Vietnam Journal of Mathematics 29:3 (2001) 225–233

Vietnam Journal of MATHEMATICS © NCST 2001

© NCST 2001

Direct Sums of Type 2 x-Extending Modules*

Liu Zhongkui

Department of Mathematics, Northwest Normal University Lanzhou, Gansu 730070, China

Received December 12, 1999

Abstract. Let \mathcal{X} be a class of left R-modules. It is proved that if type 2 \mathcal{X} -extending left R-modules M_1 and M_2 are relatively essentially \mathcal{X}^e -injective and M_1 is pseudoly $M_2-\mathcal{X}^e$ -injective (or M_2 is pseudoly $M_1-\mathcal{X}^e$ -injective) then $M_1 \oplus M_2$ is type 2 \mathcal{X} extending. As applications, we characterize when the direct sum of two extending left R-modules is extending, when the direct sum of two CESS-modules is CESS, and when the direct sum of two uniform-extending left R-modules is uniform-extending.

Extending modules have been studied extensively in recent years and many generalizations have been considered by many authors (see, for examples, [1– 3,5,12,15,16]). Dogruoz and Smith in [3] introduced the concepts of type 1 \mathcal{X} -extending modules and type 2 \mathcal{X} -extending modules relative to a given class \mathcal{X} of left *R*-modules. In this paper we consider when the direct sum of two type 2 \mathcal{X} -extending modules is type 2 \mathcal{X} -extending. It is proved that if type 2 \mathcal{X} -extending left *R*-modules M_1 and M_2 are relatively essentially \mathcal{X}^e -injective and M_1 is pseudoly M_2 - \mathcal{X}^e -injective (or M_2 is pseudoly M_1 - \mathcal{X}^e -injective) then $M_1 \oplus M_2$ is type 2 \mathcal{X} -extending. As a corollary, we show that if extending modules M_1 and M_2 are relatively essentially injective and M_1 is pseudo- M_2 injective (or M_2 is pseudo- M_1 -injective) then $M_1 \oplus M_2$ is extending. Also we characterize when the direct sum of two CESS-modules is CESS, and when the direct sum of two uniform-extending left *R*-modules is uniform-extending.

Throughout this paper we write $A \leq_e B(A|B)$ to denote that A is an essential submodule (a direct summand) of B.

A left *R*-module M is called extending if every submodule of M is essential

^{*} This work was supported by National Natural Science Foundation of China (19671063) and by Foundation for University Key Teacher by the Ministry of Education.

in a direct summand of M. M is called quasi-continuous if it is extending and for any direct summands A and B of M with $A \cap B = 0$, $A \oplus B$ is a direct summand of M. M is called continuous if it is extending and every submodule of M which is isomorphic to a direct summand of M is itself a direct summand of M.

By a class of left *R*-modules we mean a collection of left *R*-modules containing the zero module and closed under isomorphisms. If \mathcal{X} is a class of left *R*-modules and *M* is a left *R*-module then an \mathcal{X} -submodule of *M* will be a submodule *N* of *M* such that *N* belongs to \mathcal{X} .

Let \mathcal{X} be a class of left *R*-modules. According to [3], a left *R*-module *M* is said to be type 2 \mathcal{X} -extending if for every \mathcal{X} -submodule *N* of *M*, every closure of *N* in *M* is a direct summand of *M*.

For the class $\mathcal{X} = \mathcal{U}$ of left *R*-modules with finite uniform dimension, type 2 \mathcal{U} -extending modules are discussed in [8–10] (where they are called modules with $(1-C_1)$), [4] and [5] (where they are called uniform extending modules). If $\mathcal{X} = S$ is the class of semisimple left *R*-modules then type 2 \mathcal{S} -extending modules are considered in [1,2,15] (where they are called CESS-modules). If \mathcal{X} is the class of left *R*-modules with finitely generated essential submodule then type 2 \mathcal{X} -extending modules are considered in [17] (where they are called effective effective

Note that it is not true in general that the direct sum of two type 2 \mathcal{X} -extending modules is type 2 \mathcal{X} -extending. For example, let \mathbb{Z} denote the ring of integers, let p be any prime, let $M_1 = \mathbb{Z}/\mathbb{Z}p$ and $M_2 = \mathbb{Z}/\mathbb{Z}p^3$. Then M_1 and M_2 are type 2 \mathcal{S} -extending but $M = M_1 \oplus M_2$ is not (see [2]).

