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Abstract. Recently we have developed the boundary operator method and the para-
metric extrapolation technique for solving a boundary value problem (BVP) for second
order elliptic equation with discontinuous coefficients and BVPs for bjharmonic and
biharmonic type equations. In this paper we use these methods for a BVP for trihar-
monic equation. Namely, two iterative schemes, which reduce the original problem to
a sequence of BVPs for the Poisson equation, are proposed and investigated.

1. Introduction

In earlier papers we have developed the boundary operator method and the
parametric extrapolation technique for solving iteratively a BVP for second or-
der elliptic equation with discontinuous coefficients [1], BVPs for biharmonic
and biharmonic type equations [2-4]. The idea of the method is to reduce a
complicated BVP to a sequence of simpler problems, for which there are avail-
able many efficient methods of solving. In this paper we apply this method to
the following BVP for triharmonic equation

Adu=f(z), z€Q, (1)
0
ulr =0, 8_1: r =0, Aulr=0, (2)
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where A is the Laplace operator, € is a bounded domain in R"(n > 2),T is
the sufficiently smooth boundary of Q. The solvability and smoothness of the
solution of problem (1)—(2) follow from the general theory of elliptic problems
(see [6]), namely, if f € H*(£2) then there exists a unique solution u € H**¢(Q)
. Here , as usual, H*(f2) is a Sobolev space.

2. Reduction of BVP to Boundary Operator Equation
We set
Au=v,Av=w

and denote by wg the trace of w on I' , i.e. wy = w|r . Then from (1)—(2) we
come to the sequence of problems

Aw:fa xEQ1 wll":’LU(),
Av=w, z€, vr=0, (3)
Au=v, z€Q, ulp=0.

The solution u from above problems should satisfy the second condition in (2).

Now, we introduce the operator B defined on boundary functions wg by the
formula
Ju
B’wo ==l |l ] (4)
ov|r
where u is found from the sequence of problems

Aw=0, z€Q, wl=uwp,
A’U = w, S Qa UIF = O) (5)
Au=v, z€§, ulr=0.

Notice that the operator B primarily defined on smooth functions is extended

by continuity on the whole Ly(T"). Its properties will be investigated later.
It is not difficult to verify

Theorem 1. Suppose that u is the solution of the original problem (1)—(2).
Then wg = A2ulr satisfies the operator equation

Bwg = F, (6)
where
F= 8u2

_E ) (7)
T

ug being determined from the problems
Awy = f, €, war=0,
Avy = we, €8, Uz|p =0, (8)
AU2=’U2, er) U2|1“=0.
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Notice that if f € H5(Q) then F € H**%%T) . Thus, we have led the

original problem to the operator equation (6) for finding wg. After wy is found,
by solving the problems (3) we shall find the solution of (1)—(2).

Now, let us study the properties of B. First, for short we denote by H the
Hilbert space Lo(I") with the scalar product (., .).

Property 1. B is symmetric and positive in H.

Proof. For any functions wp and @y we have

i . = ou _ du
(Bwyg, o) = /I‘wOBdeF = —/ ﬂudr / u— — woa)dl—"
= /(qu — WAu)dz = -—/ wAudz
Q 9]

- / Avtvdz = / gradv.gradvdz
Q Q

in view of (5) and the same equalities for @, %, 7 and @. Thus, we obtain
(Bwy, W) = / gradv.gradvdz.
Q
Hence,
(B’wo, ’LU()) — (BU_)Q, ’wo).

The symmetry of B is proved.

Furthermore, we have

(Bwg, wp) = / |gradv|®dz > 0.
Q

The equality occurs if and only if wg = 0. So, B is positive and Property 1 is
proved.

Property 2. B is a completely continuous operator in H.

Proof. From [6] it follows that B is an isomorphism of spaces H*(I") and H*+3(T'),
s > 0. Due to the compactness of embedding of H*+3(T") into H*(I') we get that
B is completely continuous operator in H*(I'). In particular, B is a completely
continuous in H = HO(T") = Ly(T) .

3. Iterative Method for BVP (1)—(2)

Consider the following iterative method for (1)-(2):
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i) Give a starting approximation w(()o) € H/2(I).
ii) Knowing w( ) (k=0,1,...,) solve successively three problems
Aw® =f zeQ, w®|p=uwP,
Av® =uy® e, B =0, 9)
Au® = v(k), z € Q, u(k)lp =0.

ili) Compute the new approximation of wg

5. (k)
k+1 k) du
w(() ) = w((, —=NTE 'a?, z €T, (10)

where 7 is a sufficiently small iterative parameter.

Theorem 2. The above iterative process is a realization of the following iterative
scheme

u;{)kl 1) _ u’»“}

+Bu = F (11)
T

for the operator equation (6).

Proof. Indeed, if we represent u(®) = ugk) +ug, vk = v(k) + vy, wk) = wgk) +wa,

where us, vq, wy are the solutions of (8) then ugk), vgk), wgk) satisfy the following

problems
Aw:(lk) =0, z€Q, wik)ip = w((,k),
Av{F) = §’“) zeq, v¥IL=o, (12)
Au(k) =v; & req, ugk)|p =0.

By the definition of B we have

Aul®

Bw((,k) = (13)

dv

Taking into account
Auk) n Bugk) s Oua
v~ v ov’
from (10), (13) and (7) we obtain (11) and the theorem is proved.

