z,t) = G(S)z + L.

Proof. Since the function s(t) is increasing and bounded above
s(t) < X, VteRy,
there exists tEI.PwS(t)‘ Denote by S this limit and by Y'(z) the solution of the
differential equation
Y'(z)=0 (3.25)

satisfying the conditions

Y(0)=¢, Y(S)=Fx(S), Y'(S)=G(S). (3.26)
We get

Y(z) = G(S)x + ¢,

where S is the solution of the equation (3.24).
The function U(z,t) = u(z,t) — Y (z) satisfies the following relations
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Ups — Uy in Do, (3.27)
U= AO & Ul =06®) - Y'(s@).  (3:28)
Hence, when t — +o0,
U|z:=0 -0, UIIx:s(t) — 0. (3'29)
Using the method of A. Friedman in [5], we can prove that
t_l}ﬂo U(z,t) =0,
le.
" liT u(z,t) =Y (z) =G(S)z + £
uniformly on z € [0, 5] W
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