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1. Introduction

1.1. Non-singular cubic surfaces and star points

A cubic surface in P3 is given by a non-zero cubic homogeneous polynomial in
4 variables. Fixing an ordering of monomials of degree 3 in the polynomial ring
k[zo, 1,22, T3), each cubic surface defines a point in P'°. The locus A C P*? of
singular cubic surfaces is a closed subset of codimension 1. A non-singular cubic
surface X contains twenty-seven lines. There exist at most 3 lines among these
twenty-seven lines through a given point of X. A star point (also called Eckardt
point [1]) on a non-singular cubic surface is the intersection point of three lines
on the surface. A non-singular cubic surface does not have more than 18 star
points. We denote by Hj, the subset of P'¥ consisting of points corresponding
to non-singular cubic surfaces with at least k star points. We study these Hy as
subvarieties of P19 — A,

1.2. Blowing-up of P2 at 6 points

One of the main methods used to study non-singular cubic surfaces in the paper
is the blowing-up of P? at 6 points. The blowing-up of P? at 6 points P, ..., Ps
in general position is a variety X which is isomorphic to a non-singular cubic
surface [2,4.7]. The twenty-seven lines of X are the following:

e six exceptional curves P, corresponding to P; for 1 <i < 6,

e six strict transforms C; of the conics C; through {P,...,FPs} — {R} for
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1<i<6,

o fifteen strict transforms l~,-]- of the lines l;; = P,P; for 1 <i < j <6.

Star points on a non-singular cubic surface can be recognized by the config-
uration of these 6 points.

In the paper, we determine all configurations of 6 points in P? corresponding
to the types of non-singular cubic surfaces with a given number of star points.
We consider the irreducibility, the local closedness and the dimension of Hy.
Moreover, we determine the inclusion relationship between the irreducible com-
ponents of these Hi. We work on varieties over an algebraically closed field of
characteristic 0.

2. Main Results

2.1. Basic properties

Fach non-singular cubic surface X has 45 tritangent planes, i.e. the planes
containing 3 lines of X, see [4,pp.102-103]. In blowing-up of P? at 6 points
Py,...,Ps in general position, we see that each tritangent plane is defined
uniquely by a triple of lines in the form (P;Cjli;) or (lijlmnlkn). So, we also
use these triples of lines to denote the tritangent planes.

Definition 1. Let T denote the set of 45 triples of lines on a given non-singular
cubic surface X, which span the tritangent planes. If a triple in T forms a star
point then it is called a star triple.

Remark 1. Let T1 and T; be 2 triples in 7 having no line in common. Each line
of T meets exactly one line of T5. There exists uniquely another triple T3 € T
such that each line in T3 forms one tritangent plane with one line of T; and one
of T>. A such set of 3 triples in 7 is called a Steiner set.

Definition 2. A Steiner set such that every of the 3 members gives a star point
s called a star-Steiner set.

2.2. A study of Hy, Hy and Hj

The results in this subsection and in the subsec. 2.1 can be found in [6]. We
state them here for the convenience of the readers.

Theorem 1.

(i) For each x € H, there exist 6 points Pi,...,Ps € P? in general position
such that lio Nlzg Nisg # O and the corresponding cubic surface X, is
isomorphic to the blowing-up of P? at these 6 points.

(ii) The set Hy is a closed, irreducible subvariety of P° — A of dimension 18.

Definition 3. Let
Héz) = {z € Hy | the surface X, has a pair of star triples having one
line in common},
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H§3) = {z € Hy | the surface X, has 2 star triples having no line in
common}.

Let
KP ={P=(Pi,...,Ps) € ®| liaNlaaNlss = {Q1}, 12 Nlss Nlas = {Q2}},
Kés) ={P=(P,...,P) € ®|l12aNlzaNls6 = {Q1}, lisNlasNize = {Q2}}.

Proposition 1. For each x € Héi), there ezists P € Kéi) such that the surface
X, is isomorphic to the blowing-up of P? at P for i = 2,3.

Theorem 2. The set Hy, is closed in P — A and has two irreducible components
H2(2) and H§3) of dimension 17.

Corollary 2. H; = H§3). Consequently Hs is a closed, irreducible subvariety
of dimension 17 in P1° — A,

2.3. A study of Hy

Recall that H, is the set of points corresponding to non-singular cubic surfaces
with at least 4 star points. Since Hy C H3 = H2(2), this implies that for each
z € Hy, the surface X, has a star-Steiner set. Moreover, if X, has a star-Steiner
S = {T1,T2,T3} and another star triple 7' having 2 lines in common with S,
then T has all lines in common with S. This follows from Remark 1. Therefore,
the set Hy consists of elements in one of the 3 following subsets:

HY = {[X ] € Hy | X has one star-Steiner S and another

star triple 7" having 3 lines in common with S };

H = {[X ] € Hy | X has one star-Steiner S and another

star triple T having 1 line in common with S };

HY = {[X ] € Hy | X has one star-Steiner S and another

star triple 7" having no line in common with S }

Definition 4. Let
K® = {(P1,...,Ps) € ® | liaNlaa Nise = {Q}; li2, 113 are tangent to C1},

Kiﬁ) = {(Pl,. P ed I liuNilag Nilsg = {S}, l12,l13 are tangent to Cl}

Theorem 3. _
(i) For each = € Hii), there exists P € Kﬁl) such that the surface X; is
isomorphic to the blowing-up of P? at P for i = 4,6.
(i) The subsets HY and HS of Hy are closed in P¥® — A, irreducible of
dimension 16.