Let M be a left R-module. Define the family $\mathcal{X}(M)$ to be the set of all submodules N of M with $N \in \mathcal{X}$.

Definition 1. Let M, N be left R-modules. We say N is (essentially, pseudoly) M- \mathcal{X} -injective if for any submodule $A \in \mathcal{X}(M)$, any homomorphism $\phi : A \longrightarrow N$ (with $\operatorname{Ker}(\phi) \leq_e A$, $\operatorname{Ker}(\phi) = 0$, respectively) can be extended to a homomorphism $\psi : M \longrightarrow N$.

Note that every M-injective left R-module is clearly M- \mathcal{X} -injective. But Example 1 shows that the converse is not true.

Lemma 1. Let M, N be left R-modules and $L = N \oplus M$. Then the following conditions are equivalent:

(1) N is pseudoly $M-\mathcal{X}$ -injective.

(2) For every submodule A of L with $A \in \mathcal{X}(L)$ and $A \cap M = A \cap N = 0$, there exists a submodule B of L such that $L = N \oplus B$ and $A \subseteq B$.

Proof. Suppose first that N is pseudoly $M-\mathcal{X}$ -injective. Denote the canonical projections $L \longrightarrow N$ and $L \longrightarrow M$ by π_N and π_M respectively. Let A be a submodule of L with $A \in \mathcal{X}(L)$ and $A \cap M = A \cap N = 0$. It is easy to see that $\pi_M|_A$ and $\pi_N|_A$ are monomorphisms. Thus there exists an isomorphism $\phi: \pi_M(A) \longrightarrow A$.

Since $A \in \mathcal{X}(L)$, it follows that $\pi_M(A) \in \mathcal{X}(M)$. Also $\pi_N|_A \phi : \pi_M(A) \longrightarrow N$

Direct Sums of Type 2 X-Extending Modules

is a monomorphism. Thus by the pseudo M- \mathcal{X} -injectivity of N, there exists a homomorphism $\psi: M \longrightarrow N$ such that

$$\psi|_{\pi_M(A)} = \pi_N|_A \phi.$$

Set $B = \{m + \psi(m) \mid m \in M\}$. For any $a \in A$, $\psi \pi_M(a) = \pi_N|_A \phi(\pi_M(a)) = \pi_N(a)$, and so $a = \pi_N(a) + \pi_M(a) = \psi \pi_M(a) + \pi_M(a) \in B$. This means that $A \subseteq B$. It is easy to check that $B \cap N = 0$ and N + M = N + B. Thus $L = N \oplus B$.

Conversely suppose that $L = N \oplus M$ satisfies the condition that for every submodule A of L with $A \in \mathcal{X}(L)$ and $A \cap M = A \cap N = 0$ there exists a submodule B of L such that $L = N \oplus B$ and $A \subseteq B$. Let A be in $\mathcal{X}(M)$ and $\phi: A \longrightarrow N$ a homomorphism with $\text{Ker}(\phi) = 0$.

Put $K = \{a - \phi(a) \mid a \in A\} \leq L$. Since ϕ is a monomorphism, it is easy to see that $K \cap M = K \cap N = 0$.

Since A is in $\mathcal{X}(M)$, and $K \cong A$, it follows that $K \in \mathcal{X}(L)$. By hypothesis, there exists a submodule B of L such that $L = N \oplus B$ and $K \subseteq B$. Let $\pi : L \longrightarrow N$ denote the projection with kernel B. Then $\pi|_M : M \longrightarrow N$ and for any $a \in A$, $\pi(a) = \pi(a - \phi(a)) + \pi(\phi(a)) = \phi(a)$. It follows that N is pseudoly M- \mathcal{X} -injective.

Similarly we have

Lemma 2. Let M, N be left R-modules and $L = N \oplus M$. Then the following conditions are equivalent:

- (1) N is essentially $M-\mathcal{X}$ -injective.
- (2) For every submodule A of L with $A \in \mathcal{X}(L)$ and $A \cap M \leq_e A$, there exists a submodule B of L such that $L = N \oplus B$ and $A \subseteq B$.