Since B is shown to be a symmetric, positive, completely continuous operator
in H there holds

Theorem 3. The iterative method (11) is convergent if

flc mAf
T
1Bl

Proof. See Lemma 2.1 in [4].
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4. Accelerated Iterative Method for BVP (1)-(2)

In order to construct a faster convergent iterative process for (1)-(2) we shall
use the parametric extrapolation technique, which was developed and used in
our works [1- 4]. For this reason we consider the perturbed problem

Aus = f(x), z€Q,
uslr =0, Auslr =0,

(%ilf i 5A2U5) |F= 0.

Analogously as in Sec. 2, it is easy to show that this problem may be reduced to
the following operator equation

(14)

Bswgso = F, (15)

where Bs = B + 81, wso = A%us|r, I is the identity operator and B and F' are
defined by (4)-(5) and (7)-(8), respectively. Taking into account the property 1
of B we see that Bj is a linear, symmetric, positive definite operator in H and
Bs > 41.

Theorem 4. Suppose that f € Hs=%(2), s > 6. Then for the solution of the
problem (14) there holds the following asymptotic eTpansion

N
us=u+y 0yi+ 6"z, z€Q, 0<3N<s-5/2 (16)
i=1
where yo = w is the solution of (1)-(2), wi (i =1,...,N) are functions indepen-
dent of 6, y; € H*(Q), z5 € H*3N(Q) and

lzsll 20y < Ch, (17)
C, being independent of 6.

Proof. Under the assumption of the theorem, by [6] there exists a unique solution
u € H*(f) of the problem (14). After substituting (16) into (14) and comparing
coefficients of the same powers of § we see that y; and 25 satisfy the following
problems

Asyi =40, T'E Q,

yilr =0, Ayilr =0,

5 (18)
Yi 2 . i
— A%y | 4 28 mlr
ov A Yen ! r X
Ad25 =0, z€9,
25|1" =0, A25|1" =0,
(19)

i)
ov

/~

— 6A2z5)

— A2 . .
yNF
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Once again, using [6] it is not difficult to establish successively that (18) has a
unique solution y; € H*~%(Q2) and (19) has a unique solution z5 € H*3N(Q).
Clearly, y;(i = 1,..., N) do not depend on § . It remains to estimate z5. For this
purpose we reduce (19) to a boundary operator equation. We set

Azs = vg, Avs = w; (20)
and denote ws|r = wso. Then we get
Aws;=f, zeQ, ws|r = wso,
Avs =ws, €N, wvr=0, (21)
Azs=vs, €, 2z5r=0.
By the definition of B we have
Buwsp = —% . (22)

Now, using the last condition of (19) we obtain
Bwsg + 6Iwsg = h, (23)

where h = —A?yy|,..
It is not hard to verify that (see [5])

(Bwso, weo) < (Buwo, wo) (24)

where wy is a solution of the equation Bwgy = h. ’I‘his equation has a solution
because the problem (19) with § = 0 may be reduced to this.
In Sec. 2, when investigating the properties of B we have established that

(Bwso, wso) =/ |gradvs|2da.
Q

In view of the Fridrichs inequality [7] we have

(Bwso, wso) 2 Callvsl|7 (25)

On the other hand, since zs satisfies the last problem in (21) there holds the
estimate

25| r2 0y < ||U5H%2(n)-
Hence, taking into account (25) and (24) we obtain

| 25|l 72y < Ch,

where C; = ,/%:'(Bwo,wo), C2,C5 and wy being independent of § . Thus, the
theorem is proved.
As usual (see [1-5]), we construct an approximate solution of the original
problem (1)-(2) by the formula
N+1

Ue 2 Z YVils/is
=1
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where
(_1)N+1—il~N+1

AN +1=9)! "
ug/; is the solution of (14) with the parameter §/i (i = 1,..., N + 1). Then, it is
easy to obtain the following estimate

|UE — u| g2y < CONFL,

Vi =

where u is the solution of (1)-(2), C is a constant independent of 4.

For solving (14), which may be reduced to the equation (15) we propose to
use the following iterative process under the assumption f € Lo(£2):

i) Give a start approximation wgg) e HY/2(T).

ii) Knowing wgg), (k=0,1,...), solve successively three problems

Awgk) =i ziE W, 'Luf;k)|p = wgg),
AP =u®, zeQ, oPIr=0, (26)
Auf;k) = ng), z € Q, ugk)|p =0.

iii) Compute the new approximation of wso

(k+1) _ o (B) dug?
Wso | =wWso ~ Tekt1—5, (I z €T, (27)

where 7541 is the Chebyshev collection of parameters according to bounds
v} =8, v3 = 6+ ||B|| (see [1, 8] for detail). In the case of simple iteration

75k = 75,0 = 3

"%
we get
k 0
lwl®) — wollr < (ps)*lwsy — wsola (28)
where &
16 s

P5=_1_s_£5, fJ—F

and as above H = Ly(T").

This result follows from the general theory of two-layer iterative schemes (8],
applied to the operator equation (15), which is obtained from (14). Using esti-
mates for the solution of elliptic problems [5] and taking into account (28) we
get the estimate

k 0
16 = usll g2y < Clos) sy — weollz ,

where C is a constant independent of 4§ and wso = A2U§|1" as was mentioned in
the beginning of the section.
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