Corollary 3. Fach X € HLEG) has at least 6 star triples, which form 4 star-
Steiner sets and each star triple has ezactly one line in common with another
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star triple among the 6 ones above. Hence His) C Hs.

Definition 5.
K(g) {(Pl, Lk PG) €ed , li1aNliga Nisg = {Sl}; lisNizg Nz = {Sz};
1 114 is tangent to Cl at P4}

Theorem 4.
(i) For each z € Hig), there exists P € Kig) such that the surface X, is
isomorphic to the blowing-up of P? at P.
(ii) The subset H ig) C Hy is closed in P — A and has two irreducible compo-
nents of dimension 16.

Corollary 4. Each cubic surface corresponding to an element of H ig) contains
at least 9 star points and at least 12 star-Steiner sets.

Corollary 5. The subset Héz), respectively, Héa) generically consists of point
corresponding to cubic surfaces with exactly 2, respectively 3, star points.

2.4. A study of Hs and Hg
Theorem 5. Hs = Hg = H® UH".

2.5. A study of H7, Hg and Hg
Recall that H7, Hg and Hg are the subsets corresponding to non-singular cubic
surfaces with at least 7, 8 and 9 star points, respectively.

Note that a cubic surface X € H, ie) can be assumed to possess a pair {S, U},
where S = {Tl = C1P2l12) T2 = (C3P4l34) T1T2 = (ll4l23156 } and U =
(C~’1}~’3[~13). We need a lemma. :

Lemma 1. Let x € H£6) and let T, ..., Tg be the siz star triples of X, deter-
mined by the given pair (S,U) as above. Let V be another star triple of X,.

(i) If V has all line in common with one of 4 star-Steiner sets determined by
Ty,...,Tg then X, has at least 10 star points and at least 10 star-Steiner
sets.

(ii) Otherwrise, the surface X, has at least 18 star points and at least 42 star-
Steiner sets.

Definition 6. Let Hl(lo) and H(IS) denote the subsets of H(ﬁ) consisting of all
points as in the cases (i) and (11) of Lemma 1, respectively.

Corollary 6. H; = Hg = Hy = H3® U H.

Let
Kﬂ)o) = {(Pl, T ,Pﬁ) cd | liaNl3a Nisg = {Sz}; liaNlyz Nisg = {Sl};
l12 and l13 are tangent to Cl}
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Theorem 6.
(i) For each = € Hl((l)o), there exists P € Kig (%) such that the surface X, is
isomorphic to the blowing-up of P? at P.
(i) The set HE? is closed in P'® — A, irreducible of dimension 15.

Similarly, we can assume that for each z € H S)S), the surface X, is isomor-
phic to the blowing-up of P? at one element of the following set

K(IB) {(Pl, - ,Pe) cd | lisNilaaNisg = {Sl}; l1a Nz Nisg = {SQ};
li2 and [;3 are tangent to C’l}.

Theorem 7. The set H&" is closed in P*® — A and has two irreducible com-
ponents of dimension 15.

Proposition 2. H(lo) N H(ls) f.

Corollary 7. Each cubic surface corresponding to an element of Hl((l)o) has
ezactly 10 star points.

2.6. A study of Hy with k > 10
Theorem 8. Hip= HO UHL® — HY n HP

Corollary 8. A non-singular cubic surface does not have more than 18 star
points. Consequently Hy, = for k > 18.

Corollary 9. Hy = H(® for 10 < k < 18.
Proposition 3. Hig = (4) N H(g) H‘EG) N Hﬁg).

We give a survey of the results obtained in Figure 1. In the diagram of the
figure:
(i) the number n in the left top of the symbol "H, (m) denotes the dimension
of H™;
(ii) the vectors mean the inclusion relations;
(iii) the symbol (m) indicates that generically in the set H (™) the corresponding
surface has exactly m star points.
Other main results are:
Hy=HP UH® UHP and dim Hy = 16;
Hs = Hg = H“‘) H and dim Hy, = 16, for k € {5,6});
Hy = Hy = Hy = H® U H? and dim Hy = 16, for k € {7,8,9} and the
union is disjoint;
Hyo = HO U HE® and dim Hyo = 15 and the union is disjoint.
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Figure 1. A diagram explaining properties of H ,gm)
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