Proof. Note that in the proof of Lemma 1, $\pi_M|_A$ is a monomorphism and $\operatorname{Ker}(\pi_N|_A \phi) = \phi^{-1}(\operatorname{Ker}(\pi_N|_A)) = \phi^{-1}(A \cap M) \leq_e \phi^{-1}(A) = \pi_M(A).$

Conversely let A be in $\mathcal{X}(M)$ and $\phi : A \longrightarrow N$ a homomorphism with $\operatorname{Ker}(\phi) \leq_e A$. Put $K = \{a - \phi(a) | a \in A\} \leq L$. For any $0 \neq a - \phi(a) \in K$, there exists $r \in R$ such that $0 \neq ra \in \operatorname{Ker}(\phi)$ since $\operatorname{Ker}(\phi) \leq_e A$. Thus $\phi(ra) = 0$, and so $0 \neq ra - \phi(ra) = ra \in K \cap A \cap R(a - \phi(a)) \leq K \cap M \cap R(a - \phi(a))$. This means that $K \cap M \leq_e K$. Now the result follows from the proof of Lemma 1.

Lemma 3. Let M, N be left R-modules and $L = N \oplus M$. Then the following conditions are equivalent:

- (1) N is $M-\mathcal{X}$ -injective.
- (2) For every submodule A of L with $A \in \mathcal{X}(L)$ and $A \cap N = 0$, there exists a submodule B of L such that $L = N \oplus B$ and $A \subseteq B$.

Let M, N be left *R*-modules. We say that *N* is pseudo-*M*-injective if for each submodule *A* of *M* and each monomorphism $f: A \longrightarrow N$, there exists a homomorphism $g: M \longrightarrow N$ such that $g|_A = f$.

Liu Zhongkui

Corollary 1. Let M, N be left R-modules and $L = N \oplus M$. Then the following conditions are equivalent:

- (1) N is pseudo-M-injective.
- (2) For every submodule A of L with $A \cap M = A \cap N = 0$, there exists a submodule B of L such that $L = N \oplus B$ and $A \subseteq B$.

Proof. Let \mathcal{X} be the class of all left *R*-modules. Then $\mathcal{X}(L)$ and $\mathcal{X}(M)$ coincide with the set of all submodules of *L*, and the set of all submodules of *M*, respectively. Now the result follows from Lemma 1.

Let \mathcal{X} be any class of left *R*-modules. Then \mathcal{X}^e will denote the class of left *R*-modules which contain an essential \mathcal{X} -submodule. Note that $\mathcal{X} \subseteq \mathcal{X}^e$.

Lemma 4 [3, Proposition 3.1]. For any class \mathcal{X} of left R-modules, a left R-module M is type 2 \mathcal{X} -extending if and only if M is type 2 \mathcal{X}^e -extending.

A left *R*-module *M* is called type 2 \mathcal{X} -quasi-continuous if it is type 2 \mathcal{X} -extending and for any direct summands *A* and *B* of *M* with $A \in \mathcal{X}^{e}(M)$ and $A \cap B = 0, A \oplus B$ is a direct summand of *M*.

Corollary 2. A left R-module M is type 2 \mathcal{X} -quasi-continuous if and only if M is type 2 \mathcal{X} -extending such that whenever $M = M_1 \oplus M_2$ is a direct sum of submodules then M_1 is M_2 - \mathcal{X}^e -injective and M_2 is M_1 - \mathcal{X}^e -injective.

Proof. If M is type 2 \mathcal{X} -quasi-continuous, then clearly M is type 2 \mathcal{X} -extending. Now suppose that $M = M_1 \oplus M_2$ and A is a submodule of M such that $A \in \mathcal{X}^e(M)$ and $A \cap M_1 = 0$. By Lemma 4, M is type 2 \mathcal{X}^e -extending; hence there exists a direct summand L of M such that $A \leq_e L$. It is easy to see that $L \in \mathcal{X}^e(M)$ and $L \cap M_1 = 0$. Thus $M_1 \oplus L$ is a direct summand of M. Suppose that $M = M_1 \oplus L \oplus L'$. Then $A \leq L \leq L \oplus L'$. By Lemma 3, it follows that M_1 is $M_2 \cdot \mathcal{X}^e$ -injective.

Similarly M_2 is M_1 - \mathcal{X}^e -injective.

Conversely suppose that $A \in \mathcal{X}^e(M)$ and A, N are direct summands of M with $A \cap N = 0$. Then there exist submodules N' and B such that $M = N \oplus N' = A \oplus B$. Since N is $N' \cdot \mathcal{X}^e$ -injective, by Lemma 3, there exists $L \leq M$ such that $M = N \oplus L$ and $A \leq L$. Thus

$$L = L \cap M = L \cap (A \oplus B) = A \oplus (L \cap B),$$

which implies that $M = N \oplus L = N \oplus A \oplus (L \cap B)$. Thus $N \oplus A$ is a direct summand of M, and so M is type 2 \mathcal{X} -quasi-continuous.

Two left *R*-modules M_1 and M_2 are called relatively essentially \mathcal{X} -injective if M_1 is essentially M_2 - \mathcal{X} -injective and M_2 is essentially M_1 - \mathcal{X} -injective. By analogy with the proof of Corollary 2, we have

Corollary 3. Let M be a type 2 \mathcal{X} -extending left R-module. Then the following conditions are equivalent:

Direct Sums of Type 2 X-Extending Modules

- (1) For every $A \in \mathcal{X}^{e}(M)$ with A|M, and every submodules N and N' with $M = N \oplus N'$, if $A \cap N' \leq_{e} A$, then $A \oplus N|M$.
- (2) Whenever $M = M_1 \oplus M_2$ is a direct sum of submodules then M_1 and M_2 are relatively essentially \mathcal{X}^e -injective.

Note that every type 2 \mathcal{X} -quasi-continuous module M satisfies the equivalent conditions of Corollary 3.

Let M, X be left *R*-modules. Define the family

 $\mathcal{A}(X,M) = \{A \subseteq M | \exists Y \subseteq X, \exists f \in \operatorname{Hom}(Y,M), f(Y) \leq_e A \}.$

Consider the properties

 $\mathcal{A}(X, M)$ - (C_1) : For all $A \in \mathcal{A}(X, M)$, $\exists A^* | M$, such that $A \leq_e A^*$.

 $\mathcal{A}(X, M)$ - (C_3) : For all $A \in \mathcal{A}(X, M)$ and B|M, if A|M and $A \cap B = 0$ then $A \oplus B|M$.

According to [12], M is said to be X-extending, or X-quasi-continuous, respectively, if M satisfies $\mathcal{A}(X, M)$ - (C_1) and $\mathcal{A}(X, M)$ - (C_3) .

The following is a result of [12]. Recall that a ring R is called a left SI-ring if every singular left R-module is injective.

Lemma 5. A ring R is a left SI-ring if and only if every left R-module is X-quasi-continuous for every singular left R-module X.

Lemma 6. Let \mathcal{X} be a class of left R-modules. If a left R-module M is X-quasi-continuous for any $X \in \mathcal{X}$, then M is type 2 \mathcal{X} -quasi-continuous.

Proof. Let N be in $\mathcal{X}(M)$ and A be a closure of N in M. It is easy to see that $A \in \mathcal{A}(N, M)$. Since M is N-extending, it follows that A is a direct summand of M. Thus M is type 2 \mathcal{X} -extending.

Let A and B be direct summands of M with $A \cap B = 0$ and $A \in \mathcal{X}^e(M)$. Then there exists an \mathcal{X} -submodule X of M such that $X \leq_e A$. Clearly $A \in \mathcal{A}(X, M)$. Since M is X-quasi-continuous, it follows that $A \oplus B$ is a direct summand of M. Hence M is type 2 \mathcal{X} -quasi-continuous.

It is easy to see that a type 2 \mathcal{X} -extending left *R*-module is not necessarily type 2 \mathcal{X} -quasi-continuous (for example, let \mathcal{X} be the class of all left *R*-modules). The following example shows that a type 2 \mathcal{X} -quasi-continuous left *R*-module is not necessarily quasi-continuous, and that an M- \mathcal{X} -injective left *R*-module is not necessarily *M*-injective.

Example 1. Let F be any field. Set $R = T_2(F)$, the ring of all upper triangular 2×2 matrices with entries in F. Then, by [5,13.6], R is a left SI-ring and a (left and right) hereditary artinian serial ring. Clearly $J(R)^2 = 0$. Thus by [5,13.5], every left R-module is extending. By Lemma 5, it follows that every left R-module is X-quasi-continuous for any singular left R-module X. Let \mathcal{X} be the class of all singular left R-modules. Then, by Lemma 6, every left R-module is type 2 \mathcal{X} -quasi-continuous. If all left R-modules are quasi-continuous, then for every left R-module $M, M \oplus E(M)$ is quasi-continuous, and so M is

injective by [13, Lemma C], where E(M) denotes the injective hull of M. Thus R is artinian semisimple, a contradiction. Hence there exists a left R-module M which is not quasi-continuous. By [5, Corollary 7.6], it follows that there exists a decomposition $M = M_1 \oplus M_2$ such that M_1 is not M_2 -injective. But M_1 is M_2 - \mathcal{X} -injective by Corollary 2.

Clearly every M- \mathcal{X} -injective module is pseudoly M- \mathcal{X} -injective. But the following example shows that the converse is not true. Recall that a left R-module M is said to be pseudo-injective if M is pseudo-M-injective.

Example 2. This example is due to Teply and appears in [11]. Let $A = \mathbb{Z}_2[x], B = A/(x)$, and $C = A/(x^2)$. Let

$$R = egin{pmatrix} B & B \ 0 & C \end{pmatrix}, \qquad M = egin{pmatrix} B \ C \end{pmatrix}.$$

Then M is pseudo-injective, but is not extending; hence is not quasi-injective. Let \mathcal{X} be the class of all left R-modules. Then $\mathcal{X}(M)$ coincides with the set of all submodules of M. Thus M is pseudoly M- \mathcal{X} -injective, but is not M- \mathcal{X} -injective.

Lemma 7. Let \mathcal{X} be a class of left R-modules which is closed under submodules. Let $M = M_1 \oplus M_2$. Then the following conditions are equivalent:

- (1) M is type 2 \mathcal{X} -extending.
- (2) Any closed submodule A of M with $A \in \mathcal{X}^e(M)$, and $A \cap M_1 = 0$ or $A \cap M_2 = 0$ is a direct summand of M.
- (3) Any closed submodule A of M with $A \in \mathcal{X}^e(M)$, and $A \cap M_1 = A \cap M_2 = 0$, or $A \cap M_1 \leq_e A$ or $A \cap M_2 \leq_e A$ is a direct summand of M.

Proof. The implications $(1) \Longrightarrow (2)$ and $(1) \Longrightarrow (3)$ follow from Lemma 6.

 $(2) \Longrightarrow (1)$. Let $L \in \mathcal{X}^e(M)$ be a closed submodule of M. Suppose that H is the maximal essential extension of $L \cap M_2$ in L. Then H is closed in L. Thus by [5, 1.10] H is closed in M. Since \mathcal{X} is closed under submodules, it is easy to see that the class \mathcal{X}^e is closed under submodules. Thus $H \in \mathcal{X}^e(M)$. Clearly $H \cap M_1 = 0$. Thus $M = H \oplus H'$. Now

$$L = L \cap M = L \cap (H \oplus H') = H \oplus (L \cap H').$$

Since $L \cap H'$ is closed in L, by [5,1.10] again, $L \cap H'$ is closed in M. Clearly $(L \cap H') \cap M_2 = (L \cap M_2) \cap H' \subseteq H \cap H' = 0$. Also $L \cap H' \in \mathcal{X}^e(M)$. Thus by hypothesis, there exists a submodule N of M such that $M = (L \cap H') \oplus N$. Now

$$H' = H' \cap M = H' \cap ((L \cap H') \oplus N) = (L \cap H') \oplus (N \cap H').$$

Thus $M = H \oplus H' = H \oplus (L \cap H') \oplus (N \cap H') = L \oplus (N \cap H')$. This means that M is type 2 \mathcal{X} -extending.

(3) \Longrightarrow (2). Let K be a closed submodule of M with $K \cap M_2 = 0$ and $K \in \mathcal{X}^e(M)$. Let L be a closed submodule of K such that $K \cap M_1 \leq_e L$. By [5,1.10], L is closed in M. Clearly $L \cap M_1 = K \cap M_1 \leq_e L$. Since $\mathcal{X}^e(M)$ is closed under submodules, it follows that $L \in \mathcal{X}^e(M)$. By hypothesis, L is a

Direct Sums of Type 2 X-Extending Modules

direct summand of M. Suppose that $M = L \oplus L'$. Then $K = K \cap (L \oplus L') = L \oplus (K \cap L')$. Since $K \cap L'$ is closed in K, by [5,1.10] again, $K \cap L'$ is closed in M. Obviously $K \cap L' \in \mathcal{X}^e(M)$, $(K \cap L') \cap M_1 = (K \cap M_1) \cap L' \leq L \cap L' = 0$, and $(K \cap L') \cap M_2 \leq K \cap M_2 = 0$. Thus, by hypothesis, $K \cap L'$ is a direct summand of M and, consequently, is also a direct summand of L'. Therefore, $K = L \oplus (K \cap L')$ is a direct summand of $L \oplus L' = M$.

If K is a closed submodule of M with $K \cap M_1 = 0$ and $K \in \mathcal{X}^e(M)$, then by analogy with the above proof, it follows that K is a direct summand of M.

Lemma 8. Let M_1 be a type 2 \mathcal{X} -extending left R-module and M_2 be any left R-module. Set $M = M_1 \oplus M_2$. If M_2 is M_1 - \mathcal{X} -injective (pseudoly M_1 - \mathcal{X} -injective, essentially M_1 - \mathcal{X} -injective), then every closed submodule K of M with $K \in \mathcal{X}(M)$ and $K \cap M_2 = 0$ (respectively, $K \cap M_1 = K \cap M_2 = 0$, $K \cap M_1 \leq_e K$) is a direct summand.

Proof. Suppose that M_2 is pseudoly M_1 - \mathcal{X} -injective, and let K be a closed submodule of M with $K \cap M_1 = K \cap M_2 = 0$ and $K \in \mathcal{X}(M)$. Then, by Lemma 1, there exists a submodule L of M such that $M = M_2 \oplus L$ and $K \leq L$. Clearly L is isomorphic to M_1 , and so is type 2 \mathcal{X} -extending. Thus K, being a closed submodule of L and $K \in \mathcal{X}(L)$, is a direct summand of L. Hence K is also a direct summand of M.

From Lemmas 2 and 3, the results for M_2 being M_1 - \mathcal{X} -injective and essentially M_1 - \mathcal{X} -injective follow similarly.

The following result generalizes [6, Theorem 8], [7, Theorem 4.4], [14, Theorem 8(iii) and (iv)] and [18, Proposition 5.8].

Theorem 1. Let \mathcal{X} be a class of left R-modules which is closed under submodules. Let M_1 and M_2 be type 2 \mathcal{X} -extending left R-modules and let $M = M_1 \oplus M_2$. If one of the following conditions holds, then M is type 2 \mathcal{X} -extending.

- (1) M_1 and M_2 are relatively essentially \mathcal{X}^e -injective and M_1 is pseudoly M_2 - \mathcal{X}^e -injective.
- (2) M_1 and M_2 are relatively essentially \mathcal{X}^e -injective and M_2 is pseudoly M_1 - \mathcal{X}^e -injective.

Proof. It follows from Lemmas 7 and 8.

Let M be a left R-module. A left R-module N is called essentially M-injective if for any submodule A of M, any homomorphism $\phi : A \longrightarrow N$ with $\operatorname{Ker}(\phi) \leq_e A$ can be extended to a homomorphism $\psi : M \longrightarrow N$. Two modules M and N are called relatively essentially injective if M is essentially N-injective and N is essentially M-injective.

Corollary 4. Let M_1 and M_2 be extending left R-modules and let $M = M_1 \oplus M_2$. If M_1 and M_2 are relatively essentially injective and M_1 is pseudo- M_2 -injective (or M_2 is pseudo- M_1 -injective), then M is extending. Following [15], a left R-module M is called a CESS-module if every complement with essential socle is a direct summand, equivalently, every submodule with essential socle is essential in a direct summand of M. CESS-modules have been studied in [1, 2, 15].

Corollary 5. Let $M = M_1 \oplus M_2$. Then the following conditions are equivalent: (1) M is a CESS-module.

- (2) Every closed submodule A of M with essential socle and $A \cap M_1 = 0$ or $A \cap M_2 = 0$ is a direct summand of M.
- (3) Every closed submodule A of M with essential socle and $A \cap M_1 = A \cap M_2 = 0$, or $A \cap M_1 \leq_e A$ or $A \cap M_2 \leq_e A$ is a direct summand of M.

Let \mathcal{ES} be the class of left *R*-modules with essential socle. Then we have

Corollary 6. Let $M = M_1 \oplus M_2$. If M_1 and M_2 are relatively essentially \mathcal{ES} -injective and M_1 is pseudoly M_2 - \mathcal{ES} -injective (or M_2 is pseudoly M_1 - \mathcal{ES} -injective), then M is a CESS-module if and only if M_1 and M_2 are CESS-modules.

Proof. It follows from Theorem 1.

Note that Corollary 6 generalizes [2, Corollary 1.7].

Let \mathcal{U} be the class of left *R*-modules with finite uniform dimension. Then we have

Corollary 7. Let $M = M_1 \oplus M_2$. If M_1 and M_2 are relatively essentially *U*-injective and M_1 is pseudoly M_2 -*U*-injective (or M_2 is pseudoly M_1 -*U*-injective), then M is uniform-extending if and only if M_1 and M_2 are uniform-extending.

References

- 1. C. Celik, CESS-modules, Tr. J. of Math. 22 (1998) 69-75.
- C. Celik, A. Harmanc, and P. F. Smith, A generalization of CS-modules, Comm. Algebra 23 (1995) 5445-5460.
- 3. S. Dogruoz and P.F. Smith, Modules which are extending relative to module classes, *Comm. Algebra* **26** (1998) 1699–1721.
- N. V. Dung, On indecomposable decomposition of CS-modules, J. Australian Math. Soc. Ser. A 61 (1) (1996) 30-41.
- N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending modules, *Pitman Research Notes in Math.* Ser. 313, Longman Sci. and Tech., 1994.
- A. Harmanci and P. F. Smith, Finite direct sums of CS-modules, Houston J. Math. 19 (1993) 523-532.
 - A. Harmanci, P. F. Smith, A. Tercan, and Y. Tiras, Direct sums of CS-modules, Houston J. Math. 22 (1996) 61-71.
 - M. A. Kamal and B. J. Muller, Extending modules over commutative domains, Osaka J. Math. 25 (1988) 531-538.

- 9. M. A. Kamal and B. J. Muller, The structure of extending modules over Northerian rings, Osaka J. Math. 25 (1988) 539-551.
- M. A. Kamal and B. J. Muller, Torsion free extending modules, Osaka J. Math. 25 (1988) 825-832.
- M. S. Li and J. M. Zelmanowitz, On the generalizations of injectivity, Comm. Algebra 16 (1988) 483-491.
- 12. S. R. Lopez-Permouth, K. Oshiro, and S. Tariq Rizvi, On the relative (quasi-) continuity of modules, *Comm. Algebra* **26** (1998) 3497–3510.
- 13. B. L. Osofsky and P. F. Smith, Cyclic modules whose quotients have all complement submodules direct summands, J. Algebra 139 (1991) 342-354.
- C. Santa-Clara, Extending modules with injective or semisimple summands, J. Pure Appl. Algebra 127 (1998) 193-203.
- P.F. Smith, CS-Modules and Weak CS-Modules, Non-Commutative Ring Theory, Lecture Notes in Mathematics, Vol. 1448, Springer, 1990, pp. 99-115.
- P.F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21 (1993) 1809–1847.
- 17. L. Van Thuyet and R. Wisbauer, Extending property for finitely generated submodules, *Vietnam J. Math.* 25 (1997) 65-73.
- N. Vanaja, All finitely generated M-subgenerated modules are extending, Comm. Algebra 24 (1996) 543-572.